Papers
arxiv:2307.13304

QuIP: 2-Bit Quantization of Large Language Models With Guarantees

Published on Jul 25, 2023
Authors:
,
,
,

Abstract

This work studies post-training parameter quantization in large language models (LLMs). We introduce quantization with incoherence processing (QuIP), a new method based on the insight that quantization benefits from incoherent weight and Hessian matrices, i.e., from the weights and the directions in which it is important to round them accurately being unaligned with the coordinate axes. QuIP consists of two steps: (1) an adaptive rounding procedure minimizing a quadratic proxy objective; (2) efficient pre- and post-processing that ensures weight and Hessian incoherence via multiplication by random orthogonal matrices. We complement QuIP with the first theoretical analysis for an LLM-scale quantization algorithm, and show that our theory also applies to an existing method, OPTQ. Empirically, we find that our incoherence preprocessing improves several existing quantization algorithms and yields the first LLM quantization methods that produce viable results using only two bits per weight. Our code can be found at https://github.com/jerry-chee/QuIP .

Community

Mastering Model Quantization: The Power of QuIP in 2 Bits!

Links ๐Ÿ”—:

๐Ÿ‘‰ Subscribe: https://www.youtube.com/@Arxflix
๐Ÿ‘‰ Twitter: https://x.com/arxflix
๐Ÿ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2307.13304 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2307.13304 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2307.13304 in a Space README.md to link it from this page.

Collections including this paper 3