Upload 3 files
Browse files- README.md +86 -3
- inf.png +0 -0
- predict_online.py +5 -15
README.md
CHANGED
@@ -20,14 +20,97 @@ metrics:
|
|
20 |
- accuracy
|
21 |
---
|
22 |
|
23 |
-
|
|
|
|
|
24 |
- age
|
25 |
- gender
|
26 |
-
|
27 |
... of the current speaker in one forward pass.
|
28 |
|
|
|
|
|
29 |
It was trained on [mozilla common voice](https://commonvoice.mozilla.org/).
|
30 |
|
31 |
Code for training can be found [here](https://github.com/padmalcom/wav2vec2-asr-ultimate-german).
|
32 |
|
33 |
-
*inference_online.py* shows, how the model can be used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
- accuracy
|
21 |
---
|
22 |
|
23 |
+
# German multi-task ASR with age and gender classification
|
24 |
+
|
25 |
+
This multi-task wav2vec2 based ASR model has two additional classification heads to detect:
|
26 |
- age
|
27 |
- gender
|
|
|
28 |
... of the current speaker in one forward pass.
|
29 |
|
30 |
+
![Inference](inf.png)
|
31 |
+
|
32 |
It was trained on [mozilla common voice](https://commonvoice.mozilla.org/).
|
33 |
|
34 |
Code for training can be found [here](https://github.com/padmalcom/wav2vec2-asr-ultimate-german).
|
35 |
|
36 |
+
*inference_online.py* shows, how the model can be used.
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import (
|
40 |
+
Wav2Vec2FeatureExtractor,
|
41 |
+
Wav2Vec2CTCTokenizer,
|
42 |
+
Wav2Vec2Processor
|
43 |
+
)
|
44 |
+
import librosa
|
45 |
+
from datasets import Dataset
|
46 |
+
import numpy as np
|
47 |
+
from model import Wav2Vec2ForCTCnCLS
|
48 |
+
from ctctrainer import CTCTrainer
|
49 |
+
from datacollator import DataCollatorCTCWithPadding
|
50 |
+
|
51 |
+
model_path = "padmalcom/wav2vec2-asr-ultimate-german"
|
52 |
+
pred_data = {'file': ['audio2.wav']}
|
53 |
+
|
54 |
+
cls_age_label_map = {'teens':0, 'twenties': 1, 'thirties': 2, 'fourties': 3, 'fifties': 4, 'sixties': 5, 'seventies': 6, 'eighties': 7}
|
55 |
+
cls_age_label_class_weights = [0] * len(cls_age_label_map)
|
56 |
+
|
57 |
+
cls_gender_label_map = {'female': 0, 'male': 1}
|
58 |
+
cls_gender_label_class_weights = [0] * len(cls_gender_label_map)
|
59 |
+
|
60 |
+
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|")
|
61 |
+
|
62 |
+
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)
|
63 |
+
|
64 |
+
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
|
65 |
+
|
66 |
+
model = Wav2Vec2ForCTCnCLS.from_pretrained(
|
67 |
+
model_path,
|
68 |
+
vocab_size=len(processor.tokenizer),
|
69 |
+
age_cls_len=len(cls_age_label_map),
|
70 |
+
gender_cls_len=len(cls_gender_label_map),
|
71 |
+
age_cls_weights=cls_age_label_class_weights,
|
72 |
+
gender_cls_weights=cls_gender_label_class_weights,
|
73 |
+
alpha=0.1,
|
74 |
+
)
|
75 |
+
|
76 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True, audio_only=True)
|
77 |
+
|
78 |
+
def prepare_dataset_step1(example):
|
79 |
+
example["speech"], example["sampling_rate"] = librosa.load(example["file"], sr=feature_extractor.sampling_rate)
|
80 |
+
return example
|
81 |
+
|
82 |
+
def prepare_dataset_step2(batch):
|
83 |
+
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
|
84 |
+
return batch
|
85 |
+
|
86 |
+
val_dataset = Dataset.from_dict(pred_data)
|
87 |
+
val_dataset = val_dataset.map(prepare_dataset_step1, load_from_cache_file=False)
|
88 |
+
val_dataset = val_dataset.map(prepare_dataset_step2, batch_size=2, batched=True, num_proc=1, load_from_cache_file=False)
|
89 |
+
|
90 |
+
trainer = CTCTrainer(
|
91 |
+
model=model,
|
92 |
+
data_collator=data_collator,
|
93 |
+
eval_dataset=val_dataset,
|
94 |
+
tokenizer=processor.feature_extractor,
|
95 |
+
)
|
96 |
+
|
97 |
+
predictions, _, _ = trainer.predict(val_dataset, metric_key_prefix="predict")
|
98 |
+
logits_ctc, logits_age_cls, logits_gender_cls = predictions
|
99 |
+
|
100 |
+
# process age classification
|
101 |
+
pred_ids_age_cls = np.argmax(logits_age_cls, axis=-1)
|
102 |
+
pred_age = pred_ids_age_cls[0]
|
103 |
+
age_class = [k for k, v in cls_age_label_map.items() if v == pred_age]
|
104 |
+
print("Predicted age: ", age_class[0])
|
105 |
+
|
106 |
+
# process gender classification
|
107 |
+
pred_ids_gender_cls = np.argmax(logits_gender_cls, axis=-1)
|
108 |
+
pred_gender = pred_ids_gender_cls[0]
|
109 |
+
gender_class = [k for k, v in cls_gender_label_map.items() if v == pred_gender]
|
110 |
+
print("Predicted gender: ", gender_class[0])
|
111 |
+
|
112 |
+
# process token classification
|
113 |
+
pred_ids_ctc = np.argmax(logits_ctc, axis=-1)
|
114 |
+
pred_str = processor.batch_decode(pred_ids_ctc, output_word_offsets=True)
|
115 |
+
print("pred text: ", pred_str.text[0])
|
116 |
+
```
|
inf.png
ADDED
predict_online.py
CHANGED
@@ -3,26 +3,21 @@ from transformers import (
|
|
3 |
Wav2Vec2CTCTokenizer,
|
4 |
Wav2Vec2Processor
|
5 |
)
|
6 |
-
import os
|
7 |
import librosa
|
8 |
from datasets import Dataset
|
9 |
-
from datasets import disable_caching
|
10 |
import numpy as np
|
11 |
-
import torch.nn.functional as F
|
12 |
-
import torch
|
13 |
from model import Wav2Vec2ForCTCnCLS
|
14 |
from ctctrainer import CTCTrainer
|
15 |
from datacollator import DataCollatorCTCWithPadding
|
16 |
|
17 |
-
|
|
|
18 |
|
19 |
cls_age_label_map = {'teens':0, 'twenties': 1, 'thirties': 2, 'fourties': 3, 'fifties': 4, 'sixties': 5, 'seventies': 6, 'eighties': 7}
|
20 |
cls_age_label_class_weights = [0] * len(cls_age_label_map)
|
21 |
|
22 |
cls_gender_label_map = {'female': 0, 'male': 1}
|
23 |
cls_gender_label_class_weights = [0] * len(cls_gender_label_map)
|
24 |
-
|
25 |
-
model_path = "padmalcom/wav2vec2-asr-ultimate-german"
|
26 |
|
27 |
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|")
|
28 |
|
@@ -42,12 +37,8 @@ model = Wav2Vec2ForCTCnCLS.from_pretrained(
|
|
42 |
|
43 |
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True, audio_only=True)
|
44 |
|
45 |
-
pred_data = {'file': ['audio2.wav']}
|
46 |
-
|
47 |
-
target_sr = 16000
|
48 |
-
|
49 |
def prepare_dataset_step1(example):
|
50 |
-
example["speech"], example["sampling_rate"] = librosa.load(example["file"], sr=
|
51 |
return example
|
52 |
|
53 |
def prepare_dataset_step2(batch):
|
@@ -65,8 +56,7 @@ trainer = CTCTrainer(
|
|
65 |
tokenizer=processor.feature_extractor,
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
predictions, labels, metrics = trainer.predict(val_dataset, metric_key_prefix="predict")
|
70 |
logits_ctc, logits_age_cls, logits_gender_cls = predictions
|
71 |
|
72 |
# process age classification
|
@@ -84,4 +74,4 @@ print("Predicted gender: ", gender_class[0])
|
|
84 |
# process token classification
|
85 |
pred_ids_ctc = np.argmax(logits_ctc, axis=-1)
|
86 |
pred_str = processor.batch_decode(pred_ids_ctc, output_word_offsets=True)
|
87 |
-
print("pred text: ", pred_str.text)
|
|
|
3 |
Wav2Vec2CTCTokenizer,
|
4 |
Wav2Vec2Processor
|
5 |
)
|
|
|
6 |
import librosa
|
7 |
from datasets import Dataset
|
|
|
8 |
import numpy as np
|
|
|
|
|
9 |
from model import Wav2Vec2ForCTCnCLS
|
10 |
from ctctrainer import CTCTrainer
|
11 |
from datacollator import DataCollatorCTCWithPadding
|
12 |
|
13 |
+
model_path = "padmalcom/wav2vec2-asr-ultimate-german"
|
14 |
+
pred_data = {'file': ['audio2.wav']}
|
15 |
|
16 |
cls_age_label_map = {'teens':0, 'twenties': 1, 'thirties': 2, 'fourties': 3, 'fifties': 4, 'sixties': 5, 'seventies': 6, 'eighties': 7}
|
17 |
cls_age_label_class_weights = [0] * len(cls_age_label_map)
|
18 |
|
19 |
cls_gender_label_map = {'female': 0, 'male': 1}
|
20 |
cls_gender_label_class_weights = [0] * len(cls_gender_label_map)
|
|
|
|
|
21 |
|
22 |
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="<unk>", pad_token="<pad>", word_delimiter_token="|")
|
23 |
|
|
|
37 |
|
38 |
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True, audio_only=True)
|
39 |
|
|
|
|
|
|
|
|
|
40 |
def prepare_dataset_step1(example):
|
41 |
+
example["speech"], example["sampling_rate"] = librosa.load(example["file"], sr=feature_extractor.sampling_rate)
|
42 |
return example
|
43 |
|
44 |
def prepare_dataset_step2(batch):
|
|
|
56 |
tokenizer=processor.feature_extractor,
|
57 |
)
|
58 |
|
59 |
+
predictions, _, _ = trainer.predict(val_dataset, metric_key_prefix="predict")
|
|
|
60 |
logits_ctc, logits_age_cls, logits_gender_cls = predictions
|
61 |
|
62 |
# process age classification
|
|
|
74 |
# process token classification
|
75 |
pred_ids_ctc = np.argmax(logits_ctc, axis=-1)
|
76 |
pred_str = processor.batch_decode(pred_ids_ctc, output_word_offsets=True)
|
77 |
+
print("pred text: ", pred_str.text[0])
|