Papers
arxiv:2305.14669

NegVSR: Augmenting Negatives for Generalized Noise Modeling in Real-World Video Super-Resolution

Published on May 24, 2023
Authors:
,
,
,
,

Abstract

The capability of video super-resolution (VSR) to synthesize high-resolution (HR) video from ideal datasets has been demonstrated in many works. However, applying the VSR model to real-world video with unknown and complex degradation remains a challenging task. First, existing degradation metrics in most VSR methods are not able to effectively simulate real-world noise and blur. On the contrary, simple combinations of classical degradation are used for real-world noise modeling, which led to the VSR model often being violated by out-of-distribution noise. Second, many SR models focus on noise simulation and transfer. Nevertheless, the sampled noise is monotonous and limited. To address the aforementioned problems, we propose a Negatives augmentation strategy for generalized noise modeling in Video Super-Resolution (NegVSR) task. Specifically, we first propose sequential noise generation toward real-world data to extract practical noise sequences. Then, the degeneration domain is widely expanded by negative augmentation to build up various yet challenging real-world noise sets. We further propose the augmented negative guidance loss to learn robust features among augmented negatives effectively. Extensive experiments on real-world datasets (e.g., VideoLQ and FLIR) show that our method outperforms state-of-the-art methods with clear margins, especially in visual quality.

Community

Paper author

You can find code in our page.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2305.14669 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2305.14669 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2305.14669 in a Space README.md to link it from this page.

Collections including this paper 1