Papers
arxiv:2106.07967
Incorporating Word Sense Disambiguation in Neural Language Models
Published on Jun 15, 2021
Authors:
Abstract
We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models' performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven different neural LMs and find that XLNet is more suitable for WSD than BERT. Our best-performing methods exceeds state-of-the-art WSD techniques on the SemCor 3.0 dataset by 0.5% F1 and increase BERT's performance on the GLUE benchmark by 1.1% on average.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Cite arxiv.org/abs/2106.07967 in a dataset README.md to link it from this page.
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper
Add this paper to a
collection
to link it from this page.