File size: 1,628 Bytes
67c95c3
41e36c3
 
67c95c3
cc9e2b5
41e36c3
 
 
 
 
 
 
67c95c3
41e36c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67c95c3
 
41e36c3
 
67c95c3
41e36c3
67c95c3
41e36c3
67c95c3
41e36c3
 
 
 
67c95c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e36c3
 
 
 
 
 
 
67c95c3
 
 
cc9e2b5
41e36c3
cc9e2b5
67c95c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- de
license: mit
base_model: deepset/gbert-base
datasets:
- germaner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: gbert-base-germaner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: germaner
      type: germaner
      args: default
    metrics:
    - name: precision
      type: precision
      value: 0.8403996101364523
    - name: recall
      type: recall
      value: 0.8674547283702213
    - name: f1
      type: f1
      value: 0.8537128712871287
    - name: accuracy
      type: accuracy
      value: 0.9760785008915815
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gbert-base-germaner

This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the germaner dataset.
It achieves the following results on the evaluation set:
- precision: 0.8404
- recall: 0.8675
- f1: 0.8537
- accuracy: 0.9761

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- num_train_epochs: 5
- train_batch_size: 16
- eval_batch_size: 32
- learning_rate: 2e-06
- weight_decay_rate: 0.01
- num_warmup_steps: 0
- fp16: True

### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3