# copied from ViTImageProcessor (https://github.com/huggingface/transformers/blob/v4.37.2/src/transformers/models/vit/image_processing_vit.py) """Image processor class for WD v14 Tagger.""" from typing import Optional, List, Dict, Union, Tuple import numpy as np import cv2 from PIL import Image from transformers.image_processing_utils import ( BaseImageProcessor, BatchFeature, get_size_dict, ) from transformers.image_transforms import ( rescale, to_channel_dimension_format, _rescale_for_pil_conversion, to_pil_image, ) from transformers.image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from transformers.utils import TensorType, logging logger = logging.get_logger(__name__) def resize_by_factor( image: np.ndarray, resize_factor: int, resample: PILImageResampling = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, return_numpy: bool = True, ): """ Resizes `image` to `(height, width)` specified by `size` using the PIL library. Args: image (`np.ndarray`): The image to resize. resize_factor (`int`): Value for padding the image to a multiple of the factor. resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`): The filter to user for resampling. data_format (`ChannelDimension`, *optional*): The channel dimension format of the output image. If unset, will use the inferred format from the input. return_numpy (`bool`, *optional*, defaults to `True`): Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is returned. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input image. If unset, will use the inferred format from the input. Returns: `np.ndarray`: The resized image. """ resample = resample if resample is not None else PILImageResampling.BILINEAR # For all transformations, we want to keep the same data format as the input image unless otherwise specified. # The resized image from PIL will always have channels last, so find the input format first. if input_data_format is None: input_data_format = infer_channel_dimension_format(image) data_format = input_data_format if data_format is None else data_format # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use # the pillow library to resize the image and then convert back to numpy do_rescale = False if not isinstance(image, Image.Image): do_rescale = _rescale_for_pil_conversion(image) image = to_pil_image( image, do_rescale=do_rescale, input_data_format=input_data_format ) assert isinstance(image, Image.Image) width, height = ( int(np.ceil(image.size[0] // resize_factor) * resize_factor), int(np.ceil(image.size[1] // resize_factor) * resize_factor), ) # solid image new_image = Image.new(image.mode, (width, height), "white") # paste original image on top left new_image.paste(image) if return_numpy: new_image = np.array(new_image) # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image # so we need to add it back if necessary. new_image = ( np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image ) # The image is always in channels last format after converting from a PIL image new_image = to_channel_dimension_format( new_image, data_format, input_channel_dim=ChannelDimension.LAST ) # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to # rescale it back to the original range. new_image = rescale(new_image, 1 / 255) if do_rescale else new_image return new_image def greyscale( image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, return_numpy: bool = True, ): """ Convert `image` to `greyscale` using the PIL library. Args: image (`np.ndarray`): The image to greyscale. Returns: `np.ndarray`: The greyscaled image. """ if not isinstance(image, Image.Image): do_rescale = _rescale_for_pil_conversion(image) image = to_pil_image( image, do_rescale=do_rescale, input_data_format=input_data_format ) assert isinstance(image, Image.Image) # do greyscale image = image.convert("L") if return_numpy: image = np.array(image) # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image # so we need to add it back if necessary. image = np.expand_dims(image, axis=-1) if image.ndim == 2 else image # The image is always in channels last format after converting from a PIL image image = to_channel_dimension_format( image, data_format, input_channel_dim=ChannelDimension.LAST ) # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to # rescale it back to the original range. image = rescale(image, 1 / 255) if do_rescale else image return image class MLEImageProcessor(BaseImageProcessor): r""" Constructs a MLE image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. resize_factor (`int`, *optional*, defaults to `16`): Value for padding the image to a multiple of the factor. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `False`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `False`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, resize_factor: int = 16, do_greyscale: bool = True, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1.0, do_normalize: bool = False, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.do_resize = do_resize self.resize_factor = resize_factor self.do_greyscale = do_greyscale self.do_rescale = do_rescale self.do_normalize = do_normalize self.resample = resample self.rescale_factor = rescale_factor self.image_mean = ( image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN[0] ) self.image_std = ( image_std if image_std is not None else IMAGENET_STANDARD_STD[0] ) def resize( self, image: np.ndarray, resize_factor: int, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. resize_factor (`int`): Value for padding the image to a multiple of the factor. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ return resize_by_factor( image, resize_factor=resize_factor, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def greyscale( self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST, input_data_format: Optional[ Union[str, ChannelDimension] ] = ChannelDimension.FIRST, **kwargs, ): """ Convert an image to greyscale. Args: image (`np.ndarray`): Image to greyscale Returns: `np.ndarray`: The greyscaled image. """ return greyscale( image, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, resize_factor: Optional[int] = None, do_greyscale: Optional[bool] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. resize_factor (`int`, *optional*, defaults to `self.resize_factor`): Value for padding the image to a multiple of the factor. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_greyscale = do_greyscale if do_greyscale is not None else self.do_greyscale resample = resample if resample is not None else self.resample rescale_factor = ( rescale_factor if rescale_factor is not None else self.rescale_factor ) image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std resize_factor = ( resize_factor if resize_factor is not None else self.resize_factor ) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and resize_factor is None: raise ValueError("Resize factor must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize( image=image, resize_factor=resize_factor, resample=resample, input_data_format=input_data_format, ) for image in images ] if do_greyscale: images = [ self.greyscale( image=image, data_format=data_format, input_data_format=input_data_format, ) for image in images ] # the channel would be set to 1, so input data format could't be estimated input_data_format = ChannelDimension.FIRST if do_rescale: images = [ self.rescale( image=image, scale=rescale_factor, input_data_format=input_data_format, ) for image in images ] if do_normalize: images = [ self.normalize( image=image, mean=image_mean, std=image_std, input_data_format=input_data_format, ) for image in images ] images = [ to_channel_dimension_format( image, data_format, input_channel_dim=input_data_format ) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)