File size: 2,060 Bytes
428c139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
base_model: allenai/biomed_roberta_base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BioMedRoBERTa-finetuned-valid-testing-0.0001-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BioMedRoBERTa-finetuned-valid-testing-0.0001-32
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0835
- Precision: 0.8178
- Recall: 0.8281
- F1: 0.8229
- Accuracy: 0.9769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 209 | 0.0882 | 0.7639 | 0.7805 | 0.7721 | 0.9718 |
| No log | 2.0 | 418 | 0.0735 | 0.8259 | 0.8222 | 0.8240 | 0.9775 |
| 0.2568 | 3.0 | 627 | 0.0779 | 0.8060 | 0.8110 | 0.8085 | 0.9746 |
| 0.2568 | 4.0 | 836 | 0.0815 | 0.8062 | 0.8245 | 0.8152 | 0.9768 |
| 0.0375 | 5.0 | 1045 | 0.0835 | 0.8178 | 0.8281 | 0.8229 | 0.9769 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|