Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP
Style transfer driven by text prompts paved a new path for creatively stylizing the images without collecting an actual style image. Despite having promising results, with text-driven stylization, the user has no control over the stylization. If a user wants to create an artistic image, the user requires fine control over the stylization of various entities individually in the content image, which is not addressed by the current state-of-the-art approaches. On the other hand, diffusion style transfer methods also suffer from the same issue because the regional stylization control over the stylized output is ineffective. To address this problem, We propose a new method Multi-Object Segmented Arbitrary Stylization Using CLIP (MOSAIC), that can apply styles to different objects in the image based on the context extracted from the input prompt. Text-based segmentation and stylization modules which are based on vision transformer architecture, were used to segment and stylize the objects. Our method can extend to any arbitrary objects, styles and produce high-quality images compared to the current state of art methods. To our knowledge, this is the first attempt to perform text-guided arbitrary object-wise stylization. We demonstrate the effectiveness of our approach through qualitative and quantitative analysis, showing that it can generate visually appealing stylized images with enhanced control over stylization and the ability to generalize to unseen object classes.
Implicit Style-Content Separation using B-LoRA
Image stylization involves manipulating the visual appearance and texture (style) of an image while preserving its underlying objects, structures, and concepts (content). The separation of style and content is essential for manipulating the image's style independently from its content, ensuring a harmonious and visually pleasing result. Achieving this separation requires a deep understanding of both the visual and semantic characteristics of images, often necessitating the training of specialized models or employing heavy optimization. In this paper, we introduce B-LoRA, a method that leverages LoRA (Low-Rank Adaptation) to implicitly separate the style and content components of a single image, facilitating various image stylization tasks. By analyzing the architecture of SDXL combined with LoRA, we find that jointly learning the LoRA weights of two specific blocks (referred to as B-LoRAs) achieves style-content separation that cannot be achieved by training each B-LoRA independently. Consolidating the training into only two blocks and separating style and content allows for significantly improving style manipulation and overcoming overfitting issues often associated with model fine-tuning. Once trained, the two B-LoRAs can be used as independent components to allow various image stylization tasks, including image style transfer, text-based image stylization, consistent style generation, and style-content mixing.
Portrait Diffusion: Training-free Face Stylization with Chain-of-Painting
Face stylization refers to the transformation of a face into a specific portrait style. However, current methods require the use of example-based adaptation approaches to fine-tune pre-trained generative models so that they demand lots of time and storage space and fail to achieve detailed style transformation. This paper proposes a training-free face stylization framework, named Portrait Diffusion. This framework leverages off-the-shelf text-to-image diffusion models, eliminating the need for fine-tuning specific examples. Specifically, the content and style images are first inverted into latent codes. Then, during image reconstruction using the corresponding latent code, the content and style features in the attention space are delicately blended through a modified self-attention operation called Style Attention Control. Additionally, a Chain-of-Painting method is proposed for the gradual redrawing of unsatisfactory areas from rough adjustments to fine-tuning. Extensive experiments validate the effectiveness of our Portrait Diffusion method and demonstrate the superiority of Chain-of-Painting in achieving precise face stylization. Code will be released at https://github.com/liujin112/PortraitDiffusion.
Block-wise LoRA: Revisiting Fine-grained LoRA for Effective Personalization and Stylization in Text-to-Image Generation
The objective of personalization and stylization in text-to-image is to instruct a pre-trained diffusion model to analyze new concepts introduced by users and incorporate them into expected styles. Recently, parameter-efficient fine-tuning (PEFT) approaches have been widely adopted to address this task and have greatly propelled the development of this field. Despite their popularity, existing efficient fine-tuning methods still struggle to achieve effective personalization and stylization in T2I generation. To address this issue, we propose block-wise Low-Rank Adaptation (LoRA) to perform fine-grained fine-tuning for different blocks of SD, which can generate images faithful to input prompts and target identity and also with desired style. Extensive experiments demonstrate the effectiveness of the proposed method.
Artist: Aesthetically Controllable Text-Driven Stylization without Training
Diffusion models entangle content and style generation during the denoising process, leading to undesired content modification when directly applied to stylization tasks. Existing methods struggle to effectively control the diffusion model to meet the aesthetic-level requirements for stylization. In this paper, we introduce Artist, a training-free approach that aesthetically controls the content and style generation of a pretrained diffusion model for text-driven stylization. Our key insight is to disentangle the denoising of content and style into separate diffusion processes while sharing information between them. We propose simple yet effective content and style control methods that suppress style-irrelevant content generation, resulting in harmonious stylization results. Extensive experiments demonstrate that our method excels at achieving aesthetic-level stylization requirements, preserving intricate details in the content image and aligning well with the style prompt. Furthermore, we showcase the highly controllability of the stylization strength from various perspectives. Code will be released, project home page: https://DiffusionArtist.github.io
Style3D: Attention-guided Multi-view Style Transfer for 3D Object Generation
We present Style3D, a novel approach for generating stylized 3D objects from a content image and a style image. Unlike most previous methods that require case- or style-specific training, Style3D supports instant 3D object stylization. Our key insight is that 3D object stylization can be decomposed into two interconnected processes: multi-view dual-feature alignment and sparse-view spatial reconstruction. We introduce MultiFusion Attention, an attention-guided technique to achieve multi-view stylization from the content-style pair. Specifically, the query features from the content image preserve geometric consistency across multiple views, while the key and value features from the style image are used to guide the stylistic transfer. This dual-feature alignment ensures that spatial coherence and stylistic fidelity are maintained across multi-view images. Finally, a large 3D reconstruction model is introduced to generate coherent stylized 3D objects. By establishing an interplay between structural and stylistic features across multiple views, our approach enables a holistic 3D stylization process. Extensive experiments demonstrate that Style3D offers a more flexible and scalable solution for generating style-consistent 3D assets, surpassing existing methods in both computational efficiency and visual quality.
Dear Sir or Madam, May I introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer
Style transfer is the task of automatically transforming a piece of text in one particular style into another. A major barrier to progress in this field has been a lack of training and evaluation datasets, as well as benchmarks and automatic metrics. In this work, we create the largest corpus for a particular stylistic transfer (formality) and show that techniques from the machine translation community can serve as strong baselines for future work. We also discuss challenges of using automatic metrics.
SMooDi: Stylized Motion Diffusion Model
We introduce a novel Stylized Motion Diffusion model, dubbed SMooDi, to generate stylized motion driven by content texts and style motion sequences. Unlike existing methods that either generate motion of various content or transfer style from one sequence to another, SMooDi can rapidly generate motion across a broad range of content and diverse styles. To this end, we tailor a pre-trained text-to-motion model for stylization. Specifically, we propose style guidance to ensure that the generated motion closely matches the reference style, alongside a lightweight style adaptor that directs the motion towards the desired style while ensuring realism. Experiments across various applications demonstrate that our proposed framework outperforms existing methods in stylized motion generation.
Low-Resource Authorship Style Transfer with In-Context Learning
Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average approx 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines.
Generative Human Motion Stylization in Latent Space
Human motion stylization aims to revise the style of an input motion while keeping its content unaltered. Unlike existing works that operate directly in pose space, we leverage the latent space of pretrained autoencoders as a more expressive and robust representation for motion extraction and infusion. Building upon this, we present a novel generative model that produces diverse stylization results of a single motion (latent) code. During training, a motion code is decomposed into two coding components: a deterministic content code, and a probabilistic style code adhering to a prior distribution; then a generator massages the random combination of content and style codes to reconstruct the corresponding motion codes. Our approach is versatile, allowing the learning of probabilistic style space from either style labeled or unlabeled motions, providing notable flexibility in stylization as well. In inference, users can opt to stylize a motion using style cues from a reference motion or a label. Even in the absence of explicit style input, our model facilitates novel re-stylization by sampling from the unconditional style prior distribution. Experimental results show that our proposed stylization models, despite their lightweight design, outperform the state-of-the-art in style reenactment, content preservation, and generalization across various applications and settings. Project Page: https://murrol.github.io/GenMoStyle
Text Detoxification using Large Pre-trained Neural Models
We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results.
Bootstrapping Complete The Look at Pinterest
Putting together an ideal outfit is a process that involves creativity and style intuition. This makes it a particularly difficult task to automate. Existing styling products generally involve human specialists and a highly curated set of fashion items. In this paper, we will describe how we bootstrapped the Complete The Look (CTL) system at Pinterest. This is a technology that aims to learn the subjective task of "style compatibility" in order to recommend complementary items that complete an outfit. In particular, we want to show recommendations from other categories that are compatible with an item of interest. For example, what are some heels that go well with this cocktail dress? We will introduce our outfit dataset of over 1 million outfits and 4 million objects, a subset of which we will make available to the research community, and describe the pipeline used to obtain and refresh this dataset. Furthermore, we will describe how we evaluate this subjective task and compare model performance across multiple training methods. Lastly, we will share our lessons going from experimentation to working prototype, and how to mitigate failure modes in the production environment. Our work represents one of the first examples of an industrial-scale solution for compatibility-based fashion recommendation.
Conditional Balance: Improving Multi-Conditioning Trade-Offs in Image Generation
Balancing content fidelity and artistic style is a pivotal challenge in image generation. While traditional style transfer methods and modern Denoising Diffusion Probabilistic Models (DDPMs) strive to achieve this balance, they often struggle to do so without sacrificing either style, content, or sometimes both. This work addresses this challenge by analyzing the ability of DDPMs to maintain content and style equilibrium. We introduce a novel method to identify sensitivities within the DDPM attention layers, identifying specific layers that correspond to different stylistic aspects. By directing conditional inputs only to these sensitive layers, our approach enables fine-grained control over style and content, significantly reducing issues arising from over-constrained inputs. Our findings demonstrate that this method enhances recent stylization techniques by better aligning style and content, ultimately improving the quality of generated visual content.
InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation
Tuning-free diffusion-based models have demonstrated significant potential in the realm of image personalization and customization. However, despite this notable progress, current models continue to grapple with several complex challenges in producing style-consistent image generation. Firstly, the concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure, among others. Secondly, inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details. Lastly, adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability. In this paper, we commence by examining several compelling yet frequently overlooked observations. We then proceed to introduce InstantStyle, a framework designed to address these issues through the implementation of two key strategies: 1) A straightforward mechanism that decouples style and content from reference images within the feature space, predicated on the assumption that features within the same space can be either added to or subtracted from one another. 2) The injection of reference image features exclusively into style-specific blocks, thereby preventing style leaks and eschewing the need for cumbersome weight tuning, which often characterizes more parameter-heavy designs.Our work demonstrates superior visual stylization outcomes, striking an optimal balance between the intensity of style and the controllability of textual elements. Our codes will be available at https://github.com/InstantStyle/InstantStyle.
Reformulating Unsupervised Style Transfer as Paraphrase Generation
Modern NLP defines the task of style transfer as modifying the style of a given sentence without appreciably changing its semantics, which implies that the outputs of style transfer systems should be paraphrases of their inputs. However, many existing systems purportedly designed for style transfer inherently warp the input's meaning through attribute transfer, which changes semantic properties such as sentiment. In this paper, we reformulate unsupervised style transfer as a paraphrase generation problem, and present a simple methodology based on fine-tuning pretrained language models on automatically generated paraphrase data. Despite its simplicity, our method significantly outperforms state-of-the-art style transfer systems on both human and automatic evaluations. We also survey 23 style transfer papers and discover that existing automatic metrics can be easily gamed and propose fixed variants. Finally, we pivot to a more real-world style transfer setting by collecting a large dataset of 15M sentences in 11 diverse styles, which we use for an in-depth analysis of our system.
Locally Stylized Neural Radiance Fields
In recent years, there has been increasing interest in applying stylization on 3D scenes from a reference style image, in particular onto neural radiance fields (NeRF). While performing stylization directly on NeRF guarantees appearance consistency over arbitrary novel views, it is a challenging problem to guide the transfer of patterns from the style image onto different parts of the NeRF scene. In this work, we propose a stylization framework for NeRF based on local style transfer. In particular, we use a hash-grid encoding to learn the embedding of the appearance and geometry components, and show that the mapping defined by the hash table allows us to control the stylization to a certain extent. Stylization is then achieved by optimizing the appearance branch while keeping the geometry branch fixed. To support local style transfer, we propose a new loss function that utilizes a segmentation network and bipartite matching to establish region correspondences between the style image and the content images obtained from volume rendering. Our experiments show that our method yields plausible stylization results with novel view synthesis while having flexible controllability via manipulating and customizing the region correspondences.
Self-Contained Stylization via Steganography for Reverse and Serial Style Transfer
Style transfer has been widely applied to give real-world images a new artistic look. However, given a stylized image, the attempts to use typical style transfer methods for de-stylization or transferring it again into another style usually lead to artifacts or undesired results. We realize that these issues are originated from the content inconsistency between the original image and its stylized output. Therefore, in this paper we advance to keep the content information of the input image during the process of style transfer by the power of steganography, with two approaches proposed: a two-stage model and an end-to-end model. We conduct extensive experiments to successfully verify the capacity of our models, in which both of them are able to not only generate stylized images of quality comparable with the ones produced by typical style transfer methods, but also effectively eliminate the artifacts introduced in reconstructing original input from a stylized image as well as performing multiple times of style transfer in series.
Style-Consistent 3D Indoor Scene Synthesis with Decoupled Objects
Controllable 3D indoor scene synthesis stands at the forefront of technological progress, offering various applications like gaming, film, and augmented/virtual reality. The capability to stylize and de-couple objects within these scenarios is a crucial factor, providing an advanced level of control throughout the editing process. This control extends not just to manipulating geometric attributes like translation and scaling but also includes managing appearances, such as stylization. Current methods for scene stylization are limited to applying styles to the entire scene, without the ability to separate and customize individual objects. Addressing the intricacies of this challenge, we introduce a unique pipeline designed for synthesis 3D indoor scenes. Our approach involves strategically placing objects within the scene, utilizing information from professionally designed bounding boxes. Significantly, our pipeline prioritizes maintaining style consistency across multiple objects within the scene, ensuring a cohesive and visually appealing result aligned with the desired aesthetic. The core strength of our pipeline lies in its ability to generate 3D scenes that are not only visually impressive but also exhibit features like photorealism, multi-view consistency, and diversity. These scenes are crafted in response to various natural language prompts, demonstrating the versatility and adaptability of our model.
Reference-based Controllable Scene Stylization with Gaussian Splatting
Referenced-based scene stylization that edits the appearance based on a content-aligned reference image is an emerging research area. Starting with a pretrained neural radiance field (NeRF), existing methods typically learn a novel appearance that matches the given style. Despite their effectiveness, they inherently suffer from time-consuming volume rendering, and thus are impractical for many real-time applications. In this work, we propose ReGS, which adapts 3D Gaussian Splatting (3DGS) for reference-based stylization to enable real-time stylized view synthesis. Editing the appearance of a pretrained 3DGS is challenging as it uses discrete Gaussians as 3D representation, which tightly bind appearance with geometry. Simply optimizing the appearance as prior methods do is often insufficient for modeling continuous textures in the given reference image. To address this challenge, we propose a novel texture-guided control mechanism that adaptively adjusts local responsible Gaussians to a new geometric arrangement, serving for desired texture details. The proposed process is guided by texture clues for effective appearance editing, and regularized by scene depth for preserving original geometric structure. With these novel designs, we show ReGs can produce state-of-the-art stylization results that respect the reference texture while embracing real-time rendering speed for free-view navigation.
StyleMamba : State Space Model for Efficient Text-driven Image Style Transfer
We present StyleMamba, an efficient image style transfer framework that translates text prompts into corresponding visual styles while preserving the content integrity of the original images. Existing text-guided stylization requires hundreds of training iterations and takes a lot of computing resources. To speed up the process, we propose a conditional State Space Model for Efficient Text-driven Image Style Transfer, dubbed StyleMamba, that sequentially aligns the image features to the target text prompts. To enhance the local and global style consistency between text and image, we propose masked and second-order directional losses to optimize the stylization direction to significantly reduce the training iterations by 5 times and the inference time by 3 times. Extensive experiments and qualitative evaluation confirm the robust and superior stylization performance of our methods compared to the existing baselines.
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
DeformToon3D: Deformable 3D Toonification from Neural Radiance Fields
In this paper, we address the challenging problem of 3D toonification, which involves transferring the style of an artistic domain onto a target 3D face with stylized geometry and texture. Although fine-tuning a pre-trained 3D GAN on the artistic domain can produce reasonable performance, this strategy has limitations in the 3D domain. In particular, fine-tuning can deteriorate the original GAN latent space, which affects subsequent semantic editing, and requires independent optimization and storage for each new style, limiting flexibility and efficient deployment. To overcome these challenges, we propose DeformToon3D, an effective toonification framework tailored for hierarchical 3D GAN. Our approach decomposes 3D toonification into subproblems of geometry and texture stylization to better preserve the original latent space. Specifically, we devise a novel StyleField that predicts conditional 3D deformation to align a real-space NeRF to the style space for geometry stylization. Thanks to the StyleField formulation, which already handles geometry stylization well, texture stylization can be achieved conveniently via adaptive style mixing that injects information of the artistic domain into the decoder of the pre-trained 3D GAN. Due to the unique design, our method enables flexible style degree control and shape-texture-specific style swap. Furthermore, we achieve efficient training without any real-world 2D-3D training pairs but proxy samples synthesized from off-the-shelf 2D toonification models.
Controlling Perceptual Factors in Neural Style Transfer
Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer.
StyleBART: Decorate Pretrained Model with Style Adapters for Unsupervised Stylistic Headline Generation
Stylistic headline generation is the task to generate a headline that not only summarizes the content of an article, but also reflects a desired style that attracts users. As style-specific article-headline pairs are scarce, previous researches focus on unsupervised approaches with a standard headline generation dataset and mono-style corpora. In this work, we follow this line and propose StyleBART, an unsupervised approach for stylistic headline generation. Our method decorates the pretrained BART model with adapters that are responsible for different styles and allows the generation of headlines with diverse styles by simply switching the adapters. Different from previous works, StyleBART separates the task of style learning and headline generation, making it possible to freely combine the base model and the style adapters during inference. We further propose an inverse paraphrasing task to enhance the style adapters. Extensive automatic and human evaluations show that StyleBART achieves new state-of-the-art performance in the unsupervised stylistic headline generation task, producing high-quality headlines with the desired style.
Deformable Style Transfer
Both geometry and texture are fundamental aspects of visual style. Existing style transfer methods, however, primarily focus on texture, almost entirely ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that jointly stylizes the texture and geometry of a content image to better match a style image. Unlike previous geometry-aware stylization methods, our approach is neither restricted to a particular domain (such as human faces), nor does it require training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings. Code has been made publicly available at https://github.com/sunniesuhyoung/DST.
AlteredAvatar: Stylizing Dynamic 3D Avatars with Fast Style Adaptation
This paper presents a method that can quickly adapt dynamic 3D avatars to arbitrary text descriptions of novel styles. Among existing approaches for avatar stylization, direct optimization methods can produce excellent results for arbitrary styles but they are unpleasantly slow. Furthermore, they require redoing the optimization process from scratch for every new input. Fast approximation methods using feed-forward networks trained on a large dataset of style images can generate results for new inputs quickly, but tend not to generalize well to novel styles and fall short in quality. We therefore investigate a new approach, AlteredAvatar, that combines those two approaches using the meta-learning framework. In the inner loop, the model learns to optimize to match a single target style well; while in the outer loop, the model learns to stylize efficiently across many styles. After training, AlteredAvatar learns an initialization that can quickly adapt within a small number of update steps to a novel style, which can be given using texts, a reference image, or a combination of both. We show that AlteredAvatar can achieve a good balance between speed, flexibility and quality, while maintaining consistency across a wide range of novel views and facial expressions.
Consistent Style Transfer
Recently, attentional arbitrary style transfer methods have been proposed to achieve fine-grained results, which manipulates the point-wise similarity between content and style features for stylization. However, the attention mechanism based on feature points ignores the feature multi-manifold distribution, where each feature manifold corresponds to a semantic region in the image. Consequently, a uniform content semantic region is rendered by highly different patterns from various style semantic regions, producing inconsistent stylization results with visual artifacts. We proposed the progressive attentional manifold alignment (PAMA) to alleviate this problem, which repeatedly applies attention operations and space-aware interpolations. The attention operation rearranges style features dynamically according to the spatial distribution of content features. This makes the content and style manifolds correspond on the feature map. Then the space-aware interpolation adaptively interpolates between the corresponding content and style manifolds to increase their similarity. By gradually aligning the content manifolds to style manifolds, the proposed PAMA achieves state-of-the-art performance while avoiding the inconsistency of semantic regions. Codes are available at https://github.com/computer-vision2022/PAMA.
X-Mesh: Towards Fast and Accurate Text-driven 3D Stylization via Dynamic Textual Guidance
Text-driven 3D stylization is a complex and crucial task in the fields of computer vision (CV) and computer graphics (CG), aimed at transforming a bare mesh to fit a target text. Prior methods adopt text-independent multilayer perceptrons (MLPs) to predict the attributes of the target mesh with the supervision of CLIP loss. However, such text-independent architecture lacks textual guidance during predicting attributes, thus leading to unsatisfactory stylization and slow convergence. To address these limitations, we present X-Mesh, an innovative text-driven 3D stylization framework that incorporates a novel Text-guided Dynamic Attention Module (TDAM). The TDAM dynamically integrates the guidance of the target text by utilizing text-relevant spatial and channel-wise attentions during vertex feature extraction, resulting in more accurate attribute prediction and faster convergence speed. Furthermore, existing works lack standard benchmarks and automated metrics for evaluation, often relying on subjective and non-reproducible user studies to assess the quality of stylized 3D assets. To overcome this limitation, we introduce a new standard text-mesh benchmark, namely MIT-30, and two automated metrics, which will enable future research to achieve fair and objective comparisons. Our extensive qualitative and quantitative experiments demonstrate that X-Mesh outperforms previous state-of-the-art methods.
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Identifying the style by a qualified reader on a short fragment of generated poetry
Style is an important concept in today's challenges in natural language generating. After the success in the field of image style transfer, the task of text style transfer became actual and attractive. Researchers are also interested in the tasks of style reproducing in generation of the poetic text. Evaluation of style reproducing in natural poetry generation remains a problem. I used 3 character-based LSTM-models to work with style reproducing assessment. All three models were trained on the corpus of texts by famous Russian-speaking poets. Samples were shown to the assessors and 4 answer options were offered, the style of which poet this sample reproduces. In addition, the assessors were asked how well they were familiar with the work of the poet they had named. Students studying history of literature were the assessors, 94 answers were received. It has appeared that accuracy of definition of style increases if the assessor can quote the poet by heart. Each model showed at least 0.7 macro-average accuracy. The experiment showed that it is better to involve a professional rather than a naive reader in the evaluation of style in the tasks of poetry generation, while lstm models are good at reproducing the style of Russian poets even on a limited training corpus.
Soulstyler: Using Large Language Model to Guide Image Style Transfer for Target Object
Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the "Soulstyler" framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.
Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding
Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.
ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style Transfer
Textual style transfer is the task of transforming stylistic properties of text while preserving meaning. Target "styles" can be defined in numerous ways, ranging from single attributes (e.g, formality) to authorship (e.g, Shakespeare). Previous unsupervised style-transfer approaches generally rely on significant amounts of labeled data for only a fixed set of styles or require large language models. In contrast, we introduce a novel diffusion-based framework for general-purpose style transfer that can be flexibly adapted to arbitrary target styles at inference time. Our parameter-efficient approach, ParaGuide, leverages paraphrase-conditioned diffusion models alongside gradient-based guidance from both off-the-shelf classifiers and strong existing style embedders to transform the style of text while preserving semantic information. We validate the method on the Enron Email Corpus, with both human and automatic evaluations, and find that it outperforms strong baselines on formality, sentiment, and even authorship style transfer.
StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model
Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.
Learning Interpretable Style Embeddings via Prompting LLMs
Style representation learning builds content-independent representations of author style in text. Stylometry, the analysis of style in text, is often performed by expert forensic linguists and no large dataset of stylometric annotations exists for training. Current style representation learning uses neural methods to disentangle style from content to create style vectors, however, these approaches result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to create a synthetic dataset and train human-interpretable style representations we call LISA embeddings. We release our synthetic stylometry dataset and our interpretable style models as resources.
ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques.
HAAR: Text-Conditioned Generative Model of 3D Strand-based Human Hairstyles
We present HAAR, a new strand-based generative model for 3D human hairstyles. Specifically, based on textual inputs, HAAR produces 3D hairstyles that could be used as production-level assets in modern computer graphics engines. Current AI-based generative models take advantage of powerful 2D priors to reconstruct 3D content in the form of point clouds, meshes, or volumetric functions. However, by using the 2D priors, they are intrinsically limited to only recovering the visual parts. Highly occluded hair structures can not be reconstructed with those methods, and they only model the ''outer shell'', which is not ready to be used in physics-based rendering or simulation pipelines. In contrast, we propose a first text-guided generative method that uses 3D hair strands as an underlying representation. Leveraging 2D visual question-answering (VQA) systems, we automatically annotate synthetic hair models that are generated from a small set of artist-created hairstyles. This allows us to train a latent diffusion model that operates in a common hairstyle UV space. In qualitative and quantitative studies, we demonstrate the capabilities of the proposed model and compare it to existing hairstyle generation approaches.
Visual Style Prompting with Swapping Self-Attention
In the evolving domain of text-to-image generation, diffusion models have emerged as powerful tools in content creation. Despite their remarkable capability, existing models still face challenges in achieving controlled generation with a consistent style, requiring costly fine-tuning or often inadequately transferring the visual elements due to content leakage. To address these challenges, we propose a novel approach, \ours, to produce a diverse range of images while maintaining specific style elements and nuances. During the denoising process, we keep the query from original features while swapping the key and value with those from reference features in the late self-attention layers. This approach allows for the visual style prompting without any fine-tuning, ensuring that generated images maintain a faithful style. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, best reflecting the style of the references and ensuring that resulting images match the text prompts most accurately. Our project page is available https://curryjung.github.io/VisualStylePrompt/.
Inserting Anybody in Diffusion Models via Celeb Basis
Exquisite demand exists for customizing the pretrained large text-to-image model, e.g., Stable Diffusion, to generate innovative concepts, such as the users themselves. However, the newly-added concept from previous customization methods often shows weaker combination abilities than the original ones even given several images during training. We thus propose a new personalization method that allows for the seamless integration of a unique individual into the pre-trained diffusion model using just one facial photograph and only 1024 learnable parameters under 3 minutes. So as we can effortlessly generate stunning images of this person in any pose or position, interacting with anyone and doing anything imaginable from text prompts. To achieve this, we first analyze and build a well-defined celeb basis from the embedding space of the pre-trained large text encoder. Then, given one facial photo as the target identity, we generate its own embedding by optimizing the weight of this basis and locking all other parameters. Empowered by the proposed celeb basis, the new identity in our customized model showcases a better concept combination ability than previous personalization methods. Besides, our model can also learn several new identities at once and interact with each other where the previous customization model fails to. The code will be released.
ST-ITO: Controlling Audio Effects for Style Transfer with Inference-Time Optimization
Audio production style transfer is the task of processing an input to impart stylistic elements from a reference recording. Existing approaches often train a neural network to estimate control parameters for a set of audio effects. However, these approaches are limited in that they can only control a fixed set of effects, where the effects must be differentiable or otherwise employ specialized training techniques. In this work, we introduce ST-ITO, Style Transfer with Inference-Time Optimization, an approach that instead searches the parameter space of an audio effect chain at inference. This method enables control of arbitrary audio effect chains, including unseen and non-differentiable effects. Our approach employs a learned metric of audio production style, which we train through a simple and scalable self-supervised pretraining strategy, along with a gradient-free optimizer. Due to the limited existing evaluation methods for audio production style transfer, we introduce a multi-part benchmark to evaluate audio production style metrics and style transfer systems. This evaluation demonstrates that our audio representation better captures attributes related to audio production and enables expressive style transfer via control of arbitrary audio effects.
StyleSplat: 3D Object Style Transfer with Gaussian Splatting
Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
FreeStyle: Free Lunch for Text-guided Style Transfer using Diffusion Models
The rapid development of generative diffusion models has significantly advanced the field of style transfer. However, most current style transfer methods based on diffusion models typically involve a slow iterative optimization process, e.g., model fine-tuning and textual inversion of style concept. In this paper, we introduce FreeStyle, an innovative style transfer method built upon a pre-trained large diffusion model, requiring no further optimization. Besides, our method enables style transfer only through a text description of the desired style, eliminating the necessity of style images. Specifically, we propose a dual-stream encoder and single-stream decoder architecture, replacing the conventional U-Net in diffusion models. In the dual-stream encoder, two distinct branches take the content image and style text prompt as inputs, achieving content and style decoupling. In the decoder, we further modulate features from the dual streams based on a given content image and the corresponding style text prompt for precise style transfer. Our experimental results demonstrate high-quality synthesis and fidelity of our method across various content images and style text prompts. The code and more results are available at our project website:https://freestylefreelunch.github.io/.
Deep Painterly Harmonization
Copying an element from a photo and pasting it into a painting is a challenging task. Applying photo compositing techniques in this context yields subpar results that look like a collage --- and existing painterly stylization algorithms, which are global, perform poorly when applied locally. We address these issues with a dedicated algorithm that carefully determines the local statistics to be transferred. We ensure both spatial and inter-scale statistical consistency and demonstrate that both aspects are key to generating quality results. To cope with the diversity of abstraction levels and types of paintings, we introduce a technique to adjust the parameters of the transfer depending on the painting. We show that our algorithm produces significantly better results than photo compositing or global stylization techniques and that it enables creative painterly edits that would be otherwise difficult to achieve.
WISE: Whitebox Image Stylization by Example-based Learning
Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.
Scene-Conditional 3D Object Stylization and Composition
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects.
Parameter-Free Style Projection for Arbitrary Style Transfer
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on arbitrary style images. In this task the feature-level content-style transformation plays a vital role for proper fusion of features. Existing feature transformation algorithms often suffer from loss of content or style details, non-natural stroke patterns, and unstable training. To mitigate these issues, this paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation. This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer, which includes a regularization term for matching the semantics between input contents and stylized outputs. Extensive qualitative analysis, quantitative evaluation, and user study have demonstrated the effectiveness and efficiency of the proposed methods.
StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting
We introduce StyleGaussian, a novel 3D style transfer technique that allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps). Leveraging 3D Gaussian Splatting (3DGS), StyleGaussian achieves style transfer without compromising its real-time rendering ability and multi-view consistency. It achieves instant style transfer with three steps: embedding, transfer, and decoding. Initially, 2D VGG scene features are embedded into reconstructed 3D Gaussians. Next, the embedded features are transformed according to a reference style image. Finally, the transformed features are decoded into the stylized RGB. StyleGaussian has two novel designs. The first is an efficient feature rendering strategy that first renders low-dimensional features and then maps them into high-dimensional features while embedding VGG features. It cuts the memory consumption significantly and enables 3DGS to render the high-dimensional memory-intensive features. The second is a K-nearest-neighbor-based 3D CNN. Working as the decoder for the stylized features, it eliminates the 2D CNN operations that compromise strict multi-view consistency. Extensive experiments show that StyleGaussian achieves instant 3D stylization with superior stylization quality while preserving real-time rendering and strict multi-view consistency. Project page: https://kunhao-liu.github.io/StyleGaussian/
mStyleDistance: Multilingual Style Embeddings and their Evaluation
Style embeddings are useful for stylistic analysis and style transfer; however, only English style embeddings have been made available. We introduce Multilingual StyleDistance (mStyleDistance), a multilingual style embedding model trained using synthetic data and contrastive learning. We train the model on data from nine languages and create a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess the embeddings' quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing models on these multilingual style benchmarks and generalize well to unseen features and languages. We make our model publicly available at https://huggingface.co/StyleDistance/mstyledistance .
FICE: Text-Conditioned Fashion Image Editing With Guided GAN Inversion
Fashion-image editing represents a challenging computer vision task, where the goal is to incorporate selected apparel into a given input image. Most existing techniques, known as Virtual Try-On methods, deal with this task by first selecting an example image of the desired apparel and then transferring the clothing onto the target person. Conversely, in this paper, we consider editing fashion images with text descriptions. Such an approach has several advantages over example-based virtual try-on techniques, e.g.: (i) it does not require an image of the target fashion item, and (ii) it allows the expression of a wide variety of visual concepts through the use of natural language. Existing image-editing methods that work with language inputs are heavily constrained by their requirement for training sets with rich attribute annotations or they are only able to handle simple text descriptions. We address these constraints by proposing a novel text-conditioned editing model, called FICE (Fashion Image CLIP Editing), capable of handling a wide variety of diverse text descriptions to guide the editing procedure. Specifically with FICE, we augment the common GAN inversion process by including semantic, pose-related, and image-level constraints when generating images. We leverage the capabilities of the CLIP model to enforce the semantics, due to its impressive image-text association capabilities. We furthermore propose a latent-code regularization technique that provides the means to better control the fidelity of the synthesized images. We validate FICE through rigorous experiments on a combination of VITON images and Fashion-Gen text descriptions and in comparison with several state-of-the-art text-conditioned image editing approaches. Experimental results demonstrate FICE generates highly realistic fashion images and leads to stronger editing performance than existing competing approaches.
ArtFusion: Arbitrary Style Transfer using Dual Conditional Latent Diffusion Models
Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.
A Parse-Then-Place Approach for Generating Graphic Layouts from Textual Descriptions
Creating layouts is a fundamental step in graphic design. In this work, we propose to use text as the guidance to create graphic layouts, i.e., Text-to-Layout, aiming to lower the design barriers. Text-to-Layout is a challenging task, because it needs to consider the implicit, combined, and incomplete layout constraints from text, each of which has not been studied in previous work. To address this, we present a two-stage approach, named parse-then-place. The approach introduces an intermediate representation (IR) between text and layout to represent diverse layout constraints. With IR, Text-to-Layout is decomposed into a parse stage and a place stage. The parse stage takes a textual description as input and generates an IR, in which the implicit constraints from the text are transformed into explicit ones. The place stage generates layouts based on the IR. To model combined and incomplete constraints, we use a Transformer-based layout generation model and carefully design a way to represent constraints and layouts as sequences. Besides, we adopt the pretrain-then-finetune strategy to boost the performance of the layout generation model with large-scale unlabeled layouts. To evaluate our approach, we construct two Text-to-Layout datasets and conduct experiments on them. Quantitative results, qualitative analysis, and user studies demonstrate the effectiveness of our approach.
StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements
Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning.
All-to-key Attention for Arbitrary Style Transfer
Attention-based arbitrary style transfer studies have shown promising performance in synthesizing vivid local style details. They typically use the all-to-all attention mechanism -- each position of content features is fully matched to all positions of style features. However, all-to-all attention tends to generate distorted style patterns and has quadratic complexity, limiting the effectiveness and efficiency of arbitrary style transfer. In this paper, we propose a novel all-to-key attention mechanism -- each position of content features is matched to stable key positions of style features -- that is more in line with the characteristics of style transfer. Specifically, it integrates two newly proposed attention forms: distributed and progressive attention. Distributed attention assigns attention to key style representations that depict the style distribution of local regions; Progressive attention pays attention from coarse-grained regions to fine-grained key positions. The resultant module, dubbed StyA2K, shows extraordinary performance in preserving the semantic structure and rendering consistent style patterns. Qualitative and quantitative comparisons with state-of-the-art methods demonstrate the superior performance of our approach.
Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style Transfer
Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at https://github.com/haha-lisa/Style-A-Video.
Learning to Generate Text in Arbitrary Writing Styles
Prior work in style-controlled text generation has focused on tasks such as emulating the style of prolific literary authors, producing formal or informal text, and the degree of toxicity of generated text. Plentiful demonstrations of these styles are available, and as a result modern language models are often able to emulate them, either via prompting or discriminative control. However, in applications such as writing assistants, it is desirable for language models to produce text in an author-specific style on the basis of a small writing sample. We find that instruction-tuned language models can struggle to reproduce author-specific style demonstrated in a prompt. Instead, we propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features. A central challenge in doing so is that an author's writing is characterized by surprising token choices under a generic language model. To reconcile this tension, we combine generative re-scoring to achieve an author-specific model, with discriminative control to ensure style consistency at the sequence-level. The combination of these approaches is found to be particularly effective at adhering to an author-specific style in a variety of conditions, including unconditional generation and style transfer, and is applicable to any underlying language model without requiring fine-tuning.
HairCLIP: Design Your Hair by Text and Reference Image
Hair editing is an interesting and challenging problem in computer vision and graphics. Many existing methods require well-drawn sketches or masks as conditional inputs for editing, however these interactions are neither straightforward nor efficient. In order to free users from the tedious interaction process, this paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly based on the texts or reference images provided by users. For this purpose, we encode the image and text conditions in a shared embedding space and propose a unified hair editing framework by leveraging the powerful image text representation capability of the Contrastive Language-Image Pre-Training (CLIP) model. With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing in a disentangled manner. Extensive experiments demonstrate the superiority of our approach in terms of manipulation accuracy, visual realism of editing results, and irrelevant attribute preservation. Project repo is https://github.com/wty-ustc/HairCLIP.
StyleSSP: Sampling StartPoint Enhancement for Training-free Diffusion-based Method for Style Transfer
Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image.
ColoristaNet for Photorealistic Video Style Transfer
Photorealistic style transfer aims to transfer the artistic style of an image onto an input image or video while keeping photorealism. In this paper, we think it's the summary statistics matching scheme in existing algorithms that leads to unrealistic stylization. To avoid employing the popular Gram loss, we propose a self-supervised style transfer framework, which contains a style removal part and a style restoration part. The style removal network removes the original image styles, and the style restoration network recovers image styles in a supervised manner. Meanwhile, to address the problems in current feature transformation methods, we propose decoupled instance normalization to decompose feature transformation into style whitening and restylization. It works quite well in ColoristaNet and can transfer image styles efficiently while keeping photorealism. To ensure temporal coherency, we also incorporate optical flow methods and ConvLSTM to embed contextual information. Experiments demonstrates that ColoristaNet can achieve better stylization effects when compared with state-of-the-art algorithms.
Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
Exploring the structure of a real-time, arbitrary neural artistic stylization network
In this paper, we present a method which combines the flexibility of the neural algorithm of artistic style with the speed of fast style transfer networks to allow real-time stylization using any content/style image pair. We build upon recent work leveraging conditional instance normalization for multi-style transfer networks by learning to predict the conditional instance normalization parameters directly from a style image. The model is successfully trained on a corpus of roughly 80,000 paintings and is able to generalize to paintings previously unobserved. We demonstrate that the learned embedding space is smooth and contains a rich structure and organizes semantic information associated with paintings in an entirely unsupervised manner.
StyleShot: A Snapshot on Any Style
In this paper, we show that, a good style representation is crucial and sufficient for generalized style transfer without test-time tuning. We achieve this through constructing a style-aware encoder and a well-organized style dataset called StyleGallery. With dedicated design for style learning, this style-aware encoder is trained to extract expressive style representation with decoupling training strategy, and StyleGallery enables the generalization ability. We further employ a content-fusion encoder to enhance image-driven style transfer. We highlight that, our approach, named StyleShot, is simple yet effective in mimicking various desired styles, i.e., 3D, flat, abstract or even fine-grained styles, without test-time tuning. Rigorous experiments validate that, StyleShot achieves superior performance across a wide range of styles compared to existing state-of-the-art methods. The project page is available at: https://styleshot.github.io/.
Studying the role of named entities for content preservation in text style transfer
Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.
Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Framework
Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle EvaLuation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures.
Transforming Delete, Retrieve, Generate Approach for Controlled Text Style Transfer
Text style transfer is the task of transferring the style of text having certain stylistic attributes, while preserving non-stylistic or content information. In this work we introduce the Generative Style Transformer (GST) - a new approach to rewriting sentences to a target style in the absence of parallel style corpora. GST leverages the power of both, large unsupervised pre-trained language models as well as the Transformer. GST is a part of a larger `Delete Retrieve Generate' framework, in which we also propose a novel method of deleting style attributes from the source sentence by exploiting the inner workings of the Transformer. Our models outperform state-of-art systems across 5 datasets on sentiment, gender and political slant transfer. We also propose the use of the GLEU metric as an automatic metric of evaluation of style transfer, which we found to compare better with human ratings than the predominantly used BLEU score.
PLIP: Language-Image Pre-training for Person Representation Learning
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suffer from unsatisfactory performance. The reason is that they neglect critical person-related characteristics, i.e., fine-grained attributes and identities. To address this issue, we propose a novel language-image pre-training framework for person representation learning, termed PLIP. Specifically, we elaborately design three pretext tasks: 1) Text-guided Image Colorization, aims to establish the correspondence between the person-related image regions and the fine-grained color-part textual phrases. 2) Image-guided Attributes Prediction, aims to mine fine-grained attribute information of the person body in the image; and 3) Identity-based Vision-Language Contrast, aims to correlate the cross-modal representations at the identity level rather than the instance level. Moreover, to implement our pre-train framework, we construct a large-scale person dataset with image-text pairs named SYNTH-PEDES by automatically generating textual annotations. We pre-train PLIP on SYNTH-PEDES and evaluate our models by spanning downstream person-centric tasks. PLIP not only significantly improves existing methods on all these tasks, but also shows great ability in the zero-shot and domain generalization settings. The code, dataset and weights will be released at~https://github.com/Zplusdragon/PLIP
FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models
Recent advances in text-to-image generation have enabled the creation of high-quality images with diverse applications. However, accurately describing desired visual attributes can be challenging, especially for non-experts in art and photography. An intuitive solution involves adopting favorable attributes from the source images. Current methods attempt to distill identity and style from source images. However, "style" is a broad concept that includes texture, color, and artistic elements, but does not cover other important attributes such as lighting and dynamics. Additionally, a simplified "style" adaptation prevents combining multiple attributes from different sources into one generated image. In this work, we formulate a more effective approach to decompose the aesthetics of a picture into specific visual attributes, allowing users to apply characteristics such as lighting, texture, and dynamics from different images. To achieve this goal, we constructed the first fine-grained visual attributes dataset (FiVA) to the best of our knowledge. This FiVA dataset features a well-organized taxonomy for visual attributes and includes around 1 M high-quality generated images with visual attribute annotations. Leveraging this dataset, we propose a fine-grained visual attribute adaptation framework (FiVA-Adapter), which decouples and adapts visual attributes from one or more source images into a generated one. This approach enhances user-friendly customization, allowing users to selectively apply desired attributes to create images that meet their unique preferences and specific content requirements.
TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings
The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler's ability to perform text attribute style transfer (formal leftrightarrow informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods. Our model has been made publicly available at https://huggingface.co/tinystyler/tinystyler .
ChemBERTa-2: Towards Chemical Foundation Models
Large pretrained models such as GPT-3 have had tremendous impact on modern natural language processing by leveraging self-supervised learning to learn salient representations that can be used to readily finetune on a wide variety of downstream tasks. We investigate the possibility of transferring such advances to molecular machine learning by building a chemical foundation model, ChemBERTa-2, using the language of SMILES. While labeled data for molecular prediction tasks is typically scarce, libraries of SMILES strings are readily available. In this work, we build upon ChemBERTa by optimizing the pretraining process. We compare multi-task and self-supervised pretraining by varying hyperparameters and pretraining dataset size, up to 77M compounds from PubChem. To our knowledge, the 77M set constitutes one of the largest datasets used for molecular pretraining to date. We find that with these pretraining improvements, we are competitive with existing state-of-the-art architectures on the MoleculeNet benchmark suite. We analyze the degree to which improvements in pretraining translate to improvement on downstream tasks.
Text-to-Sticker: Style Tailoring Latent Diffusion Models for Human Expression
We introduce Style Tailoring, a recipe to finetune Latent Diffusion Models (LDMs) in a distinct domain with high visual quality, prompt alignment and scene diversity. We choose sticker image generation as the target domain, as the images significantly differ from photorealistic samples typically generated by large-scale LDMs. We start with a competent text-to-image model, like Emu, and show that relying on prompt engineering with a photorealistic model to generate stickers leads to poor prompt alignment and scene diversity. To overcome these drawbacks, we first finetune Emu on millions of sticker-like images collected using weak supervision to elicit diversity. Next, we curate human-in-the-loop (HITL) Alignment and Style datasets from model generations, and finetune to improve prompt alignment and style alignment respectively. Sequential finetuning on these datasets poses a tradeoff between better style alignment and prompt alignment gains. To address this tradeoff, we propose a novel fine-tuning method called Style Tailoring, which jointly fits the content and style distribution and achieves best tradeoff. Evaluation results show our method improves visual quality by 14%, prompt alignment by 16.2% and scene diversity by 15.3%, compared to prompt engineering the base Emu model for stickers generation.
Text2Mesh: Text-Driven Neural Stylization for Meshes
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term neural style field network. In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes.
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation
Style transfer is an inventive process designed to create an image that maintains the essence of the original while embracing the visual style of another. Although diffusion models have demonstrated impressive generative power in personalized subject-driven or style-driven applications, existing state-of-the-art methods still encounter difficulties in achieving a seamless balance between content preservation and style enhancement. For example, amplifying the style's influence can often undermine the structural integrity of the content. To address these challenges, we deconstruct the style transfer task into three core elements: 1) Style, focusing on the image's aesthetic characteristics; 2) Spatial Structure, concerning the geometric arrangement and composition of visual elements; and 3) Semantic Content, which captures the conceptual meaning of the image. Guided by these principles, we introduce InstantStyle-Plus, an approach that prioritizes the integrity of the original content while seamlessly integrating the target style. Specifically, our method accomplishes style injection through an efficient, lightweight process, utilizing the cutting-edge InstantStyle framework. To reinforce the content preservation, we initiate the process with an inverted content latent noise and a versatile plug-and-play tile ControlNet for preserving the original image's intrinsic layout. We also incorporate a global semantic adapter to enhance the semantic content's fidelity. To safeguard against the dilution of style information, a style extractor is employed as discriminator for providing supplementary style guidance. Codes will be available at https://github.com/instantX-research/InstantStyle-Plus.
Bridging Text and Image for Artist Style Transfer via Contrastive Learning
Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s.
Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder
Fine-tuning advanced diffusion models for high-quality image stylization usually requires large training datasets and substantial computational resources, hindering their practical applicability. We propose Ada-Adapter, a novel framework for few-shot style personalization of diffusion models. Ada-Adapter leverages off-the-shelf diffusion models and pre-trained image feature encoders to learn a compact style representation from a limited set of source images. Our method enables efficient zero-shot style transfer utilizing a single reference image. Furthermore, with a small number of source images (three to five are sufficient) and a few minutes of fine-tuning, our method can capture intricate style details and conceptual characteristics, generating high-fidelity stylized images that align well with the provided text prompts. We demonstrate the effectiveness of our approach on various artistic styles, including flat art, 3D rendering, and logo design. Our experimental results show that Ada-Adapter outperforms existing zero-shot and few-shot stylization methods in terms of output quality, diversity, and training efficiency.
Customization Assistant for Text-to-image Generation
Customizing pre-trained text-to-image generation model has attracted massive research interest recently, due to its huge potential in real-world applications. Although existing methods are able to generate creative content for a novel concept contained in single user-input image, their capability are still far from perfection. Specifically, most existing methods require fine-tuning the generative model on testing images. Some existing methods do not require fine-tuning, while their performance are unsatisfactory. Furthermore, the interaction between users and models are still limited to directive and descriptive prompts such as instructions and captions. In this work, we build a customization assistant based on pre-trained large language model and diffusion model, which can not only perform customized generation in a tuning-free manner, but also enable more user-friendly interactions: users can chat with the assistant and input either ambiguous text or clear instruction. Specifically, we propose a new framework consists of a new model design and a novel training strategy. The resulting assistant can perform customized generation in 2-5 seconds without any test time fine-tuning. Extensive experiments are conducted, competitive results have been obtained across different domains, illustrating the effectiveness of the proposed method.
AutoPoster: A Highly Automatic and Content-aware Design System for Advertising Poster Generation
Advertising posters, a form of information presentation, combine visual and linguistic modalities. Creating a poster involves multiple steps and necessitates design experience and creativity. This paper introduces AutoPoster, a highly automatic and content-aware system for generating advertising posters. With only product images and titles as inputs, AutoPoster can automatically produce posters of varying sizes through four key stages: image cleaning and retargeting, layout generation, tagline generation, and style attribute prediction. To ensure visual harmony of posters, two content-aware models are incorporated for layout and tagline generation. Moreover, we propose a novel multi-task Style Attribute Predictor (SAP) to jointly predict visual style attributes. Meanwhile, to our knowledge, we propose the first poster generation dataset that includes visual attribute annotations for over 76k posters. Qualitative and quantitative outcomes from user studies and experiments substantiate the efficacy of our system and the aesthetic superiority of the generated posters compared to other poster generation methods.
DCT-Net: Domain-Calibrated Translation for Portrait Stylization
This paper introduces DCT-Net, a novel image translation architecture for few-shot portrait stylization. Given limited style exemplars (sim100), the new architecture can produce high-quality style transfer results with advanced ability to synthesize high-fidelity contents and strong generality to handle complicated scenes (e.g., occlusions and accessories). Moreover, it enables full-body image translation via one elegant evaluation network trained by partial observations (i.e., stylized heads). Few-shot learning based style transfer is challenging since the learned model can easily become overfitted in the target domain, due to the biased distribution formed by only a few training examples. This paper aims to handle the challenge by adopting the key idea of "calibration first, translation later" and exploring the augmented global structure with locally-focused translation. Specifically, the proposed DCT-Net consists of three modules: a content adapter borrowing the powerful prior from source photos to calibrate the content distribution of target samples; a geometry expansion module using affine transformations to release spatially semantic constraints; and a texture translation module leveraging samples produced by the calibrated distribution to learn a fine-grained conversion. Experimental results demonstrate the proposed method's superiority over the state of the art in head stylization and its effectiveness on full image translation with adaptive deformations.
ZDySS -- Zero-Shot Dynamic Scene Stylization using Gaussian Splatting
Stylizing a dynamic scene based on an exemplar image is critical for various real-world applications, including gaming, filmmaking, and augmented and virtual reality. However, achieving consistent stylization across both spatial and temporal dimensions remains a significant challenge. Most existing methods are designed for static scenes and often require an optimization process for each style image, limiting their adaptability. We introduce ZDySS, a zero-shot stylization framework for dynamic scenes, allowing our model to generalize to previously unseen style images at inference. Our approach employs Gaussian splatting for scene representation, linking each Gaussian to a learned feature vector that renders a feature map for any given view and timestamp. By applying style transfer on the learned feature vectors instead of the rendered feature map, we enhance spatio-temporal consistency across frames. Our method demonstrates superior performance and coherence over state-of-the-art baselines in tests on real-world dynamic scenes, making it a robust solution for practical applications.
Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization
Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
Pivotal Tuning for Latent-based Editing of Real Images
Recently, a surge of advanced facial editing techniques have been proposed that leverage the generative power of a pre-trained StyleGAN. To successfully edit an image this way, one must first project (or invert) the image into the pre-trained generator's domain. As it turns out, however, StyleGAN's latent space induces an inherent tradeoff between distortion and editability, i.e. between maintaining the original appearance and convincingly altering some of its attributes. Practically, this means it is still challenging to apply ID-preserving facial latent-space editing to faces which are out of the generator's domain. In this paper, we present an approach to bridge this gap. Our technique slightly alters the generator, so that an out-of-domain image is faithfully mapped into an in-domain latent code. The key idea is pivotal tuning - a brief training process that preserves the editing quality of an in-domain latent region, while changing its portrayed identity and appearance. In Pivotal Tuning Inversion (PTI), an initial inverted latent code serves as a pivot, around which the generator is fined-tuned. At the same time, a regularization term keeps nearby identities intact, to locally contain the effect. This surgical training process ends up altering appearance features that represent mostly identity, without affecting editing capabilities. We validate our technique through inversion and editing metrics, and show preferable scores to state-of-the-art methods. We further qualitatively demonstrate our technique by applying advanced edits (such as pose, age, or expression) to numerous images of well-known and recognizable identities. Finally, we demonstrate resilience to harder cases, including heavy make-up, elaborate hairstyles and/or headwear, which otherwise could not have been successfully inverted and edited by state-of-the-art methods.
DiffFashion: Reference-based Fashion Design with Structure-aware Transfer by Diffusion Models
Image-based fashion design with AI techniques has attracted increasing attention in recent years. We focus on a new fashion design task, where we aim to transfer a reference appearance image onto a clothing image while preserving the structure of the clothing image. It is a challenging task since there are no reference images available for the newly designed output fashion images. Although diffusion-based image translation or neural style transfer (NST) has enabled flexible style transfer, it is often difficult to maintain the original structure of the image realistically during the reverse diffusion, especially when the referenced appearance image greatly differs from the common clothing appearance. To tackle this issue, we present a novel diffusion model-based unsupervised structure-aware transfer method to semantically generate new clothes from a given clothing image and a reference appearance image. In specific, we decouple the foreground clothing with automatically generated semantic masks by conditioned labels. And the mask is further used as guidance in the denoising process to preserve the structure information. Moreover, we use the pre-trained vision Transformer (ViT) for both appearance and structure guidance. Our experimental results show that the proposed method outperforms state-of-the-art baseline models, generating more realistic images in the fashion design task. Code and demo can be found at https://github.com/Rem105-210/DiffFashion.
UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation
The fashion domain encompasses a variety of real-world multimodal tasks, including multimodal retrieval and multimodal generation. The rapid advancements in artificial intelligence generated content, particularly in technologies like large language models for text generation and diffusion models for visual generation, have sparked widespread research interest in applying these multimodal models in the fashion domain. However, tasks involving embeddings, such as image-to-text or text-to-image retrieval, have been largely overlooked from this perspective due to the diverse nature of the multimodal fashion domain. And current research on multi-task single models lack focus on image generation. In this work, we present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain, integrating image generation with retrieval tasks and text generation tasks. UniFashion unifies embedding and generative tasks by integrating a diffusion model and LLM, enabling controllable and high-fidelity generation. Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks, and can be readily adapted to manage complex vision-language tasks. This work demonstrates the potential learning synergy between multimodal generation and retrieval, offering a promising direction for future research in the fashion domain. The source code is available at https://github.com/xiangyu-mm/UniFashion.
Customizing Text-to-Image Models with a Single Image Pair
Art reinterpretation is the practice of creating a variation of a reference work, making a paired artwork that exhibits a distinct artistic style. We ask if such an image pair can be used to customize a generative model to capture the demonstrated stylistic difference. We propose Pair Customization, a new customization method that learns stylistic difference from a single image pair and then applies the acquired style to the generation process. Unlike existing methods that learn to mimic a single concept from a collection of images, our method captures the stylistic difference between paired images. This allows us to apply a stylistic change without overfitting to the specific image content in the examples. To address this new task, we employ a joint optimization method that explicitly separates the style and content into distinct LoRA weight spaces. We optimize these style and content weights to reproduce the style and content images while encouraging their orthogonality. During inference, we modify the diffusion process via a new style guidance based on our learned weights. Both qualitative and quantitative experiments show that our method can effectively learn style while avoiding overfitting to image content, highlighting the potential of modeling such stylistic differences from a single image pair.
PAID: A Framework of Product-Centric Advertising Image Design
Creating visually appealing advertising images is often a labor-intensive and time-consuming process. Is it possible to automatically generate such images using only basic product information--specifically, a product foreground image, taglines, and a target size? Existing methods mainly focus on parts of the problem and fail to provide a comprehensive solution. To address this gap, we propose a novel multistage framework called Product-Centric Advertising Image Design (PAID). It consists of four sequential stages to highlight product foregrounds and taglines while achieving overall image aesthetics: prompt generation, layout generation, background image generation, and graphics rendering. Different expert models are designed and trained for the first three stages: First, we use a visual language model (VLM) to generate background prompts that match the products. Next, a VLM-based layout generation model arranges the placement of product foregrounds, graphic elements (taglines and decorative underlays), and various nongraphic elements (objects from the background prompt). Following this, we train an SDXL-based image generation model that can simultaneously accept prompts, layouts, and foreground controls. To support the PAID framework, we create corresponding datasets with over 50,000 labeled images. Extensive experimental results and online A/B tests demonstrate that PAID can produce more visually appealing advertising images.
DPDEdit: Detail-Preserved Diffusion Models for Multimodal Fashion Image Editing
Fashion image editing is a crucial tool for designers to convey their creative ideas by visualizing design concepts interactively. Current fashion image editing techniques, though advanced with multimodal prompts and powerful diffusion models, often struggle to accurately identify editing regions and preserve the desired garment texture detail. To address these challenges, we introduce a new multimodal fashion image editing architecture based on latent diffusion models, called Detail-Preserved Diffusion Models (DPDEdit). DPDEdit guides the fashion image generation of diffusion models by integrating text prompts, region masks, human pose images, and garment texture images. To precisely locate the editing region, we first introduce Grounded-SAM to predict the editing region based on the user's textual description, and then combine it with other conditions to perform local editing. To transfer the detail of the given garment texture into the target fashion image, we propose a texture injection and refinement mechanism. Specifically, this mechanism employs a decoupled cross-attention layer to integrate textual descriptions and texture images, and incorporates an auxiliary U-Net to preserve the high-frequency details of generated garment texture. Additionally, we extend the VITON-HD dataset using a multimodal large language model to generate paired samples with texture images and textual descriptions. Extensive experiments show that our DPDEdit outperforms state-of-the-art methods in terms of image fidelity and coherence with the given multimodal inputs.
Style-Friendly SNR Sampler for Style-Driven Generation
Recent large-scale diffusion models generate high-quality images but struggle to learn new, personalized artistic styles, which limits the creation of unique style templates. Fine-tuning with reference images is the most promising approach, but it often blindly utilizes objectives and noise level distributions used for pre-training, leading to suboptimal style alignment. We propose the Style-friendly SNR sampler, which aggressively shifts the signal-to-noise ratio (SNR) distribution toward higher noise levels during fine-tuning to focus on noise levels where stylistic features emerge. This enables models to better capture unique styles and generate images with higher style alignment. Our method allows diffusion models to learn and share new "style templates", enhancing personalized content creation. We demonstrate the ability to generate styles such as personal watercolor paintings, minimal flat cartoons, 3D renderings, multi-panel images, and memes with text, thereby broadening the scope of style-driven generation.
Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality.
DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion
We introduce a novel method to automatically generate an artistic typography by stylizing one or more letter fonts to visually convey the semantics of an input word, while ensuring that the output remains readable. To address an assortment of challenges with our task at hand including conflicting goals (artistic stylization vs. legibility), lack of ground truth, and immense search space, our approach utilizes large language models to bridge texts and visual images for stylization and build an unsupervised generative model with a diffusion model backbone. Specifically, we employ the denoising generator in Latent Diffusion Model (LDM), with the key addition of a CNN-based discriminator to adapt the input style onto the input text. The discriminator uses rasterized images of a given letter/word font as real samples and output of the denoising generator as fake samples. Our model is coined DS-Fusion for discriminated and stylized diffusion. We showcase the quality and versatility of our method through numerous examples, qualitative and quantitative evaluation, as well as ablation studies. User studies comparing to strong baselines including CLIPDraw and DALL-E 2, as well as artist-crafted typographies, demonstrate strong performance of DS-Fusion.
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.
DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion
We present DreamPose, a diffusion-based method for generating animated fashion videos from still images. Given an image and a sequence of human body poses, our method synthesizes a video containing both human and fabric motion. To achieve this, we transform a pretrained text-to-image model (Stable Diffusion) into a pose-and-image guided video synthesis model, using a novel finetuning strategy, a set of architectural changes to support the added conditioning signals, and techniques to encourage temporal consistency. We fine-tune on a collection of fashion videos from the UBC Fashion dataset. We evaluate our method on a variety of clothing styles and poses, and demonstrate that our method produces state-of-the-art results on fashion video animation. Video results are available on our project page.
Measuring Style Similarity in Diffusion Models
Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD.
SINE: SINgle Image Editing with Text-to-Image Diffusion Models
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
StyleBooth: Image Style Editing with Multimodal Instruction
Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
In a joint vision-language space, a text feature (e.g., from "a photo of a dog") could effectively represent its relevant image features (e.g., from dog photos). Inspired by this, we propose PromptStyler which simulates various distribution shifts in the joint space by synthesizing diverse styles via prompts without using any images to deal with source-free domain generalization. Our method learns to generate a variety of style features (from "a S* style of a") via learnable style word vectors for pseudo-words S*. To ensure that learned styles do not distort content information, we force style-content features (from "a S* style of a [class]") to be located nearby their corresponding content features (from "[class]") in the joint vision-language space. After learning style word vectors, we train a linear classifier using synthesized style-content features. PromptStyler achieves the state of the art on PACS, VLCS, OfficeHome and DomainNet, although it does not require any images and takes just ~30 minutes for training using a single GPU.
CSGO: Content-Style Composition in Text-to-Image Generation
The diffusion model has shown exceptional capabilities in controlled image generation, which has further fueled interest in image style transfer. Existing works mainly focus on training free-based methods (e.g., image inversion) due to the scarcity of specific data. In this study, we present a data construction pipeline for content-style-stylized image triplets that generates and automatically cleanses stylized data triplets. Based on this pipeline, we construct a dataset IMAGStyle, the first large-scale style transfer dataset containing 210k image triplets, available for the community to explore and research. Equipped with IMAGStyle, we propose CSGO, a style transfer model based on end-to-end training, which explicitly decouples content and style features employing independent feature injection. The unified CSGO implements image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis. Extensive experiments demonstrate the effectiveness of our approach in enhancing style control capabilities in image generation. Additional visualization and access to the source code can be located on the project page: https://csgo-gen.github.io/.
Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer
This paper firstly presents old photo modernization using multiple references by performing stylization and enhancement in a unified manner. In order to modernize old photos, we propose a novel multi-reference-based old photo modernization (MROPM) framework consisting of a network MROPM-Net and a novel synthetic data generation scheme. MROPM-Net stylizes old photos using multiple references via photorealistic style transfer (PST) and further enhances the results to produce modern-looking images. Meanwhile, the synthetic data generation scheme trains the network to effectively utilize multiple references to perform modernization. To evaluate the performance, we propose a new old photos benchmark dataset (CHD) consisting of diverse natural indoor and outdoor scenes. Extensive experiments show that the proposed method outperforms other baselines in performing modernization on real old photos, even though no old photos were used during training. Moreover, our method can appropriately select styles from multiple references for each semantic region in the old photo to further improve the modernization performance.
StyleDrop: Text-to-Image Generation in Any Style
Pre-trained large text-to-image models synthesize impressive images with an appropriate use of text prompts. However, ambiguities inherent in natural language and out-of-distribution effects make it hard to synthesize image styles, that leverage a specific design pattern, texture or material. In this paper, we introduce StyleDrop, a method that enables the synthesis of images that faithfully follow a specific style using a text-to-image model. The proposed method is extremely versatile and captures nuances and details of a user-provided style, such as color schemes, shading, design patterns, and local and global effects. It efficiently learns a new style by fine-tuning very few trainable parameters (less than 1% of total model parameters) and improving the quality via iterative training with either human or automated feedback. Better yet, StyleDrop is able to deliver impressive results even when the user supplies only a single image that specifies the desired style. An extensive study shows that, for the task of style tuning text-to-image models, StyleDrop implemented on Muse convincingly outperforms other methods, including DreamBooth and textual inversion on Imagen or Stable Diffusion. More results are available at our project website: https://styledrop.github.io
Towards Multi-View Consistent Style Transfer with One-Step Diffusion via Vision Conditioning
The stylization of 3D scenes is an increasingly attractive topic in 3D vision. Although image style transfer has been extensively researched with promising results, directly applying 2D style transfer methods to 3D scenes often fails to preserve the structural and multi-view properties of 3D environments, resulting in unpleasant distortions in images from different viewpoints. To address these issues, we leverage the remarkable generative prior of diffusion-based models and propose a novel style transfer method, OSDiffST, based on a pre-trained one-step diffusion model (i.e., SD-Turbo) for rendering diverse styles in multi-view images of 3D scenes. To efficiently adapt the pre-trained model for multi-view style transfer on small datasets, we introduce a vision condition module to extract style information from the reference style image to serve as conditional input for the diffusion model and employ LoRA in diffusion model for adaptation. Additionally, we consider color distribution alignment and structural similarity between the stylized and content images using two specific loss functions. As a result, our method effectively preserves the structural information and multi-view consistency in stylized images without any 3D information. Experiments show that our method surpasses other promising style transfer methods in synthesizing various styles for multi-view images of 3D scenes. Stylized images from different viewpoints generated by our method achieve superior visual quality, with better structural integrity and less distortion. The source code is available at https://github.com/YushenZuo/OSDiffST.
Are Large Language Models Actually Good at Text Style Transfer?
We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.
Automated Conversion of Music Videos into Lyric Videos
Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention.
TextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling
We present a novel approach to the problem of text style transfer. Unlike previous approaches requiring style-labeled training data, our method makes use of readily-available unlabeled text by relying on the implicit connection in style between adjacent sentences, and uses labeled data only at inference time. We adapt T5 (Raffel et al., 2020), a strong pretrained text-to-text model, to extract a style vector from text and use it to condition the decoder to perform style transfer. As our label-free training results in a style vector space encoding many facets of style, we recast transfers as "targeted restyling" vector operations that adjust specific attributes of the input while preserving others. We demonstrate that training on unlabeled Amazon reviews data results in a model that is competitive on sentiment transfer, even compared to models trained fully on labeled data. Furthermore, applying our novel method to a diverse corpus of unlabeled web text results in a single model capable of transferring along multiple dimensions of style (dialect, emotiveness, formality, politeness, sentiment) despite no additional training and using only a handful of exemplars at inference time.
ToonAging: Face Re-Aging upon Artistic Portrait Style Transfer
Face re-aging is a prominent field in computer vision and graphics, with significant applications in photorealistic domains such as movies, advertising, and live streaming. Recently, the need to apply face re-aging to non-photorealistic images, like comics, illustrations, and animations, has emerged as an extension in various entertainment sectors. However, the absence of a network capable of seamlessly editing the apparent age on NPR images means that these tasks have been confined to a naive approach, applying each task sequentially. This often results in unpleasant artifacts and a loss of facial attributes due to domain discrepancies. In this paper, we introduce a novel one-stage method for face re-aging combined with portrait style transfer, executed in a single generative step. We leverage existing face re-aging and style transfer networks, both trained within the same PR domain. Our method uniquely fuses distinct latent vectors, each responsible for managing aging-related attributes and NPR appearance. Adopting an exemplar-based approach, our method offers greater flexibility than domain-level fine-tuning approaches, which typically require separate training or fine-tuning for each domain. This effectively addresses the limitation of requiring paired datasets for re-aging and domain-level, data-driven approaches for stylization. Our experiments show that our model can effortlessly generate re-aged images while simultaneously transferring the style of examples, maintaining both natural appearance and controllability.
An Analysis for Image-to-Image Translation and Style Transfer
With the development of generative technologies in deep learning, a large number of image-to-image translation and style transfer models have emerged at an explosive rate in recent years. These two technologies have made significant progress and can generate realistic images. However, many communities tend to confuse the two, because both generate the desired image based on the input image and both cover the two definitions of content and style. In fact, there are indeed significant differences between the two, and there is currently a lack of clear explanations to distinguish the two technologies, which is not conducive to the advancement of technology. We hope to serve the entire community by introducing the differences and connections between image-to-image translation and style transfer. The entire discussion process involves the concepts, forms, training modes, evaluation processes, and visualization results of the two technologies. Finally, we conclude that image-to-image translation divides images by domain, and the types of images in the domain are limited, and the scope involved is small, but the conversion ability is strong and can achieve strong semantic changes. Style transfer divides image types by single image, and the scope involved is large, but the transfer ability is limited, and it transfers more texture and color of the image.
Panoramic Interests: Stylistic-Content Aware Personalized Headline Generation
Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines.
Automatic Shortcut Removal for Self-Supervised Representation Learning
In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation. A central challenge in this approach is that the feature extractor quickly learns to exploit low-level visual features such as color aberrations or watermarks and then fails to learn useful semantic representations. Much work has gone into identifying such "shortcut" features and hand-designing schemes to reduce their effect. Here, we propose a general framework for mitigating the effect shortcut features. Our key assumption is that those features which are the first to be exploited for solving the pretext task may also be the most vulnerable to an adversary trained to make the task harder. We show that this assumption holds across common pretext tasks and datasets by training a "lens" network to make small image changes that maximally reduce performance in the pretext task. Representations learned with the modified images outperform those learned without in all tested cases. Additionally, the modifications made by the lens reveal how the choice of pretext task and dataset affects the features learned by self-supervision.
StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
Discovering meaningful directions in the latent space of GANs to manipulate semantic attributes typically requires large amounts of labeled data. Recent work aims to overcome this limitation by leveraging the power of Contrastive Language-Image Pre-training (CLIP), a joint text-image model. While promising, these methods require several hours of preprocessing or training to achieve the desired manipulations. In this paper, we present StyleMC, a fast and efficient method for text-driven image generation and manipulation. StyleMC uses a CLIP-based loss and an identity loss to manipulate images via a single text prompt without significantly affecting other attributes. Unlike prior work, StyleMC requires only a few seconds of training per text prompt to find stable global directions, does not require prompt engineering and can be used with any pre-trained StyleGAN2 model. We demonstrate the effectiveness of our method and compare it to state-of-the-art methods. Our code can be found at http://catlab-team.github.io/stylemc.
Muppet: Massive Multi-task Representations with Pre-Finetuning
We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g.~RoBERTa) and generation models (e.g.~BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
Auto-Retoucher(ART) - A framework for Background Replacement and Image Editing
Replacing the background and simultaneously adjusting foreground objects is a challenging task in image editing. Current techniques for generating such images relies heavily on user interactions with image editing softwares, which is a tedious job for professional retouchers. To reduce their workload, some exciting progress has been made on generating images with a given background. However, these models can neither adjust the position and scale of the foreground objects, nor guarantee the semantic consistency between foreground and background. To overcome these limitations, we propose a framework -- ART(Auto-Retoucher), to generate images with sufficient semantic and spatial consistency. Images are first processed by semantic matting and scene parsing modules, then a multi-task verifier model will give two confidence scores for the current background and position setting. We demonstrate that our jointly optimized verifier model successfully improves the visual consistency, and our ART framework performs well on images with the human body as foregrounds.
Inversion-Based Style Transfer with Diffusion Models
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shapes, etc. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but it often requires extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume style as a learnable textual description of a painting. We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/InST.
Meta Networks for Neural Style Transfer
In this paper we propose a new method to get the specified network parameters through one time feed-forward propagation of the meta networks and explore the application to neural style transfer. Recent works on style transfer typically need to train image transformation networks for every new style, and the style is encoded in the network parameters by enormous iterations of stochastic gradient descent. To tackle these issues, we build a meta network which takes in the style image and produces a corresponding image transformations network directly. Compared with optimization-based methods for every style, our meta networks can handle an arbitrary new style within 19ms seconds on one modern GPU card. The fast image transformation network generated by our meta network is only 449KB, which is capable of real-time executing on a mobile device. We also investigate the manifold of the style transfer networks by operating the hidden features from meta networks. Experiments have well validated the effectiveness of our method. Code and trained models has been released https://github.com/FalongShen/styletransfer.
Efficient 3D-Aware Facial Image Editing via Attribute-Specific Prompt Learning
Drawing upon StyleGAN's expressivity and disentangled latent space, existing 2D approaches employ textual prompting to edit facial images with different attributes. In contrast, 3D-aware approaches that generate faces at different target poses require attribute-specific classifiers, learning separate model weights for each attribute, and are not scalable for novel attributes. In this work, we propose an efficient, plug-and-play, 3D-aware face editing framework based on attribute-specific prompt learning, enabling the generation of facial images with controllable attributes across various target poses. To this end, we introduce a text-driven learnable style token-based latent attribute editor (LAE). The LAE harnesses a pre-trained vision-language model to find text-guided attribute-specific editing direction in the latent space of any pre-trained 3D-aware GAN. It utilizes learnable style tokens and style mappers to learn and transform this editing direction to 3D latent space. To train LAE with multiple attributes, we use directional contrastive loss and style token loss. Furthermore, to ensure view consistency and identity preservation across different poses and attributes, we employ several 3D-aware identity and pose preservation losses. Our experiments show that our proposed framework generates high-quality images with 3D awareness and view consistency while maintaining attribute-specific features. We demonstrate the effectiveness of our method on different facial attributes, including hair color and style, expression, and others.
Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
Automatic high-quality rendering of anime scenes from complex real-world images is of significant practical value. The challenges of this task lie in the complexity of the scenes, the unique features of anime style, and the lack of high-quality datasets to bridge the domain gap. Despite promising attempts, previous efforts are still incompetent in achieving satisfactory results with consistent semantic preservation, evident stylization, and fine details. In this study, we propose Scenimefy, a novel semi-supervised image-to-image translation framework that addresses these challenges. Our approach guides the learning with structure-consistent pseudo paired data, simplifying the pure unsupervised setting. The pseudo data are derived uniquely from a semantic-constrained StyleGAN leveraging rich model priors like CLIP. We further apply segmentation-guided data selection to obtain high-quality pseudo supervision. A patch-wise contrastive style loss is introduced to improve stylization and fine details. Besides, we contribute a high-resolution anime scene dataset to facilitate future research. Our extensive experiments demonstrate the superiority of our method over state-of-the-art baselines in terms of both perceptual quality and quantitative performance.
FashionComposer: Compositional Fashion Image Generation
We present FashionComposer for compositional fashion image generation. Unlike previous methods, FashionComposer is highly flexible. It takes multi-modal input (i.e., text prompt, parametric human model, garment image, and face image) and supports personalizing the appearance, pose, and figure of the human and assigning multiple garments in one pass. To achieve this, we first develop a universal framework capable of handling diverse input modalities. We construct scaled training data to enhance the model's robust compositional capabilities. To accommodate multiple reference images (garments and faces) seamlessly, we organize these references in a single image as an "asset library" and employ a reference UNet to extract appearance features. To inject the appearance features into the correct pixels in the generated result, we propose subject-binding attention. It binds the appearance features from different "assets" with the corresponding text features. In this way, the model could understand each asset according to their semantics, supporting arbitrary numbers and types of reference images. As a comprehensive solution, FashionComposer also supports many other applications like human album generation, diverse virtual try-on tasks, etc.
StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
Text-to-video (T2V) models have shown remarkable capabilities in generating diverse videos. However, they struggle to produce user-desired stylized videos due to (i) text's inherent clumsiness in expressing specific styles and (ii) the generally degraded style fidelity. To address these challenges, we introduce StyleCrafter, a generic method that enhances pre-trained T2V models with a style control adapter, enabling video generation in any style by providing a reference image. Considering the scarcity of stylized video datasets, we propose to first train a style control adapter using style-rich image datasets, then transfer the learned stylization ability to video generation through a tailor-made finetuning paradigm. To promote content-style disentanglement, we remove style descriptions from the text prompt and extract style information solely from the reference image using a decoupling learning strategy. Additionally, we design a scale-adaptive fusion module to balance the influences of text-based content features and image-based style features, which helps generalization across various text and style combinations. StyleCrafter efficiently generates high-quality stylized videos that align with the content of the texts and resemble the style of the reference images. Experiments demonstrate that our approach is more flexible and efficient than existing competitors.
StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation
Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.
A Style-aware Discriminator for Controllable Image Translation
Current image-to-image translations do not control the output domain beyond the classes used during training, nor do they interpolate between different domains well, leading to implausible results. This limitation largely arises because labels do not consider the semantic distance. To mitigate such problems, we propose a style-aware discriminator that acts as a critic as well as a style encoder to provide conditions. The style-aware discriminator learns a controllable style space using prototype-based self-supervised learning and simultaneously guides the generator. Experiments on multiple datasets verify that the proposed model outperforms current state-of-the-art image-to-image translation methods. In contrast with current methods, the proposed approach supports various applications, including style interpolation, content transplantation, and local image translation.
Sem-CS: Semantic CLIPStyler for Text-Based Image Style Transfer
CLIPStyler demonstrated image style transfer with realistic textures using only a style text description (instead of requiring a reference style image). However, the ground semantics of objects in the style transfer output is lost due to style spill-over on salient and background objects (content mismatch) or over-stylization. To solve this, we propose Semantic CLIPStyler (Sem-CS), that performs semantic style transfer. Sem-CS first segments the content image into salient and non-salient objects and then transfers artistic style based on a given style text description. The semantic style transfer is achieved using global foreground loss (for salient objects) and global background loss (for non-salient objects). Our empirical results, including DISTS, NIMA and user study scores, show that our proposed framework yields superior qualitative and quantitative performance. Our code is available at github.com/chandagrover/sem-cs.
FAME-ViL: Multi-Tasking Vision-Language Model for Heterogeneous Fashion Tasks
In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically in each individual input/output format and dataset size. It has been common to design a task-specific model and fine-tune it independently from a pre-trained V+L model (e.g., CLIP). This results in parameter inefficiency and inability to exploit inter-task relatedness. To address such issues, we propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL) in this work. Compared with existing approaches, FAME-ViL applies a single model for multiple heterogeneous fashion tasks, therefore being much more parameter-efficient. It is enabled by two novel components: (1) a task-versatile architecture with cross-attention adapters and task-specific adapters integrated into a unified V+L model, and (2) a stable and effective multi-task training strategy that supports learning from heterogeneous data and prevents negative transfer. Extensive experiments on four fashion tasks show that our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models. Code is available at https://github.com/BrandonHanx/FAME-ViL.
Text-Guided Generation and Editing of Compositional 3D Avatars
Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.
Understanding writing style in social media with a supervised contrastively pre-trained transformer
Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star)
Recognizing Image Style
The style of an image plays a significant role in how it is viewed, but style has received little attention in computer vision research. We describe an approach to predicting style of images, and perform a thorough evaluation of different image features for these tasks. We find that features learned in a multi-layer network generally perform best -- even when trained with object class (not style) labels. Our large-scale learning methods results in the best published performance on an existing dataset of aesthetic ratings and photographic style annotations. We present two novel datasets: 80K Flickr photographs annotated with 20 curated style labels, and 85K paintings annotated with 25 style/genre labels. Our approach shows excellent classification performance on both datasets. We use the learned classifiers to extend traditional tag-based image search to consider stylistic constraints, and demonstrate cross-dataset understanding of style.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
DressCode: Autoregressively Sewing and Generating Garments from Text Guidance
Apparel's significant role in human appearance underscores the importance of garment digitalization for digital human creation. Recent advances in 3D content creation are pivotal for digital human creation. Nonetheless, garment generation from text guidance is still nascent. We introduce a text-driven 3D garment generation framework, DressCode, which aims to democratize design for novices and offer immense potential in fashion design, virtual try-on, and digital human creation. For our framework, we first introduce SewingGPT, a GPT-based architecture integrating cross-attention with text-conditioned embedding to generate sewing patterns with text guidance. We also tailored a pre-trained Stable Diffusion for high-quality, tile-based PBR texture generation. By leveraging a large language model, our framework generates CG-friendly garments through natural language interaction. Our method also facilitates pattern completion and texture editing, simplifying the process for designers by user-friendly interaction. With comprehensive evaluations and comparisons with other state-of-the-art methods, our method showcases the best quality and alignment with input prompts. User studies further validate our high-quality rendering results, highlighting its practical utility and potential in production settings.
Distilling Text Style Transfer With Self-Explanation From LLMs
Text Style Transfer (TST) seeks to alter the style of text while retaining its core content. Given the constraints of limited parallel datasets for TST, we propose CoTeX, a framework that leverages large language models (LLMs) alongside chain-of-thought (CoT) prompting to facilitate TST. CoTeX distills the complex rewriting and reasoning capabilities of LLMs into more streamlined models capable of working with both non-parallel and parallel data. Through experimentation across four TST datasets, CoTeX is shown to surpass traditional supervised fine-tuning and knowledge distillation methods, particularly in low-resource settings. We conduct a comprehensive evaluation, comparing CoTeX against current unsupervised, supervised, in-context learning (ICL) techniques, and instruction-tuned LLMs. Furthermore, CoTeX distinguishes itself by offering transparent explanations for its style transfer process.
Multimodal Garment Designer: Human-Centric Latent Diffusion Models for Fashion Image Editing
Fashion illustration is used by designers to communicate their vision and to bring the design idea from conceptualization to realization, showing how clothes interact with the human body. In this context, computer vision can thus be used to improve the fashion design process. Differently from previous works that mainly focused on the virtual try-on of garments, we propose the task of multimodal-conditioned fashion image editing, guiding the generation of human-centric fashion images by following multimodal prompts, such as text, human body poses, and garment sketches. We tackle this problem by proposing a new architecture based on latent diffusion models, an approach that has not been used before in the fashion domain. Given the lack of existing datasets suitable for the task, we also extend two existing fashion datasets, namely Dress Code and VITON-HD, with multimodal annotations collected in a semi-automatic manner. Experimental results on these new datasets demonstrate the effectiveness of our proposal, both in terms of realism and coherence with the given multimodal inputs. Source code and collected multimodal annotations are publicly available at: https://github.com/aimagelab/multimodal-garment-designer.
FreeTuner: Any Subject in Any Style with Training-free Diffusion
With the advance of diffusion models, various personalized image generation methods have been proposed. However, almost all existing work only focuses on either subject-driven or style-driven personalization. Meanwhile, state-of-the-art methods face several challenges in realizing compositional personalization, i.e., composing different subject and style concepts, such as concept disentanglement, unified reconstruction paradigm, and insufficient training data. To address these issues, we introduce FreeTuner, a flexible and training-free method for compositional personalization that can generate any user-provided subject in any user-provided style (see Figure 1). Our approach employs a disentanglement strategy that separates the generation process into two stages to effectively mitigate concept entanglement. FreeTuner leverages the intermediate features within the diffusion model for subject concept representation and introduces style guidance to align the synthesized images with the style concept, ensuring the preservation of both the subject's structure and the style's aesthetic features. Extensive experiments have demonstrated the generation ability of FreeTuner across various personalization settings.
StyleGAN of All Trades: Image Manipulation with Only Pretrained StyleGAN
Recently, StyleGAN has enabled various image manipulation and editing tasks thanks to the high-quality generation and the disentangled latent space. However, additional architectures or task-specific training paradigms are usually required for different tasks. In this work, we take a deeper look at the spatial properties of StyleGAN. We show that with a pretrained StyleGAN along with some operations, without any additional architecture, we can perform comparably to the state-of-the-art methods on various tasks, including image blending, panorama generation, generation from a single image, controllable and local multimodal image to image translation, and attributes transfer. The proposed method is simple, effective, efficient, and applicable to any existing pretrained StyleGAN model.
Arbitrary Style Guidance for Enhanced Diffusion-Based Text-to-Image Generation
Diffusion-based text-to-image generation models like GLIDE and DALLE-2 have gained wide success recently for their superior performance in turning complex text inputs into images of high quality and wide diversity. In particular, they are proven to be very powerful in creating graphic arts of various formats and styles. Although current models supported specifying style formats like oil painting or pencil drawing, fine-grained style features like color distributions and brush strokes are hard to specify as they are randomly picked from a conditional distribution based on the given text input. Here we propose a novel style guidance method to support generating images using arbitrary style guided by a reference image. The generation method does not require a separate style transfer model to generate desired styles while maintaining image quality in generated content as controlled by the text input. Additionally, the guidance method can be applied without a style reference, denoted as self style guidance, to generate images of more diverse styles. Comprehensive experiments prove that the proposed method remains robust and effective in a wide range of conditions, including diverse graphic art forms, image content types and diffusion models.
What's in a Decade? Transforming Faces Through Time
How can one visually characterize people in a decade? In this work, we assemble the Faces Through Time dataset, which contains over a thousand portrait images from each decade, spanning the 1880s to the present day. Using our new dataset, we present a framework for resynthesizing portrait images across time, imagining how a portrait taken during a particular decade might have looked like, had it been taken in other decades. Our framework optimizes a family of per-decade generators that reveal subtle changes that differentiate decade--such as different hairstyles or makeup--while maintaining the identity of the input portrait. Experiments show that our method is more effective in resynthesizing portraits across time compared to state-of-the-art image-to-image translation methods, as well as attribute-based and language-guided portrait editing models. Our code and data will be available at https://facesthroughtime.github.io
SAG: Style-Aligned Article Generation via Model Collaboration
Large language models (LLMs) have increased the demand for personalized and stylish content generation. However, closed-source models like GPT-4 present limitations in optimization opportunities, while the substantial training costs and inflexibility of open-source alternatives, such as Qwen-72B, pose considerable challenges. Conversely, small language models (SLMs) struggle with understanding complex instructions and transferring learned capabilities to new contexts, often exhibiting more pronounced limitations. In this paper, we present a novel collaborative training framework that leverages the strengths of both LLMs and SLMs for style article generation, surpassing the performance of either model alone. We freeze the LLMs to harness their robust instruction-following capabilities and subsequently apply supervised fine-tuning on the SLM using style-specific data. Additionally, we introduce a self-improvement method to enhance style consistency. Our new benchmark, NoteBench, thoroughly evaluates style-aligned generation. Extensive experiments show that our approach achieves state-of-the-art performance, with improvements of 0.78 in ROUGE-L and 0.55 in BLEU-4 scores compared to GPT-4, while maintaining a low hallucination rate regarding factual and faithfulness.
FaceStudio: Put Your Face Everywhere in Seconds
This study investigates identity-preserving image synthesis, an intriguing task in image generation that seeks to maintain a subject's identity while adding a personalized, stylistic touch. Traditional methods, such as Textual Inversion and DreamBooth, have made strides in custom image creation, but they come with significant drawbacks. These include the need for extensive resources and time for fine-tuning, as well as the requirement for multiple reference images. To overcome these challenges, our research introduces a novel approach to identity-preserving synthesis, with a particular focus on human images. Our model leverages a direct feed-forward mechanism, circumventing the need for intensive fine-tuning, thereby facilitating quick and efficient image generation. Central to our innovation is a hybrid guidance framework, which combines stylized images, facial images, and textual prompts to guide the image generation process. This unique combination enables our model to produce a variety of applications, such as artistic portraits and identity-blended images. Our experimental results, including both qualitative and quantitative evaluations, demonstrate the superiority of our method over existing baseline models and previous works, particularly in its remarkable efficiency and ability to preserve the subject's identity with high fidelity.
What Looks Good with my Sofa: Multimodal Search Engine for Interior Design
In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public.
DiffCloth: Diffusion Based Garment Synthesis and Manipulation via Structural Cross-modal Semantic Alignment
Cross-modal garment synthesis and manipulation will significantly benefit the way fashion designers generate garments and modify their designs via flexible linguistic interfaces.Current approaches follow the general text-to-image paradigm and mine cross-modal relations via simple cross-attention modules, neglecting the structural correspondence between visual and textual representations in the fashion design domain. In this work, we instead introduce DiffCloth, a diffusion-based pipeline for cross-modal garment synthesis and manipulation, which empowers diffusion models with flexible compositionality in the fashion domain by structurally aligning the cross-modal semantics. Specifically, we formulate the part-level cross-modal alignment as a bipartite matching problem between the linguistic Attribute-Phrases (AP) and the visual garment parts which are obtained via constituency parsing and semantic segmentation, respectively. To mitigate the issue of attribute confusion, we further propose a semantic-bundled cross-attention to preserve the spatial structure similarities between the attention maps of attribute adjectives and part nouns in each AP. Moreover, DiffCloth allows for manipulation of the generated results by simply replacing APs in the text prompts. The manipulation-irrelevant regions are recognized by blended masks obtained from the bundled attention maps of the APs and kept unchanged. Extensive experiments on the CM-Fashion benchmark demonstrate that DiffCloth both yields state-of-the-art garment synthesis results by leveraging the inherent structural information and supports flexible manipulation with region consistency.
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce STYLEBREEDER, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.
PreciseControl: Enhancing Text-To-Image Diffusion Models with Fine-Grained Attribute Control
Recently, we have seen a surge of personalization methods for text-to-image (T2I) diffusion models to learn a concept using a few images. Existing approaches, when used for face personalization, suffer to achieve convincing inversion with identity preservation and rely on semantic text-based editing of the generated face. However, a more fine-grained control is desired for facial attribute editing, which is challenging to achieve solely with text prompts. In contrast, StyleGAN models learn a rich face prior and enable smooth control towards fine-grained attribute editing by latent manipulation. This work uses the disentangled W+ space of StyleGANs to condition the T2I model. This approach allows us to precisely manipulate facial attributes, such as smoothly introducing a smile, while preserving the existing coarse text-based control inherent in T2I models. To enable conditioning of the T2I model on the W+ space, we train a latent mapper to translate latent codes from W+ to the token embedding space of the T2I model. The proposed approach excels in the precise inversion of face images with attribute preservation and facilitates continuous control for fine-grained attribute editing. Furthermore, our approach can be readily extended to generate compositions involving multiple individuals. We perform extensive experiments to validate our method for face personalization and fine-grained attribute editing.
Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text. However, these pre-trained models often face challenges when it comes to generating highly aesthetic images. This creates the need for aesthetic alignment post pre-training. In this paper, we propose quality-tuning to effectively guide a pre-trained model to exclusively generate highly visually appealing images, while maintaining generality across visual concepts. Our key insight is that supervised fine-tuning with a set of surprisingly small but extremely visually appealing images can significantly improve the generation quality. We pre-train a latent diffusion model on 1.1 billion image-text pairs and fine-tune it with only a few thousand carefully selected high-quality images. The resulting model, Emu, achieves a win rate of 82.9% compared with its pre-trained only counterpart. Compared to the state-of-the-art SDXLv1.0, Emu is preferred 68.4% and 71.3% of the time on visual appeal on the standard PartiPrompts and our Open User Input benchmark based on the real-world usage of text-to-image models. In addition, we show that quality-tuning is a generic approach that is also effective for other architectures, including pixel diffusion and masked generative transformer models.
Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle Transfer via Local-Style-Aware Hair Alignment
Editing hairstyle is unique and challenging due to the complexity and delicacy of hairstyle. Although recent approaches significantly improved the hair details, these models often produce undesirable outputs when a pose of a source image is considerably different from that of a target hair image, limiting their real-world applications. HairFIT, a pose-invariant hairstyle transfer model, alleviates this limitation yet still shows unsatisfactory quality in preserving delicate hair textures. To solve these limitations, we propose a high-performing pose-invariant hairstyle transfer model equipped with latent optimization and a newly presented local-style-matching loss. In the StyleGAN2 latent space, we first explore a pose-aligned latent code of a target hair with the detailed textures preserved based on local style matching. Then, our model inpaints the occlusions of the source considering the aligned target hair and blends both images to produce a final output. The experimental results demonstrate that our model has strengths in transferring a hairstyle under larger pose differences and preserving local hairstyle textures.
Text Style Transfer Evaluation Using Large Language Models
Evaluating Text Style Transfer (TST) is a complex task due to its multifaceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nevertheless, it remains unclear whether these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a feasible alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing evaluation of LLMs in diverse tasks, offering insights into successful outcomes and areas of limitation.
Harnessing the Latent Diffusion Model for Training-Free Image Style Transfer
Diffusion models have recently shown the ability to generate high-quality images. However, controlling its generation process still poses challenges. The image style transfer task is one of those challenges that transfers the visual attributes of a style image to another content image. Typical obstacle of this task is the requirement of additional training of a pre-trained model. We propose a training-free style transfer algorithm, Style Tracking Reverse Diffusion Process (STRDP) for a pretrained Latent Diffusion Model (LDM). Our algorithm employs Adaptive Instance Normalization (AdaIN) function in a distinct manner during the reverse diffusion process of an LDM while tracking the encoding history of the style image. This algorithm enables style transfer in the latent space of LDM for reduced computational cost, and provides compatibility for various LDM models. Through a series of experiments and a user study, we show that our method can quickly transfer the style of an image without additional training. The speed, compatibility, and training-free aspect of our algorithm facilitates agile experiments with combinations of styles and LDMs for extensive application.
ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models
Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.
Text2LIVE: Text-Driven Layered Image and Video Editing
We present a method for zero-shot, text-driven appearance manipulation in natural images and videos. Given an input image or video and a target text prompt, our goal is to edit the appearance of existing objects (e.g., object's texture) or augment the scene with visual effects (e.g., smoke, fire) in a semantically meaningful manner. We train a generator using an internal dataset of training examples, extracted from a single input (image or video and target text prompt), while leveraging an external pre-trained CLIP model to establish our losses. Rather than directly generating the edited output, our key idea is to generate an edit layer (color+opacity) that is composited over the original input. This allows us to constrain the generation process and maintain high fidelity to the original input via novel text-driven losses that are applied directly to the edit layer. Our method neither relies on a pre-trained generator nor requires user-provided edit masks. We demonstrate localized, semantic edits on high-resolution natural images and videos across a variety of objects and scenes.
Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling
Large language models are trained on massive scrapes of the web, which are often unstructured, noisy, and poorly phrased. Current scaling laws show that learning from such data requires an abundance of both compute and data, which grows with the size of the model being trained. This is infeasible both because of the large compute costs and duration associated with pre-training, and the impending scarcity of high-quality data on the web. In this work, we propose Web Rephrase Augmented Pre-training (WRAP) that uses an off-the-shelf instruction-tuned model prompted to paraphrase documents on the web in specific styles such as "like Wikipedia" or in "question-answer format" to jointly pre-train LLMs on real and synthetic rephrases. First, we show that using WRAP on the C4 dataset, which is naturally noisy, speeds up pre-training by sim3x. At the same pre-training compute budget, it improves perplexity by more than 10% on average across different subsets of the Pile, and improves zero-shot question answer accuracy across 13 tasks by more than 2%. Second, we investigate the impact of the re-phrasing style on the performance of the model, offering insights into how the composition of the training data can impact the performance of LLMs in OOD settings. Our gains are attributed to the fact that re-phrased synthetic data has higher utility than just real data because it (i) incorporates style diversity that closely reflects downstream evaluation style, and (ii) has higher 'quality' than web-scraped data.
ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs
Methods for finetuning generative models for concept-driven personalization generally achieve strong results for subject-driven or style-driven generation. Recently, low-rank adaptations (LoRA) have been proposed as a parameter-efficient way of achieving concept-driven personalization. While recent work explores the combination of separate LoRAs to achieve joint generation of learned styles and subjects, existing techniques do not reliably address the problem; they often compromise either subject fidelity or style fidelity. We propose ZipLoRA, a method to cheaply and effectively merge independently trained style and subject LoRAs in order to achieve generation of any user-provided subject in any user-provided style. Experiments on a wide range of subject and style combinations show that ZipLoRA can generate compelling results with meaningful improvements over baselines in subject and style fidelity while preserving the ability to recontextualize. Project page: https://ziplora.github.io
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.