Papers
arxiv:2202.09741

Visual Attention Network

Published on Feb 20, 2022
Authors:
,
,
,
,

Abstract

While originally designed for natural language processing tasks, the self-attention mechanism has recently taken various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-attention in computer vision. (1) Treating images as 1D sequences neglects their 2D structures. (2) The quadratic complexity is too expensive for high-resolution images. (3) It only captures spatial adaptability but ignores channel adaptability. In this paper, we propose a novel linear attention named large kernel attention (LKA) to enable self-adaptive and long-range correlations in self-attention while avoiding its shortcomings. Furthermore, we present a neural network based on LKA, namely Visual Attention Network (VAN). While extremely simple, VAN surpasses similar size vision transformers(ViTs) and convolutional neural networks(CNNs) in various tasks, including image classification, object detection, semantic segmentation, <PRE_TAG>panoptic segmentation</POST_TAG>, pose estimation, etc. For example, VAN-B6 achieves 87.8% accuracy on ImageNet benchmark and set new state-of-the-art performance (58.2 PQ) for panoptic segmentation. Besides, VAN-B2 surpasses Swin-T 4% mIoU (50.1 vs. 46.1) for semantic segmentation on ADE20K benchmark, 2.6% AP (48.8 vs. 46.2) for object detection on COCO dataset. It provides a novel method and a simple yet strong baseline for the community. Code is available at https://github.com/Visual-Attention-Network.

Community

Sign up or log in to comment

Models citing this paper 9

Browse 9 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2202.09741 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2202.09741 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.