pableitorr
commited on
Commit
·
cf1c675
1
Parent(s):
ef98fa3
Initial commit
Browse files- README.md +1 -1
- results.json +1 -1
- tqc-PandaPickAndPlace-v3.zip +1 -1
- tqc-PandaPickAndPlace-v3/data +14 -14
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaPickAndPlace-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -5.50 +/- 2.06
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -5.5, "std_reward": 2.0615528128088303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T16:38:33.319268"}
|
tqc-PandaPickAndPlace-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 24284579
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20cc4e2dace651137a6e7179982211e5c925255cc1df9b503a1ef32a0c2353f9
|
3 |
size 24284579
|
tqc-PandaPickAndPlace-v3/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
-
"__init__": "<function MultiInputPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -92,19 +92,19 @@
|
|
92 |
"__module__": "stable_baselines3.her.her_replay_buffer",
|
93 |
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
94 |
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
95 |
-
"__init__": "<function HerReplayBuffer.__init__ at
|
96 |
-
"__getstate__": "<function HerReplayBuffer.__getstate__ at
|
97 |
-
"__setstate__": "<function HerReplayBuffer.__setstate__ at
|
98 |
-
"set_env": "<function HerReplayBuffer.set_env at
|
99 |
-
"add": "<function HerReplayBuffer.add at
|
100 |
-
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at
|
101 |
-
"sample": "<function HerReplayBuffer.sample at
|
102 |
-
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at
|
103 |
-
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at
|
104 |
-
"_sample_goals": "<function HerReplayBuffer._sample_goals at
|
105 |
-
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at
|
106 |
"__abstractmethods__": "frozenset()",
|
107 |
-
"_abc_impl": "<_abc._abc_data object at
|
108 |
},
|
109 |
"replay_buffer_kwargs": {
|
110 |
"goal_selection_strategy": "future",
|
|
|
4 |
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
"__module__": "sb3_contrib.tqc.policies",
|
6 |
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x000001F2EF892050>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001F2EF896D80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
92 |
"__module__": "stable_baselines3.her.her_replay_buffer",
|
93 |
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
94 |
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
95 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x000001F2EF216200>",
|
96 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x000001F2EF216290>",
|
97 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x000001F2EF216320>",
|
98 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x000001F2EF2163B0>",
|
99 |
+
"add": "<function HerReplayBuffer.add at 0x000001F2EF216440>",
|
100 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x000001F2EF2164D0>",
|
101 |
+
"sample": "<function HerReplayBuffer.sample at 0x000001F2EF216560>",
|
102 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x000001F2EF2165F0>",
|
103 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x000001F2EF216680>",
|
104 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x000001F2EF216710>",
|
105 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x000001F2EF2167A0>",
|
106 |
"__abstractmethods__": "frozenset()",
|
107 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001F2EF230600>"
|
108 |
},
|
109 |
"replay_buffer_kwargs": {
|
110 |
"goal_selection_strategy": "future",
|