--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - palakagl/autotrain-data-PersonalAssitant co2_eq_emissions: 5.080390550458655 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 717221775 - CO2 Emissions (in grams): 5.080390550458655 ## Validation Metrics - Loss: 0.35279911756515503 - Accuracy: 0.9269102990033222 - Macro F1: 0.9261839948926327 - Micro F1: 0.9269102990033222 - Weighted F1: 0.9263981751760975 - Macro Precision: 0.9273912049203341 - Micro Precision: 0.9269102990033222 - Weighted Precision: 0.9280084437800646 - Macro Recall: 0.927250645380574 - Micro Recall: 0.9269102990033222 - Weighted Recall: 0.9269102990033222 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/palakagl/autotrain-PersonalAssitant-717221775 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("palakagl/autotrain-PersonalAssitant-717221775", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("palakagl/autotrain-PersonalAssitant-717221775", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```