|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from transformers import AutoConfig, Wav2Vec2Processor |
|
|
|
from Wav2Vec2ForSpeechClassification import Wav2Vec2ForSpeechClassification |
|
|
|
MY_MODEL = "myrun3" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
config = AutoConfig.from_pretrained(MY_MODEL) |
|
processor = Wav2Vec2Processor.from_pretrained(MY_MODEL) |
|
sampling_rate = processor.feature_extractor.sampling_rate |
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(MY_MODEL).to(device) |
|
|
|
def speech_file_to_array_fn(path, sampling_rate): |
|
speech_array, _sampling_rate = torchaudio.load(path) |
|
resampler = torchaudio.transforms.Resample(_sampling_rate) |
|
speech = resampler(speech_array).squeeze().numpy() |
|
return speech |
|
|
|
|
|
def predict(path, sampling_rate): |
|
speech = speech_file_to_array_fn(path, sampling_rate) |
|
features = processor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] |
|
return outputs |
|
|
|
res = predict("test.wav", 16000) |
|
max = max(res, key=lambda x: x['Score']) |
|
print("Expected anger:", max) |
|
|