Add SetFit ABSA model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +227 -0
- config.json +28 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +11 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: yg sama. Rasanya konsisten dari dulu:Kalo ke Bandung, wajib banget nyobain
|
13 |
+
makan siang disini. Tempatnya selalu ramee walau cabangnya ada bbrp di 1 jalan
|
14 |
+
yg sama. Rasanya konsisten dari dulu mah, enakkk! Ayam bakar sama sayur asem wajib
|
15 |
+
dipesen. Dan sambelnya yg selalu juara pedesnya, siap2 keringetan
|
16 |
+
- text: jam lebih dan tempatnya panas. Makanannya:Di satu deretan ada 3 warung bu
|
17 |
+
imas dan rame semua Nunggu makan dateng sekitar 1 jam lebih dan tempatnya panas.
|
18 |
+
Makanannya sebenarnya enak2 semua tapi kalo harus antri lama dan temptnya kurang
|
19 |
+
oke mending cari warung makan sunda lain
|
20 |
+
- text: Dari makanan yang luar biasa:Dari makanan yang luar biasa, hingga suasana
|
21 |
+
yang hangat, hingga layanan yang ramah, tempat lingkungan pusat kota ini tidak
|
22 |
+
ketinggalan.
|
23 |
+
- text: Favorite sambal terasi dadak di Bandung sejauh:Favorite sambal terasi dadak
|
24 |
+
di Bandung sejauh ini Harganya pun ramah. Next time balik lagi.
|
25 |
+
- text: ayam goreng/ati-ampela goreng gurih asinnya pas:Rasa ayam goreng/ati-ampela
|
26 |
+
goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya
|
27 |
+
nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu
|
28 |
+
lebih sempurna.
|
29 |
+
pipeline_tag: text-classification
|
30 |
+
inference: false
|
31 |
+
model-index:
|
32 |
+
- name: SetFit Polarity Model
|
33 |
+
results:
|
34 |
+
- task:
|
35 |
+
type: text-classification
|
36 |
+
name: Text Classification
|
37 |
+
dataset:
|
38 |
+
name: Unknown
|
39 |
+
type: unknown
|
40 |
+
split: test
|
41 |
+
metrics:
|
42 |
+
- type: accuracy
|
43 |
+
value: 0.8636363636363636
|
44 |
+
name: Accuracy
|
45 |
+
---
|
46 |
+
|
47 |
+
# SetFit Polarity Model
|
48 |
+
|
49 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
50 |
+
|
51 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
52 |
+
|
53 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
54 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
55 |
+
|
56 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
57 |
+
|
58 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
59 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
60 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
61 |
+
|
62 |
+
## Model Details
|
63 |
+
|
64 |
+
### Model Description
|
65 |
+
- **Model Type:** SetFit
|
66 |
+
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
67 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
68 |
+
- **spaCy Model:** id_core_news_trf
|
69 |
+
- **SetFitABSA Aspect Model:** [pahri/setfit-indo-resto-RM-ibu-imas-aspect](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-aspect)
|
70 |
+
- **SetFitABSA Polarity Model:** [pahri/setfit-indo-resto-RM-ibu-imas-polarity](https://huggingface.co/pahri/setfit-indo-resto-RM-ibu-imas-polarity)
|
71 |
+
- **Maximum Sequence Length:** 8192 tokens
|
72 |
+
- **Number of Classes:** 2 classes
|
73 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
74 |
+
<!-- - **Language:** Unknown -->
|
75 |
+
<!-- - **License:** Unknown -->
|
76 |
+
|
77 |
+
### Model Sources
|
78 |
+
|
79 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
80 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
81 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
82 |
+
|
83 |
+
### Model Labels
|
84 |
+
| Label | Examples |
|
85 |
+
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
86 |
+
| positive | <ul><li>'air krispi dan ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'</li><li>'Ayam bakar,sambel leunca:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li><li>',sambel leunca sambel terasi merah enak banget 9:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'</li></ul> |
|
87 |
+
| negative | <ul><li>', minus di menu tidak di cantumkan:Makanan biasa saja, minus di menu tidak di cantumkan harga. Posi nasi standar, kelebihan sambal sudah disediakan di mangkok. '</li><li>'lebih diatur kah antriannya, kayanya pakai:It wasnt bad food at all. Tapi please mungkin bisa lebih diatur kah antriannya, kayanya pakai waiting list gak sesulit itu deh.'</li><li>'rasanya standar. Harga bisa dibilang murah:Tahu tempe perkedel rasanya standar. Harga bisa dibilang murah. Kalau yang masih penasaran ya boleh dateng coba tapi menurut saya overall biasa saja, tidak nemu wah nya dimana..'</li></ul> |
|
88 |
+
|
89 |
+
## Evaluation
|
90 |
+
|
91 |
+
### Metrics
|
92 |
+
| Label | Accuracy |
|
93 |
+
|:--------|:---------|
|
94 |
+
| **all** | 0.8636 |
|
95 |
+
|
96 |
+
## Uses
|
97 |
+
|
98 |
+
### Direct Use for Inference
|
99 |
+
|
100 |
+
First install the SetFit library:
|
101 |
+
|
102 |
+
```bash
|
103 |
+
pip install setfit
|
104 |
+
```
|
105 |
+
|
106 |
+
Then you can load this model and run inference.
|
107 |
+
|
108 |
+
```python
|
109 |
+
from setfit import AbsaModel
|
110 |
+
|
111 |
+
# Download from the 🤗 Hub
|
112 |
+
model = AbsaModel.from_pretrained(
|
113 |
+
"pahri/setfit-indo-resto-RM-ibu-imas-aspect",
|
114 |
+
"pahri/setfit-indo-resto-RM-ibu-imas-polarity",
|
115 |
+
)
|
116 |
+
# Run inference
|
117 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
118 |
+
```
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Downstream Use
|
122 |
+
|
123 |
+
*List how someone could finetune this model on their own dataset.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Out-of-Scope Use
|
128 |
+
|
129 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
## Bias, Risks and Limitations
|
134 |
+
|
135 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Recommendations
|
140 |
+
|
141 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
## Training Details
|
145 |
+
|
146 |
+
### Training Set Metrics
|
147 |
+
| Training set | Min | Median | Max |
|
148 |
+
|:-------------|:----|:--------|:----|
|
149 |
+
| Word count | 7 | 35.3922 | 90 |
|
150 |
+
|
151 |
+
| Label | Training Sample Count |
|
152 |
+
|:--------|:----------------------|
|
153 |
+
| konflik | 0 |
|
154 |
+
| negatif | 0 |
|
155 |
+
| netral | 0 |
|
156 |
+
| positif | 0 |
|
157 |
+
|
158 |
+
### Training Hyperparameters
|
159 |
+
- batch_size: (6, 6)
|
160 |
+
- num_epochs: (1, 16)
|
161 |
+
- max_steps: -1
|
162 |
+
- sampling_strategy: oversampling
|
163 |
+
- body_learning_rate: (2e-05, 1e-05)
|
164 |
+
- head_learning_rate: 0.01
|
165 |
+
- loss: CosineSimilarityLoss
|
166 |
+
- distance_metric: cosine_distance
|
167 |
+
- margin: 0.25
|
168 |
+
- end_to_end: False
|
169 |
+
- use_amp: True
|
170 |
+
- warmup_proportion: 0.1
|
171 |
+
- seed: 42
|
172 |
+
- eval_max_steps: -1
|
173 |
+
- load_best_model_at_end: False
|
174 |
+
|
175 |
+
### Training Results
|
176 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
177 |
+
|:------:|:----:|:-------------:|:---------------:|
|
178 |
+
| 0.0036 | 1 | 0.2676 | - |
|
179 |
+
| 0.1799 | 50 | 0.0064 | - |
|
180 |
+
| 0.3597 | 100 | 0.0015 | - |
|
181 |
+
| 0.5396 | 150 | 0.0007 | - |
|
182 |
+
| 0.7194 | 200 | 0.0005 | - |
|
183 |
+
| 0.8993 | 250 | 0.0006 | - |
|
184 |
+
|
185 |
+
### Framework Versions
|
186 |
+
- Python: 3.10.13
|
187 |
+
- SetFit: 1.0.3
|
188 |
+
- Sentence Transformers: 2.7.0
|
189 |
+
- spaCy: 3.7.4
|
190 |
+
- Transformers: 4.36.2
|
191 |
+
- PyTorch: 2.1.2
|
192 |
+
- Datasets: 2.18.0
|
193 |
+
- Tokenizers: 0.15.2
|
194 |
+
|
195 |
+
## Citation
|
196 |
+
|
197 |
+
### BibTeX
|
198 |
+
```bibtex
|
199 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
200 |
+
doi = {10.48550/ARXIV.2209.11055},
|
201 |
+
url = {https://arxiv.org/abs/2209.11055},
|
202 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
203 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
204 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
205 |
+
publisher = {arXiv},
|
206 |
+
year = {2022},
|
207 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
208 |
+
}
|
209 |
+
```
|
210 |
+
|
211 |
+
<!--
|
212 |
+
## Glossary
|
213 |
+
|
214 |
+
*Clearly define terms in order to be accessible across audiences.*
|
215 |
+
-->
|
216 |
+
|
217 |
+
<!--
|
218 |
+
## Model Card Authors
|
219 |
+
|
220 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
221 |
+
-->
|
222 |
+
|
223 |
+
<!--
|
224 |
+
## Model Card Contact
|
225 |
+
|
226 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
227 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.36.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.33.0",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"spacy_model": "id_core_news_trf",
|
3 |
+
"normalize_embeddings": false,
|
4 |
+
"labels": [
|
5 |
+
"konflik",
|
6 |
+
"negatif",
|
7 |
+
"netral",
|
8 |
+
"positif"
|
9 |
+
],
|
10 |
+
"span_context": 3
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7059ff188b721ebb82ce09c85787047417472972f0ae84d9e0fbe5c463eb20f
|
3 |
+
size 2271064456
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a7a784c3d42764f6f57baa1ed759cddb61c6d85b3014c7a8d0a11583e5dd020
|
3 |
+
size 9087
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
|
3 |
+
size 17083075
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 8192,
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"sp_model_kwargs": {},
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|