pahri commited on
Commit
cd033bb
1 Parent(s): 73d1b26

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: yg sama. Rasanya konsisten dari dulu:Kalo ke Bandung, wajib banget nyobain
13
+ makan siang disini. Tempatnya selalu ramee walau cabangnya ada bbrp di 1 jalan
14
+ yg sama. Rasanya konsisten dari dulu mah, enakkk! Ayam bakar sama sayur asem wajib
15
+ dipesen. Dan sambelnya yg selalu juara pedesnya, siap2 keringetan
16
+ - text: jam lebih dan tempatnya panas. Makanannya:Di satu deretan ada 3 warung bu
17
+ imas dan rame semua Nunggu makan dateng sekitar 1 jam lebih dan tempatnya panas.
18
+ Makanannya sebenarnya enak2 semua tapi kalo harus antri lama dan temptnya kurang
19
+ oke mending cari warung makan sunda lain
20
+ - text: Dari makanan yang luar biasa:Dari makanan yang luar biasa, hingga suasana
21
+ yang hangat, hingga layanan yang ramah, tempat lingkungan pusat kota ini tidak
22
+ ketinggalan.
23
+ - text: Favorite sambal terasi dadak di Bandung sejauh:Favorite sambal terasi dadak
24
+ di Bandung sejauh ini Harganya pun ramah. Next time balik lagi.
25
+ - text: ayam goreng/ati-ampela goreng gurih asinnya pas:Rasa ayam goreng/ati-ampela
26
+ goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya
27
+ nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu
28
+ lebih sempurna.
29
+ pipeline_tag: text-classification
30
+ inference: false
31
+ model-index:
32
+ - name: SetFit Polarity Model
33
+ results:
34
+ - task:
35
+ type: text-classification
36
+ name: Text Classification
37
+ dataset:
38
+ name: Unknown
39
+ type: unknown
40
+ split: test
41
+ metrics:
42
+ - type: accuracy
43
+ value: 0.8636363636363636
44
+ name: Accuracy
45
+ ---
46
+
47
+ # SetFit Polarity Model
48
+
49
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
50
+
51
+ The model has been trained using an efficient few-shot learning technique that involves:
52
+
53
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
54
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
55
+
56
+ This model was trained within the context of a larger system for ABSA, which looks like so:
57
+
58
+ 1. Use a spaCy model to select possible aspect span candidates.
59
+ 2. Use a SetFit model to filter these possible aspect span candidates.
60
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+ - **Model Type:** SetFit
66
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
67
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
68
+ - **spaCy Model:** id_core_news_trf
69
+ - **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect)
70
+ - **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity)
71
+ - **Maximum Sequence Length:** 8192 tokens
72
+ - **Number of Classes:** 2 classes
73
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
80
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
81
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
82
+
83
+ ### Model Labels
84
+ | Label | Examples |
85
+ |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
86
+ | positive | <ul><li>'air krispi dan ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'Ayam bakar,sambel leunca:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li><li>',sambel leunca sambel terasi merah enak banget 9:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li></ul> |
87
+ | negative | <ul><li>', minus di menu tidak di cantumkan:Makanan biasa saja, minus di menu tidak di cantumkan harga. Posi nasi standar, kelebihan sambal sudah disediakan di mangkok. '</li><li>'lebih diatur kah antriannya, kayanya pakai:It wasnt bad food at all. Tapi please mungkin bisa lebih diatur kah antriannya, kayanya pakai waiting list gak sesulit itu deh.'</li><li>'rasanya standar. Harga bisa dibilang murah:Tahu tempe perkedel rasanya standar. Harga bisa dibilang murah. Kalau yang masih penasaran ya boleh dateng coba tapi menurut saya overall biasa saja, tidak nemu wah nya dimana..'</li></ul> |
88
+
89
+ ## Evaluation
90
+
91
+ ### Metrics
92
+ | Label | Accuracy |
93
+ |:--------|:---------|
94
+ | **all** | 0.8636 |
95
+
96
+ ## Uses
97
+
98
+ ### Direct Use for Inference
99
+
100
+ First install the SetFit library:
101
+
102
+ ```bash
103
+ pip install setfit
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+
108
+ ```python
109
+ from setfit import AbsaModel
110
+
111
+ # Download from the 🤗 Hub
112
+ model = AbsaModel.from_pretrained(
113
+ "pahri/setfit-indo-resto-RM-ibu-imas-aspect",
114
+ "pahri/setfit-indo-resto-RM-ibu-imas-polarity",
115
+ )
116
+ # Run inference
117
+ preds = model("The food was great, but the venue is just way too busy.")
118
+ ```
119
+
120
+ <!--
121
+ ### Downstream Use
122
+
123
+ *List how someone could finetune this model on their own dataset.*
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Set Metrics
147
+ | Training set | Min | Median | Max |
148
+ |:-------------|:----|:--------|:----|
149
+ | Word count | 7 | 35.3922 | 90 |
150
+
151
+ | Label | Training Sample Count |
152
+ |:--------|:----------------------|
153
+ | konflik | 0 |
154
+ | negatif | 0 |
155
+ | netral | 0 |
156
+ | positif | 0 |
157
+
158
+ ### Training Hyperparameters
159
+ - batch_size: (6, 6)
160
+ - num_epochs: (1, 16)
161
+ - max_steps: -1
162
+ - sampling_strategy: oversampling
163
+ - body_learning_rate: (2e-05, 1e-05)
164
+ - head_learning_rate: 0.01
165
+ - loss: CosineSimilarityLoss
166
+ - distance_metric: cosine_distance
167
+ - margin: 0.25
168
+ - end_to_end: False
169
+ - use_amp: True
170
+ - warmup_proportion: 0.1
171
+ - seed: 42
172
+ - eval_max_steps: -1
173
+ - load_best_model_at_end: False
174
+
175
+ ### Training Results
176
+ | Epoch | Step | Training Loss | Validation Loss |
177
+ |:------:|:----:|:-------------:|:---------------:|
178
+ | 0.0036 | 1 | 0.2676 | - |
179
+ | 0.1799 | 50 | 0.0064 | - |
180
+ | 0.3597 | 100 | 0.0015 | - |
181
+ | 0.5396 | 150 | 0.0007 | - |
182
+ | 0.7194 | 200 | 0.0005 | - |
183
+ | 0.8993 | 250 | 0.0006 | - |
184
+
185
+ ### Framework Versions
186
+ - Python: 3.10.13
187
+ - SetFit: 1.0.3
188
+ - Sentence Transformers: 2.7.0
189
+ - spaCy: 3.7.4
190
+ - Transformers: 4.36.2
191
+ - PyTorch: 2.1.2
192
+ - Datasets: 2.18.0
193
+ - Tokenizers: 0.15.2
194
+
195
+ ## Citation
196
+
197
+ ### BibTeX
198
+ ```bibtex
199
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
200
+ doi = {10.48550/ARXIV.2209.11055},
201
+ url = {https://arxiv.org/abs/2209.11055},
202
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
203
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
204
+ title = {Efficient Few-Shot Learning Without Prompts},
205
+ publisher = {arXiv},
206
+ year = {2022},
207
+ copyright = {Creative Commons Attribution 4.0 International}
208
+ }
209
+ ```
210
+
211
+ <!--
212
+ ## Glossary
213
+
214
+ *Clearly define terms in order to be accessible across audiences.*
215
+ -->
216
+
217
+ <!--
218
+ ## Model Card Authors
219
+
220
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Contact
225
+
226
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
227
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.33.0",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "id_core_news_trf",
3
+ "normalize_embeddings": false,
4
+ "labels": [
5
+ "konflik",
6
+ "negatif",
7
+ "netral",
8
+ "positif"
9
+ ],
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7059ff188b721ebb82ce09c85787047417472972f0ae84d9e0fbe5c463eb20f
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a7a784c3d42764f6f57baa1ed759cddb61c6d85b3014c7a8d0a11583e5dd020
3
+ size 9087
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }