--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - arxiv-summarization metrics: - rouge base_model: google/long-t5-tglobal-base model-index: - name: longt5-arvix-finetuned results: [] --- # longt5-arvix-finetuned This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the arxiv-summarization dataset. It achieves the following results on the evaluation set: - Loss: 30.0035 - Rouge1: 0.0875 - Rouge2: 0.0242 - Rougel: 0.0708 - Rougelsum: 0.0709 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 29.9697 | 1.0 | 1015 | 31.5396 | 0.089 | 0.0243 | 0.072 | 0.072 | 19.0 | | 26.9874 | 2.0 | 2031 | 30.1941 | 0.0879 | 0.0242 | 0.0711 | 0.0712 | 19.0 | | 26.6468 | 3.0 | 3046 | 30.0299 | 0.0877 | 0.0243 | 0.071 | 0.0712 | 19.0 | | 26.4548 | 4.0 | 4062 | 30.0120 | 0.087 | 0.0239 | 0.0704 | 0.0705 | 19.0 | | 26.5997 | 5.0 | 5077 | 30.0093 | 0.0875 | 0.0241 | 0.0708 | 0.0709 | 19.0 | | 26.411 | 6.0 | 6093 | 30.0050 | 0.0875 | 0.024 | 0.0709 | 0.0709 | 19.0 | | 26.5478 | 7.0 | 7108 | 30.0062 | 0.0876 | 0.0242 | 0.071 | 0.0711 | 19.0 | | 26.4063 | 8.0 | 8124 | 30.0035 | 0.0876 | 0.0242 | 0.071 | 0.071 | 19.0 | | 26.4737 | 9.0 | 9139 | 30.0070 | 0.0874 | 0.0241 | 0.0708 | 0.0709 | 19.0 | | 26.5836 | 10.0 | 10150 | 30.0035 | 0.0875 | 0.0242 | 0.0708 | 0.0709 | 19.0 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2