|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-large |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-large-finetuned-ctfl-augmented_1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-large-finetuned-ctfl-augmented_1 |
|
|
|
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.2041 |
|
- Validation Loss: 0.7119 |
|
- Train Rouge1: 8.6634 |
|
- Train Rouge2: 0.6931 |
|
- Train Rougel: 8.5691 |
|
- Train Rougelsum: 8.6987 |
|
- Train Gen Len: 11.9158 |
|
- Epoch: 21 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 3.7859 | 1.7737 | 3.8966 | 1.1818 | 3.8139 | 3.8868 | 12.8069 | 0 | |
|
| 1.7728 | 1.2922 | 6.8010 | 1.1881 | 6.7657 | 6.7657 | 11.7376 | 1 | |
|
| 1.3356 | 1.0734 | 7.3020 | 1.8152 | 7.1782 | 7.3020 | 11.9010 | 2 | |
|
| 1.1070 | 0.9405 | 8.2037 | 2.1782 | 7.9915 | 8.2037 | 12.0198 | 3 | |
|
| 0.9583 | 0.8494 | 8.2037 | 2.1782 | 7.9915 | 8.2037 | 11.9901 | 4 | |
|
| 0.8463 | 0.7866 | 9.0288 | 2.4257 | 8.8873 | 8.9109 | 11.9802 | 5 | |
|
| 0.7662 | 0.7320 | 8.9816 | 2.3762 | 8.7694 | 8.8755 | 11.8960 | 6 | |
|
| 0.6961 | 0.7024 | 8.7341 | 1.8812 | 8.6457 | 8.6987 | 11.9010 | 7 | |
|
| 0.6444 | 0.6952 | 8.7341 | 1.8812 | 8.6457 | 8.6987 | 11.9406 | 8 | |
|
| 0.5881 | 0.6612 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.8960 | 9 | |
|
| 0.5386 | 0.6746 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9307 | 10 | |
|
| 0.4944 | 0.6473 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9406 | 11 | |
|
| 0.4524 | 0.6328 | 7.7793 | 0.7921 | 7.7027 | 7.7558 | 11.9307 | 12 | |
|
| 0.4161 | 0.6521 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9307 | 13 | |
|
| 0.3812 | 0.6311 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.9109 | 14 | |
|
| 0.3488 | 0.6368 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.8960 | 15 | |
|
| 0.3181 | 0.6449 | 8.7812 | 0.7921 | 8.6987 | 8.7930 | 11.9455 | 16 | |
|
| 0.2898 | 0.6495 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9307 | 17 | |
|
| 0.2677 | 0.6583 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9059 | 18 | |
|
| 0.2435 | 0.6823 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9653 | 19 | |
|
| 0.2227 | 0.6897 | 8.6575 | 0.6931 | 8.5337 | 8.6693 | 11.9703 | 20 | |
|
| 0.2041 | 0.7119 | 8.6634 | 0.6931 | 8.5691 | 8.6987 | 11.9158 | 21 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|