File size: 2,626 Bytes
5928f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- arxiv-summarization
metrics:
- rouge
base_model: google/long-t5-tglobal-base
model-index:
- name: longt5-arvix-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longt5-arvix-finetuned

This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the arxiv-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 30.0035
- Rouge1: 0.0875
- Rouge2: 0.0242
- Rougel: 0.0708
- Rougelsum: 0.0709
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 29.9697       | 1.0   | 1015  | 31.5396         | 0.089  | 0.0243 | 0.072  | 0.072     | 19.0    |
| 26.9874       | 2.0   | 2031  | 30.1941         | 0.0879 | 0.0242 | 0.0711 | 0.0712    | 19.0    |
| 26.6468       | 3.0   | 3046  | 30.0299         | 0.0877 | 0.0243 | 0.071  | 0.0712    | 19.0    |
| 26.4548       | 4.0   | 4062  | 30.0120         | 0.087  | 0.0239 | 0.0704 | 0.0705    | 19.0    |
| 26.5997       | 5.0   | 5077  | 30.0093         | 0.0875 | 0.0241 | 0.0708 | 0.0709    | 19.0    |
| 26.411        | 6.0   | 6093  | 30.0050         | 0.0875 | 0.024  | 0.0709 | 0.0709    | 19.0    |
| 26.5478       | 7.0   | 7108  | 30.0062         | 0.0876 | 0.0242 | 0.071  | 0.0711    | 19.0    |
| 26.4063       | 8.0   | 8124  | 30.0035         | 0.0876 | 0.0242 | 0.071  | 0.071     | 19.0    |
| 26.4737       | 9.0   | 9139  | 30.0070         | 0.0874 | 0.0241 | 0.0708 | 0.0709    | 19.0    |
| 26.5836       | 10.0  | 10150 | 30.0035         | 0.0875 | 0.0242 | 0.0708 | 0.0709    | 19.0    |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2