Papers
arxiv:1811.05021

Improved Dynamic Memory Network for Dialogue Act Classification with Adversarial Training

Published on Nov 12, 2018
Authors:
,
,
,
,
,

Abstract

Dialogue Act (DA) classification is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DA classification problem ranging from multi-classification to structured prediction, which suffer from two limitations: a) these methods are either handcrafted feature-based or have limited memories. b) adversarial examples can't be correctly classified by traditional training methods. To address these issues, in this paper we first cast the problem into a question and answering problem and proposed an improved dynamic memory networks with hierarchical pyramidal utterance encoder. Moreover, we apply adversarial training to train our proposed model. We evaluate our model on two public datasets, i.e., Switchboard dialogue act corpus and the MapTask corpus. Extensive experiments show that our proposed model is not only robust, but also achieves better performance when compared with some state-of-the-art baselines.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1811.05021 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1811.05021 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.