--- license: mit library_name: transformers tags: - image-to-image - lineart --- # MangaLineExtraction-hf Transformers version of [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch). Original repo: https://github.com/ljsabc/MangaLineExtraction_PyTorch ## Example ```py from PIL import Image import torch from transformers import AutoModel, AutoImageProcessor REPO_NAME = "p1atdev/MangaLineExtraction-hf" model = AutoModel.from_pretrained(REPO_NAME, trust_remote_code=True) processor = AutoImageProcessor.from_pretrained(REPO_NAME, trust_remote_code=True) image = Image.open("./sample.jpg") inputs = processor(image, return_tensors="pt") with torch.no_grad(): outputs = model(inputs.pixel_values) line_image = Image.fromarray(outputs.pixel_values[0].numpy().astype("uint8"), mode="L") line_image.save("./line_image.png") ``` ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Chengze Li, Xueting Liu, Tien-Tsin Wong - **Converted by:** Plat - **License:** MIT ### Model Sources - **Repository:** https://github.com/ljsabc/MangaLineExtraction_PyTorch - **Paper:** https://ttwong12.github.io/papers/linelearn/linelearn.pdf - **Project page:** https://www.cse.cuhk.edu.hk/~ttwong/papers/linelearn/linelearn.html ## Citation **BibTeX:** ```bibtex @article{li-2017-deep, author = {Chengze Li and Xueting Liu and Tien-Tsin Wong}, title = {Deep Extraction of Manga Structural Lines}, journal = {ACM Transactions on Graphics (SIGGRAPH 2017 issue)}, month = {July}, year = {2017}, volume = {36}, number = {4}, pages = {117:1--117:12}, } ```