Upload 2 files
Browse files- predict_online.py +87 -0
predict_online.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
Wav2Vec2FeatureExtractor,
|
3 |
+
Wav2Vec2CTCTokenizer,
|
4 |
+
Wav2Vec2Processor
|
5 |
+
)
|
6 |
+
import os
|
7 |
+
import librosa
|
8 |
+
from datasets import Dataset
|
9 |
+
from datasets import disable_caching
|
10 |
+
import numpy as np
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch
|
13 |
+
from model import Wav2Vec2ForCTCnCLS
|
14 |
+
from ctctrainer import CTCTrainer
|
15 |
+
from datacollator import DataCollatorCTCWithPadding
|
16 |
+
|
17 |
+
disable_caching()
|
18 |
+
|
19 |
+
cls_age_label_map = {'teens':0, 'twenties': 1, 'thirties': 2, 'fourties': 3, 'fifties': 4, 'sixties': 5, 'seventies': 6, 'eighties': 7}
|
20 |
+
cls_age_label_class_weights = [0] * len(cls_age_label_map)
|
21 |
+
|
22 |
+
cls_gender_label_map = {'female': 0, 'male': 1}
|
23 |
+
cls_gender_label_class_weights = [0] * len(cls_gender_label_map)
|
24 |
+
|
25 |
+
model_path = "padmalcom/wav2vec2-asr-ultimate-german"
|
26 |
+
|
27 |
+
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|")
|
28 |
+
|
29 |
+
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)
|
30 |
+
|
31 |
+
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
|
32 |
+
|
33 |
+
model = Wav2Vec2ForCTCnCLS.from_pretrained(
|
34 |
+
model_path,
|
35 |
+
vocab_size=len(processor.tokenizer),
|
36 |
+
age_cls_len=len(cls_age_label_map),
|
37 |
+
gender_cls_len=len(cls_gender_label_map),
|
38 |
+
age_cls_weights=cls_age_label_class_weights,
|
39 |
+
gender_cls_weights=cls_gender_label_class_weights,
|
40 |
+
alpha=0.1,
|
41 |
+
)
|
42 |
+
|
43 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True, audio_only=True)
|
44 |
+
|
45 |
+
pred_data = {'file': ['audio2.wav']}
|
46 |
+
|
47 |
+
target_sr = 16000
|
48 |
+
|
49 |
+
def prepare_dataset_step1(example):
|
50 |
+
example["speech"], example["sampling_rate"] = librosa.load(example["file"], sr=target_sr)
|
51 |
+
return example
|
52 |
+
|
53 |
+
def prepare_dataset_step2(batch):
|
54 |
+
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
|
55 |
+
return batch
|
56 |
+
|
57 |
+
val_dataset = Dataset.from_dict(pred_data)
|
58 |
+
val_dataset = val_dataset.map(prepare_dataset_step1, load_from_cache_file=False)
|
59 |
+
val_dataset = val_dataset.map(prepare_dataset_step2, batch_size=2, batched=True, num_proc=1, load_from_cache_file=False)
|
60 |
+
|
61 |
+
trainer = CTCTrainer(
|
62 |
+
model=model,
|
63 |
+
data_collator=data_collator,
|
64 |
+
eval_dataset=val_dataset,
|
65 |
+
tokenizer=processor.feature_extractor,
|
66 |
+
)
|
67 |
+
|
68 |
+
data_collator.audio_only=True
|
69 |
+
predictions, labels, metrics = trainer.predict(val_dataset, metric_key_prefix="predict")
|
70 |
+
logits_ctc, logits_age_cls, logits_gender_cls = predictions
|
71 |
+
|
72 |
+
# process age classification
|
73 |
+
pred_ids_age_cls = np.argmax(logits_age_cls, axis=-1)
|
74 |
+
pred_age = pred_ids_age_cls[0]
|
75 |
+
age_class = [k for k, v in cls_age_label_map.items() if v == pred_age]
|
76 |
+
print("Predicted age: ", age_class[0])
|
77 |
+
|
78 |
+
# process gender classification
|
79 |
+
pred_ids_gender_cls = np.argmax(logits_gender_cls, axis=-1)
|
80 |
+
pred_gender = pred_ids_gender_cls[0]
|
81 |
+
gender_class = [k for k, v in cls_gender_label_map.items() if v == pred_gender]
|
82 |
+
print("Predicted gender: ", gender_class[0])
|
83 |
+
|
84 |
+
# process token classification
|
85 |
+
pred_ids_ctc = np.argmax(logits_ctc, axis=-1)
|
86 |
+
pred_str = processor.batch_decode(pred_ids_ctc, output_word_offsets=True)
|
87 |
+
print("pred text: ", pred_str.text)
|