pankajmathur
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -39,36 +39,77 @@ Hello Orca Mini, what can you do for me?<|eot_id|>
|
|
39 |
<|start_header_id|>assistant<|end_header_id|>
|
40 |
```
|
41 |
|
42 |
-
Below shows a code example on how to use this model in default(bf16) format
|
43 |
|
44 |
```python
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
messages = [
|
50 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
51 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
52 |
]
|
53 |
-
|
54 |
-
|
|
|
55 |
```
|
56 |
|
57 |
-
Below shows a code example on how to use this model in
|
58 |
|
59 |
```python
|
60 |
-
|
|
|
|
|
61 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
62 |
-
quantization_config = BitsAndBytesConfig(
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
messages = [
|
67 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
68 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
69 |
]
|
70 |
-
|
71 |
-
|
|
|
72 |
```
|
73 |
|
74 |
Below shows a code example on how to do a tool use with this model and tranformer library
|
|
|
39 |
<|start_header_id|>assistant<|end_header_id|>
|
40 |
```
|
41 |
|
42 |
+
Below shows a code example on how to use this model in default full precision (bf16) format, it requires around ~130GB VRAM
|
43 |
|
44 |
```python
|
45 |
+
import torch
|
46 |
+
from transformers import pipeline
|
47 |
+
|
48 |
+
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
49 |
+
pipeline = pipeline(
|
50 |
+
"text-generation",
|
51 |
+
model=model_slug,
|
52 |
+
device_map="auto",
|
53 |
+
)
|
54 |
+
messages = [
|
55 |
+
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
56 |
+
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
57 |
+
]
|
58 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
59 |
+
print(outputs[0]["generated_text"][-1])
|
60 |
+
```
|
61 |
+
|
62 |
+
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library, it requires around ~39GB VRAM
|
63 |
+
|
64 |
+
```python
|
65 |
+
import torch
|
66 |
+
from transformers import BitsAndBytesConfig, pipeline
|
67 |
+
|
68 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
69 |
+
quantization_config = BitsAndBytesConfig(
|
70 |
+
load_in_4bit=True,
|
71 |
+
bnb_4bit_quant_type="nf4",
|
72 |
+
bnb_4bit_compute_dtype="float16",
|
73 |
+
bnb_4bit_use_double_quant=True,
|
74 |
+
)
|
75 |
+
pipeline = pipeline(
|
76 |
+
"text-generation",
|
77 |
+
model=model_slug,
|
78 |
+
model_kwargs={"quantization_config": quantization_config},
|
79 |
+
device_map="auto",
|
80 |
+
)
|
81 |
messages = [
|
82 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
83 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
84 |
]
|
85 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
86 |
+
print(outputs[0]["generated_text"][-1])
|
87 |
+
|
88 |
```
|
89 |
|
90 |
+
Below shows a code example on how to use this model in 8-bit format via bitsandbytes library, it requires around ~69GB VRAM
|
91 |
|
92 |
```python
|
93 |
+
import torch
|
94 |
+
from transformers import BitsAndBytesConfig, pipeline
|
95 |
+
|
96 |
model_slug = "pankajmathur/orca_mini_v8_1_70b"
|
97 |
+
quantization_config = BitsAndBytesConfig(
|
98 |
+
load_in_8bit=True
|
99 |
+
)
|
100 |
+
pipeline = pipeline(
|
101 |
+
"text-generation",
|
102 |
+
model=model_slug,
|
103 |
+
model_kwargs={"quantization_config": quantization_config},
|
104 |
+
device_map="auto",
|
105 |
+
)
|
106 |
messages = [
|
107 |
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
|
108 |
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
|
109 |
]
|
110 |
+
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
|
111 |
+
print(outputs[0]["generated_text"][-1])
|
112 |
+
|
113 |
```
|
114 |
|
115 |
Below shows a code example on how to do a tool use with this model and tranformer library
|