Papers
arxiv:2307.14906

Scaling Session-Based Transformer Recommendations using Optimized Negative Sampling and Loss Functions

Published on Jul 27, 2023
Authors:
,
,

Abstract

This work introduces TRON, a scalable session-based Transformer Recommender using Optimized Negative-sampling. Motivated by the scalability and performance limitations of prevailing models such as SASRec and GRU4Rec+, TRON integrates top-k negative sampling and listwise loss functions to enhance its recommendation accuracy. Evaluations on relevant large-scale e-commerce datasets show that TRON improves upon the recommendation quality of current methods while maintaining training speeds similar to SASRec. A live A/B test yielded an 18.14% increase in click-through rate over SASRec, highlighting the potential of TRON in practical settings. For further research, we provide access to our source code at https://github.com/otto-de/TRON and an anonymized dataset at https://github.com/otto-de/recsys-dataset.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2307.14906 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2307.14906 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2307.14906 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.