Update README.md
Browse files
README.md
CHANGED
@@ -1,89 +1,165 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
@@ -92,110 +168,46 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
|
|
|
133 |
|
134 |
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
[
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
201 |
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- isek-ai/danbooru-tags-2024
|
6 |
+
base_model: p1atdev/dart-v2-moe-base
|
7 |
+
tags:
|
8 |
+
- trl
|
9 |
+
- sft
|
10 |
+
- optimum
|
11 |
+
- danbooru
|
12 |
+
inference: false
|
13 |
---
|
14 |
+
# Dart (Danbooru Tags Transformer) v2
|
15 |
+
|
16 |
+
This model is a fine-tuned Dart (Danbooru Tags Transformer) v2 base model that generates danbooru tags.
|
17 |
+
|
18 |
+
Demo: [🤗 Space with ZERO](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2)
|
19 |
+
|
20 |
+
## Model variants
|
21 |
+
|
22 |
+
|Name|Architecture|Param size|Type|
|
23 |
+
|-|-|-|-|
|
24 |
+
|[v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft)|Mixtral|166m|SFT|
|
25 |
+
|[v2-moe-base](https://huggingface.co/p1atdev/dart-v2-moe-base)|Mixtral|166m|Pretrain|
|
26 |
+
|[v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)|Mistral|114m|SFT|
|
27 |
+
|[v2-base](https://huggingface.co/p1atdev/dart-v2-base)|Mistral|114m|Pretrain|
|
28 |
+
|[v2-vectors](https://huggingface.co/p1atdev/dart-v2-vectors)|Embedding|-|Tag Embedding|
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
### Using 🤗Transformers
|
33 |
+
|
34 |
+
```py
|
35 |
+
import torch
|
36 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
37 |
+
MODEL_NAME = "p1atdev/dart-v2-base"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16)
|
40 |
+
prompt = (
|
41 |
+
f"<|bos|>"
|
42 |
+
f"<copyright>vocaloid</copyright>"
|
43 |
+
f"<character>hatsune miku</character>"
|
44 |
+
f"<|rating:general|><|aspect_ratio:tall|><|length:long|>"
|
45 |
+
f"<general>1girl"
|
46 |
+
)
|
47 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model.generate(
|
50 |
+
inputs,
|
51 |
+
do_sample=True,
|
52 |
+
temperature=1.0,
|
53 |
+
top_p=1.0,
|
54 |
+
top_k=100,
|
55 |
+
max_new_tokens=128,
|
56 |
+
num_beams=1,
|
57 |
+
)
|
58 |
+
print(", ".join([tag for tag in tokenizer.batch_decode(outputs[0], skip_special_tokens=True) if tag.strip() != ""]))
|
59 |
+
```
|
60 |
+
|
61 |
+
### Using 📦`dartrs` library
|
62 |
+
|
63 |
+
> [!WARNING]
|
64 |
+
> This library is very experimental and there will be breaking changes in the future.
|
65 |
+
|
66 |
+
[📦`dartrs`](https://github.com/p1atdev/dartrs) is a [🤗`candle`](https://github.com/huggingface/candle) backend inference library for Dart v2 models.
|
67 |
+
|
68 |
+
```py
|
69 |
+
pip install -U dartrs
|
70 |
+
```
|
71 |
+
|
72 |
+
```py
|
73 |
+
from dartrs.dartrs import DartTokenizer
|
74 |
+
from dartrs.utils import get_generation_config
|
75 |
+
from dartrs.v2 import (
|
76 |
+
compose_prompt,
|
77 |
+
MixtralModel,
|
78 |
+
V2Model,
|
79 |
+
)
|
80 |
+
import time
|
81 |
+
import os
|
82 |
+
MODEL_NAME = "p1atdev/dart-v2-base"
|
83 |
+
model = MixtralModel.from_pretrained(MODEL_NAME)
|
84 |
+
tokenizer = DartTokenizer.from_pretrained(MODEL_NAME)
|
85 |
+
config = get_generation_config(
|
86 |
+
prompt=compose_prompt(
|
87 |
+
copyright="vocaloid",
|
88 |
+
character="hatsune miku",
|
89 |
+
rating="general", # sfw, general, sensitive, nsfw, questionable, explicit
|
90 |
+
aspect_ratio="tall", # ultra_wide, wide, square, tall, ultra_tall
|
91 |
+
length="medium", # very_short, short, medium, long, very_long
|
92 |
+
prompt="1girl, cat ears",
|
93 |
+
do_completion=False
|
94 |
+
),
|
95 |
+
tokenizer=tokenizer,
|
96 |
+
)
|
97 |
+
start = time.time()
|
98 |
+
output = model.generate(config)
|
99 |
+
end = time.time()
|
100 |
+
print(output)
|
101 |
+
print(f"Time taken: {end - start:.2f}s")
|
102 |
+
# cowboy shot, detached sleeves, empty eyes, green eyes, green hair, green necktie, hair in own mouth, hair ornament, letterboxed, light frown, long hair, long sleeves, looking to the side, necktie, parted lips, shirt, sleeveless, sleeveless shirt, twintails, wing collar
|
103 |
+
# Time taken: 0.26s
|
104 |
+
```
|
105 |
+
|
106 |
+
## Prompt Format
|
107 |
+
|
108 |
+
```py
|
109 |
+
prompt = (
|
110 |
+
f"<|bos|>"
|
111 |
+
f"<copyright>{copyright_tags_here}</copyright>"
|
112 |
+
f"<character>{character_tags_here}</character>"
|
113 |
+
f"<|rating:general|><|aspect_ratio:tall|><|length:long|>"
|
114 |
+
f"<general>{general_tags_here}"
|
115 |
+
)
|
116 |
+
```
|
117 |
+
|
118 |
+
- Rating tag: `<|rating:sfw|>`, `<|rating:general|>`, `<|rating:sensitive|>`, `nsfw`, `<|rating:questionable|>`, `<|rating:explicit|>`
|
119 |
+
- `sfw`: randomly generates tags in `general` or `sensitive` rating categories.
|
120 |
+
- `general`: generates tags in `general` rating category.
|
121 |
+
- `sensitive`: generates tags in `sensitive` rating category.
|
122 |
+
- `nsfw`: randomly generates tags in `questionable` or `explicit` rating categories.
|
123 |
+
- `questionable`: generates tags in `questionable` rating category.
|
124 |
+
- `explicit`: generates tags in `explicit` rating category.
|
125 |
+
|
126 |
+
- Aspect ratio tag: `<|aspect_ratio:ultra_wide|>`, `<|aspect_ratio:wide|>`, `<|aspect_ratio:square|>`, `<|aspect_ratio:tall|>`, `<|aspect_ratio:ultra_tall|>`
|
127 |
+
- `ultra_wide`: generates tags suits for extremely wide aspect ratio images. (~2:1)
|
128 |
+
- `wide`: generates tags suits for wide aspect ratio images. (2:1~9:8)
|
129 |
+
- `square`: generates tags suits for square aspect ratio images. (9:8~8:9)
|
130 |
+
- `tall`: generates tags suits for tall aspect ratio images. (8:9~1:2)
|
131 |
+
- `ultra_tall`: generates tags suits for extremely tall aspect ratio images. (1:2~)
|
132 |
+
|
133 |
+
- Length tag: `<|length:very_short|>`, `<|length:short|>`, `<|length:medium|>`, `<|length:long|>`, `<|length:very_long|>`
|
134 |
+
- `very_short`: totally generates ~10 number of tags.
|
135 |
+
- `short`: totally generates ~20 number of tags.
|
136 |
+
- `medium`: totally generates ~30 number of tags.
|
137 |
+
- `long`: totally generates ~40 number of tags.
|
138 |
+
- `very_long`: totally generates 40~ number of tags.
|
139 |
|
140 |
## Model Details
|
141 |
|
142 |
### Model Description
|
143 |
|
144 |
+
- **Developed by:** Plat
|
145 |
+
- **Model type:** Causal language model
|
146 |
+
- **Language(s) (NLP):** Danbooru tags
|
147 |
+
- **License:** Apache-2.0
|
148 |
+
- **Demo:** Available on [🤗 Space](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
## Training Details
|
152 |
|
153 |
### Training Data
|
154 |
|
155 |
+
This model was trained with:
|
156 |
+
|
157 |
+
- [isek-ai/danbooru-tags-2024](https://huggingface.co/datasets/isek-ai/danbooru-tags-2024/tree/202403-at20240423) with revision `202403-at20240423`: 7M size of danbooru tags dataset since 2005 to 2024/03/31.
|
158 |
|
|
|
159 |
|
160 |
### Training Procedure
|
161 |
|
162 |
+
TODO
|
163 |
|
164 |
#### Preprocessing [optional]
|
165 |
|
|
|
168 |
|
169 |
#### Training Hyperparameters
|
170 |
|
171 |
+
The following hyperparameters were used during training:
|
172 |
+
- learning_rate: 0.0005
|
173 |
+
- train_batch_size: 1024
|
174 |
+
- eval_batch_size: 256
|
175 |
+
- seed: 42
|
176 |
+
- gradient_accumulation_steps: 2
|
177 |
+
- total_train_batch_size: 2048
|
178 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
179 |
+
- lr_scheduler_type: cosine
|
180 |
+
- lr_scheduler_warmup_steps: 1000
|
181 |
+
- num_epochs: 5
|
182 |
|
183 |
## Evaluation
|
184 |
|
185 |
+
Evaluation has not been done yet and it needs to evaluate.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
|
|
187 |
|
188 |
+
#### Model Architecture and Objective
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
The architecture of this model is [Mistral](https://huggingface.co/docs/transformers/model_doc/mistral). See details in [config.json](./config.json).
|
191 |
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
### Compute Infrastructure
|
194 |
|
195 |
+
Private server.
|
196 |
|
197 |
#### Hardware
|
198 |
|
199 |
+
8x RTX A6000
|
200 |
|
201 |
#### Software
|
202 |
|
203 |
+
- Dataset processing: [🤗 Datasets](https://github.com/huggingface/datasets)
|
204 |
+
- Training: [🤗 Transformers](https://github.com/huggingface/transformers)
|
205 |
+
- SFT: [🤗 TRL](https://github.com/huggingface/trl)
|
206 |
+
- Inference library: [📦 dartrs](https://github.com/p1atdev/dartrs)
|
207 |
+
- Backend: [🤗 candle](https://github.com/huggingface/candle)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
## Related Projects
|
210 |
|
211 |
+
- [dart-v1](https://huggingface.co/p1atdev/dart-v1): The first version of the Dart model.
|
212 |
+
- [KBlueLeaf/DanTagGen](https://huggingface.co/collections/KBlueLeaf/dantaggen-65f82fa9335881a67573556b): The Aspect Ratio tag was inspired by this project.
|
213 |
+
- [furusu/danbooru-tag-similarity](https://huggingface.co/spaces/furusu/danbooru-tag-similarity): The idea of clustering tags and its training method was inspired by this project.
|