--- library_name: transformers license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: PubMedBERT-full-finetuned-ner-pablo results: [] --- # PubMedBERT-full-finetuned-ner-pablo This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467. It achieves the following results on the evaluation set: - Loss: 0.0712 - Precision: 0.8087 - Recall: 0.7954 - F1: 0.8020 - Accuracy: 0.9781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 231 | 0.0934 | 0.7464 | 0.7652 | 0.7557 | 0.9730 | | No log | 2.0 | 462 | 0.0730 | 0.7975 | 0.7915 | 0.7945 | 0.9774 | | 0.2789 | 3.0 | 693 | 0.0713 | 0.8075 | 0.7924 | 0.7999 | 0.9777 | | 0.2789 | 4.0 | 924 | 0.0712 | 0.8087 | 0.7954 | 0.8020 | 0.9781 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1