flozi00 commited on
Commit
c94e85d
·
verified ·
1 Parent(s): 775c679

Update config.json (#1)

Browse files

- Update config.json (9db383068b2639f6c36a8da8a51aa954cc7eef8c)
- Update README.md (3a7f4b33547238b08ad8c06976e9bb37a5dc74ca)

Files changed (2) hide show
  1. README.md +85 -163
  2. config.json +1 -1
README.md CHANGED
@@ -1,199 +1,121 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ license: llama3.1
3
+ language:
4
+ - de
5
+ - en
6
+ - it
7
+ - fr
8
+ - pt
9
+ - es
10
+ - ar
11
+ - nl
12
+ tags:
13
+ - spectrum
14
  ---
15
 
16
+ ![Llama-3.1-SauerkrautLM-70b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/08/Llama3.1-SauerkrautLM-70b-Instruct2.png "Llama-3.1-SauerkrautLM-70b-Instruct")
17
+ ## VAGO solutions Llama-3.1-SauerkrautLM-70b-Instruct quantized by [Florian Zimmermeister](https://huggingface.co/flozi00) for fp8 usage
18
 
19
+ **Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***
20
 
21
+ Introducing **Llama-3.1-SauerkrautLM-70b-Instruct** – our Sauerkraut version of the powerful [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)!
22
 
23
+ - Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 15% of the layers.**
24
+ - Utilized unique German-English Sauerkraut Mix v2 dataset for efficient cross-lingual transfer learning
25
+ - Implemented bespoke, precision-engineered fine-tuning approach to enhance multilingual capabilities
26
+ - Achieved improved performance in multiple languages (including Arabic, Italian, French, Spanish, Dutch, Portuguese) through cross-lingual knowledge transfer
27
 
28
+ # Table of Contents
29
+ 1. [Overview of all Llama-3.1-SauerkrautLM-70b-Instruct](#all-Llama-3.1-SauerkrautLM-70b-Instruct)
30
+ 2. [Model Details](#model-details)
31
+ - [Training procedure](#training-procedure)
32
+ 3. [Evaluation](#evaluation)
33
+ 5. [Disclaimer](#disclaimer)
34
+ 6. [Contact](#contact)
35
+ 7. [Collaborations](#collaborations)
36
+ 8. [Acknowledgement](#acknowledgement)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ ## All Llama-3.1-SauerkrautLM-70b-Instruct
39
 
40
+ | Model | HF | EXL2 | GGUF | AWQ |
41
+ |-------|-------|-------|-------|-------|
42
+ | Llama-3.1-SauerkrautLM-70b-Instruct | [Link](https://vago-solutions.ai/wp-content/uploads/2024/08/Llama3.1-SauerkrautLM-70b-Instruct1.png) | coming soon | coming soon | coming soon |
43
 
44
+ ## Model Details
45
+ **Llama-3.1-SauerkrautLM-70b-Instruct**
46
+ - **Model Type:** Llama-3.1-SauerkrautLM-70b-Instruct is a fine-tuned Model based on [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/mistralai/meta-llama/Meta-Llama-3.1-8B-Instruct)
47
+ - **Language(s):** German, English, Arabic, Italian, French, Spanish, Dutch, Portuguese
48
+ - **License:** llama3.1
49
+ - **Contact:** [VAGO solutions](https://vago-solutions.ai)
 
 
 
 
 
 
 
 
 
50
 
51
+ ## Training Procedure
52
 
53
+ This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:
54
 
55
+ **Fine-tuning on German-English Data**:
56
 
57
+ - Utilized Spectrum Fine-Tuning, targeting **15%** of the model's layers
58
+ - Introduced the model to a unique German-English Sauerkraut Mix v2
59
+ - Implemented a bespoke, precision-engineered fine-tuning approach
60
 
61
+ **Cross-lingual Transfer Learning using Sauerkraut Mix v2**:
62
 
63
+ - Leveraged the Sauerkraut Mix v2 dataset as the foundation for cross-lingual transfer
64
+ - This unique dataset, primarily focused on German and English, enabled the model to transfer knowledge to other languages
65
+ - Improved capabilities in Arabic, Italian, French, Spanish, Dutch, and Portuguese without extensive training data in each language
66
+ - Demonstrated the effectiveness of using a bilingual dataset for multilingual improvement
67
 
68
+ **Sauerkraut Mix v2**:
69
 
70
+ - Premium Dataset for Language Models, focusing on German and English
71
+ - Meticulously selected, high-quality dataset combinations
72
+ - Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques
73
+ - Serves as the core resource for both fine-tuning and cross-lingual transfer
74
 
75
+ ## Objective and Results
76
 
77
+ The primary goal of this training was twofold:
78
 
79
+ 1. To demonstrate that Spectrum Fine-Tuning, targeting just 15% of the layers, can significantly enhance a 70 billion parameter model's capabilities while using only a fraction of the resources required by classic fine-tuning approaches.
80
 
81
+ 2. To showcase the effectiveness of cross-lingual transfer learning using the Sauerkraut Mix v2 dataset, enabling multilingual improvement without extensive language-specific training data.
82
 
83
+ The results have been remarkable:
84
 
85
+ - The model has substantially improved its multilingual skills, as demonstrated by impressive benchmarks on MMLU Multilingual.
86
 
87
+ **Key Findings:**
88
+ - Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities in multiple languages while preserving the majority of its previously acquired knowledge.
89
+ - The Sauerkraut Mix v2 dataset proves to be an effective foundation for cross-lingual transfer, allowing for multilingual improvements from a bilingual base.
90
+ - This approach demonstrates a resource-efficient method for creating powerful multilingual models without the need for extensive training data in each target language.
91
 
 
92
 
93
  ## Evaluation
94
 
95
+ **AGIEVAL**
96
+ ![Llama-3.1-SauerkrautLM-70b-Instruct-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/08/AGIEval-70b.png "Llama-3.1-SauerkrautLM-70b-Instruct-AGIEVAL")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ **GPT4ALL**
99
+ ![Llama-3.1-SauerkrautLM-70b-Instruct-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/08/GPT4All-70b.png "Llama-3.1-SauerkrautLM-70b-Instruct-GPT4ALL")
100
 
101
+ **TRUTHFULQA**
102
+ ![Llama-3.1-SauerkrautLM-70b-Instruct-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/08/TQA-70b.png "Llama-3.1-SauerkrautLM-70b-Instruct-TRUTHFULQA")
103
 
104
+ **BBH-HF**
105
+ ![Llama-3.1-SauerkrautLM-70b-Instruct-bbh]( https://vago-solutions.ai/wp-content/uploads/2024/08/Big-Bench-Hard-70b.png "Llama-3.1-SauerkrautLM-70b-Instruct-OPENLEADERBOARD")
106
 
107
+ **MMLU-Multilingual**
108
+ ![Llama-3.1-SauerkrautLM-70b-Instruct-mmlu]( https://vago-solutions.ai/wp-content/uploads/2024/08/MMLU-70b2.png "Llama-3.1-SauerkrautLM-70b-Instruct-mmlu")
109
 
 
110
 
111
+ ## Disclaimer
112
+ We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
113
+
114
+ ## Contact
115
+ If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
116
+
117
+ ## Collaborations
118
+ We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
119
 
120
+ ## Acknowledgement
121
+ Many thanks to [meta-llama](https://huggingface.co/meta-llama) for providing such a valuable model to the Open-Source community.
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/volume_hf/models--VAGOsolutions--Llama-3.1-SauerkrautLM-70b-Instruct/snapshots/e8e74aa789243c25a3a8f7565780a402f5050bbb",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
1
  {
2
+ "_name_or_path": "VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],