File size: 1,637 Bytes
0a6ee48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig
from transformers.utils import ModelOutput
@dataclass
class SiglipForImageClassifierOutput(ModelOutput):
loss: torch.FloatTensor | None = None
logits: torch.FloatTensor | None = None
pooler_output: torch.FloatTensor | None = None
hidden_states: tuple[torch.FloatTensor, ...] | None = None
attentions: tuple[torch.FloatTensor, ...] | None = None
class SiglipForImageClassification(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(
self,
config,
):
super().__init__(config)
self.num_labels = config.num_labels
self.siglip = SiglipVisionModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size, config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None
):
outputs = self.siglip(pixel_values)
pooler_output = outputs.pooler_output
logits = self.classifier(pooler_output)
loss = None
return SiglipForImageClassifierOutput(
loss=loss,
logits=logits,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|