Papers
arxiv:2007.00992

Rethinking Channel Dimensions for Efficient Model Design

Published on Jul 2, 2020
Authors:
,
,

Abstract

Designing an efficient model within the limited computational cost is challenging. We argue the accuracy of a lightweight model has been further limited by the design convention: a stage-wise configuration of the channel dimensions, which looks like a piecewise linear function of the network stage. In this paper, we study an effective channel dimension configuration towards better performance than the convention. To this end, we empirically study how to design a single layer properly by analyzing the rank of the output feature. We then investigate the channel configuration of a model by searching network architectures concerning the channel configuration under the computational cost restriction. Based on the investigation, we propose a simple yet effective channel configuration that can be parameterized by the layer index. As a result, our proposed model following the channel parameterization achieves remarkable performance on ImageNet classification and transfer learning tasks including COCO object detection, COCO instance segmentation, and fine-grained classifications. Code and ImageNet pretrained models are available at https://github.com/clovaai/rexnet.

Community

Sign up or log in to comment

Models citing this paper 17

Browse 17 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2007.00992 in a dataset README.md to link it from this page.

Spaces citing this paper 4

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.