Papers
arxiv:2212.03860

Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models

Published on Dec 7, 2022
Authors:
,

Abstract

Cutting-edge diffusion models produce images with high quality and customizability, enabling them to be used for commercial art and graphic design purposes. But do diffusion models create unique works of art, or are they replicating content directly from their training sets? In this work, we study image retrieval frameworks that enable us to compare generated images with training samples and detect when content has been replicated. Applying our frameworks to diffusion models trained on multiple datasets including Oxford flowers, Celeb-A, ImageNet, and LAION, we discuss how factors such as training set size impact rates of content replication. We also identify cases where diffusion models, including the popular Stable Diffusion model, blatantly copy from their training data.

Community

Sign up or log in to comment

Models citing this paper 18

Browse 18 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2212.03860 in a dataset README.md to link it from this page.

Spaces citing this paper 130

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.