--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT-finetuned-ner-pablo-just-classifier results: [] --- # ClinicalBERT-finetuned-ner-pablo-just-classifier This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1567 - Precision: 0.7118 - Recall: 0.7328 - F1: 0.7221 - Accuracy: 0.9650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.495 | 0.9996 | 652 | 0.3446 | 0.6425 | 0.6934 | 0.6670 | 0.9575 | | 0.3703 | 1.9992 | 1304 | 0.1567 | 0.7118 | 0.7328 | 0.7221 | 0.9650 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1