--- library_name: stable-baselines3 tags: - CarRacing-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v2 type: CarRacing-v2 metrics: - type: mean_reward value: 796.66 +/- 125.12 name: mean_reward verified: false --- # **PPO** Agent playing **CarRacing-v2** This is a trained model of a **PPO** agent playing **CarRacing-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env CarRacing-v2 -orga pableitorr -f logs/ python -m rl_zoo3.enjoy --algo ppo --env CarRacing-v2 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env CarRacing-v2 -orga pableitorr -f logs/ python -m rl_zoo3.enjoy --algo ppo --env CarRacing-v2 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env CarRacing-v2 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env CarRacing-v2 -f logs/ -orga pableitorr ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('clip_range', 0.2), ('ent_coef', 0.0), ('env_wrapper', [{'rl_zoo3.wrappers.FrameSkip': {'skip': 2}}, {'gymnasium.wrappers.resize_observation.ResizeObservation': {'shape': 64}}, {'gymnasium.wrappers.gray_scale_observation.GrayScaleObservation': {'keep_dim': True}}]), ('frame_stack', 2), ('gae_lambda', 0.95), ('gamma', 0.99), ('learning_rate', 'lin_1e-4'), ('max_grad_norm', 0.5), ('n_envs', 8), ('n_epochs', 10), ('n_steps', 512), ('n_timesteps', 1000000), ('normalize', "{'norm_obs': False, 'norm_reward': True}"), ('policy', 'CnnPolicy'), ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.GELU, ' 'net_arch=dict(pi=[256], vf=[256]), )'), ('sde_sample_freq', 4), ('use_sde', True), ('vf_coef', 0.5), ('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```