Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe2M-BELEBELE: Highly Multilingual Speech and American Sign Language Comprehension Dataset
We introduce the first highly multilingual speech and American Sign Language (ASL) comprehension dataset by extending BELEBELE. Our dataset covers 74 spoken languages at the intersection of BELEBELE and FLEURS, and one sign language (ASL). We evaluate 2M-BELEBELE dataset for both 5-shot and zero-shot settings and across languages, the speech comprehension accuracy is ~ 8% average lower compared to reading comprehension.
SignDiff: Learning Diffusion Models for American Sign Language Production
The field of Sign Language Production (SLP) lacked a large-scale, pre-trained model based on deep learning for continuous American Sign Language (ASL) production in the past decade. This limitation hampers communication for all individuals with disabilities relying on ASL. To address this issue, we undertook the secondary development and utilization of How2Sign, one of the largest publicly available ASL datasets. Despite its significance, prior researchers in the field of sign language have not effectively employed this corpus due to the intricacies involved in American Sign Language Production (ASLP). To conduct large-scale ASLP, we propose SignDiff based on the latest work in related fields, which is a dual-condition diffusion pre-training model that can generate human sign language speakers from a skeleton pose. SignDiff has a novel Frame Reinforcement Network called FR-Net, similar to dense human pose estimation work, which enhances the correspondence between text lexical symbols and sign language dense pose frames reduce the occurrence of multiple fingers in the diffusion model. In addition, our ASLP method proposes two new improved modules and a new loss function to improve the accuracy and quality of sign language skeletal posture and enhance the ability of the model to train on large-scale data. We propose the first baseline for ASL production and report the scores of 17.19 and 12.85 on BLEU-4 on the How2Sign dev/test sets. We also evaluated our model on the previous mainstream dataset called PHOENIX14T, and the main experiments achieved the results of SOTA. In addition, our image quality far exceeds all previous results by 10 percentage points on the SSIM indicator. Finally, we conducted ablation studies and qualitative evaluations for discussion.
YouTube-SL-25: A Large-Scale, Open-Domain Multilingual Sign Language Parallel Corpus
Even for better-studied sign languages like American Sign Language (ASL), data is the bottleneck for machine learning research. The situation is worse yet for the many other sign languages used by Deaf/Hard of Hearing communities around the world. In this paper, we present YouTube-SL-25, a large-scale, open-domain multilingual corpus of sign language videos with seemingly well-aligned captions drawn from YouTube. With >3000 hours of videos across >25 sign languages, YouTube-SL-25 is a) >3x the size of YouTube-ASL, b) the largest parallel sign language dataset to date, and c) the first or largest parallel dataset for many of its component languages. We provide baselines for sign-to-text tasks using a unified multilingual multitask model based on T5 and report scores on benchmarks across 4 sign languages. The results demonstrate that multilingual transfer benefits both higher- and lower-resource sign languages within YouTube-SL-25.
SignLLM: Sign Languages Production Large Language Models
In this paper, we introduce the first comprehensive multilingual sign language dataset named Prompt2Sign, which builds from public data including American Sign Language (ASL) and seven others. Our dataset transforms a vast array of videos into a streamlined, model-friendly format, optimized for training with translation models like seq2seq and text2text. Building on this new dataset, we propose SignLLM, the first multilingual Sign Language Production (SLP) model, which includes two novel multilingual SLP modes that allow for the generation of sign language gestures from input text or prompt. Both of the modes can use a new loss and a module based on reinforcement learning, which accelerates the training by enhancing the model's capability to autonomously sample high-quality data. We present benchmark results of SignLLM, which demonstrate that our model achieves state-of-the-art performance on SLP tasks across eight sign languages.
Using CSNNs to Perform Event-based Data Processing & Classification on ASL-DVS
Recent advancements in bio-inspired visual sensing and neuromorphic computing have led to the development of various highly efficient bio-inspired solutions with real-world applications. One notable application integrates event-based cameras with spiking neural networks (SNNs) to process event-based sequences that are asynchronous and sparse, making them difficult to handle. In this project, we develop a convolutional spiking neural network (CSNN) architecture that leverages convolutional operations and recurrent properties of a spiking neuron to learn the spatial and temporal relations in the ASL-DVS gesture dataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand gestures when displaying 24 letters (A to Y, excluding J and Z due to the nature of their symbols) from the American Sign Language (ASL). We performed classification on a pre-processed subset of the full ASL-DVS dataset to identify letter signs and achieved 100\% training accuracy. Specifically, this was achieved by training in the Google Cloud compute platform while using a learning rate of 0.0005, batch size of 25 (total of 20 batches), 200 iterations, and 10 epochs.
Training program on sign language: social inclusion through Virtual Reality in ISENSE project
Structured hand gestures that incorporate visual motions and signs are used in sign language. Sign language is a valuable means of daily communication for individuals who are deaf or have speech impairments, but it is still rare among hearing people, and fewer are capable of understand it. Within the academic context, parents and teachers play a crucial role in supporting deaf students from childhood by facilitating their learning of sign language. In the last years, among all the teaching tools useful for learning sign language, the use of Virtual Reality (VR) has increased, as it has been demonstrated to improve retention, memory and attention during the learning process. The ISENSE project has been created to assist students with deafness during their academic life by proposing different technological tools for teaching sign language to the hearing community in the academic context. As part of the ISENSE project, this work aims to develop an application for Spanish and Italian sign language recognition that exploits the VR environment to quickly and easily create a comprehensive database of signs and an Artificial Intelligence (AI)-based software to accurately classify and recognize static and dynamic signs: from letters to sentences.
All You Need In Sign Language Production
Sign Language is the dominant form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing communities, building a robust system capable of translating the spoken language into sign language and vice versa is fundamental. To this end, sign language recognition and production are two necessary parts for making such a two-way system. Sign language recognition and production need to cope with some critical challenges. In this survey, we review recent advances in Sign Language Production (SLP) and related areas using deep learning. To have more realistic perspectives to sign language, we present an introduction to the Deaf culture, Deaf centers, psychological perspective of sign language, the main differences between spoken language and sign language. Furthermore, we present the fundamental components of a bi-directional sign language translation system, discussing the main challenges in this area. Also, the backbone architectures and methods in SLP are briefly introduced and the proposed taxonomy on SLP is presented. Finally, a general framework for SLP and performance evaluation, and also a discussion on the recent developments, advantages, and limitations in SLP, commenting on possible lines for future research are presented.
Design of Arabic Sign Language Recognition Model
Deaf people are using sign language for communication, and it is a combination of gestures, movements, postures, and facial expressions that correspond to alphabets and words in spoken languages. The proposed Arabic sign language recognition model helps deaf and hard hearing people communicate effectively with ordinary people. The recognition has four stages of converting the alphabet into letters as follows: Image Loading stage, which loads the images of Arabic sign language alphabets that were used later to train and test the model, a pre-processing stage which applies image processing techniques such as normalization, Image augmentation, resizing, and filtering to extract the features which are necessary to accomplish the recognition perfectly, a training stage which is achieved by deep learning techniques like CNN, a testing stage which demonstrates how effectively the model performs for images did not see it before, and the model was built and tested mainly using PyTorch library. The model is tested on ArASL2018, consisting of 54,000 images for 32 alphabet signs gathered from 40 signers, and the dataset has two sets: training dataset and testing dataset. We had to ensure that the system is reliable in terms of accuracy, time, and flexibility of use explained in detail in this report. Finally, the future work will be a model that converts Arabic sign language into Arabic text.
LSA64: An Argentinian Sign Language Dataset
Automatic sign language recognition is a research area that encompasses human-computer interaction, computer vision and machine learning. Robust automatic recognition of sign language could assist in the translation process and the integration of hearing-impaired people, as well as the teaching of sign language to the hearing population. Sign languages differ significantly in different countries and even regions, and their syntax and semantics are different as well from those of written languages. While the techniques for automatic sign language recognition are mostly the same for different languages, training a recognition system for a new language requires having an entire dataset for that language. This paper presents a dataset of 64 signs from the Argentinian Sign Language (LSA). The dataset, called LSA64, contains 3200 videos of 64 different LSA signs recorded by 10 subjects, and is a first step towards building a comprehensive research-level dataset of Argentinian signs, specifically tailored to sign language recognition or other machine learning tasks. The subjects that performed the signs wore colored gloves to ease the hand tracking and segmentation steps, allowing experiments on the dataset to focus specifically on the recognition of signs. We also present a pre-processed version of the dataset, from which we computed statistics of movement, position and handshape of the signs.
Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison
Vision-based sign language recognition aims at helping deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those datasets cannot be applied in practice. In this paper, we introduce a new large-scale Word-Level American Sign Language (WLASL) video dataset, containing more than 2000 words performed by over 100 signers. This dataset will be made publicly available to the research community. To our knowledge, it is by far the largest public ASL dataset to facilitate word-level sign recognition research. Based on this new large-scale dataset, we are able to experiment with several deep learning methods for word-level sign recognition and evaluate their performances in large scale scenarios. Specifically we implement and compare two different models,i.e., (i) holistic visual appearance-based approach, and (ii) 2D human pose based approach. Both models are valuable baselines that will benefit the community for method benchmarking. Moreover, we also propose a novel pose-based temporal graph convolution networks (Pose-TGCN) that models spatial and temporal dependencies in human pose trajectories simultaneously, which has further boosted the performance of the pose-based method. Our results show that pose-based and appearance-based models achieve comparable performances up to 66% at top-10 accuracy on 2,000 words/glosses, demonstrating the validity and challenges of our dataset. Our dataset and baseline deep models are available at https://dxli94.github.io/WLASL/.
RGB Arabic Alphabets Sign Language Dataset
This paper introduces the RGB Arabic Alphabet Sign Language (AASL) dataset. AASL comprises 7,856 raw and fully labelled RGB images of the Arabic sign language alphabets, which to our best knowledge is the first publicly available RGB dataset. The dataset is aimed to help those interested in developing real-life Arabic sign language classification models. AASL was collected from more than 200 participants and with different settings such as lighting, background, image orientation, image size, and image resolution. Experts in the field supervised, validated and filtered the collected images to ensure a high-quality dataset. AASL is made available to the public on Kaggle.
1DCNNTrans: BISINDO Sign Language Interpreters in Improving the Inclusiveness of Public Services
Indonesia ranks fourth globally in the number of deaf cases. Individuals with hearing impairments often find communication challenging, necessitating the use of sign language. However, there are limited public services that offer such inclusivity. On the other hand, advancements in artificial intelligence (AI) present promising solutions to overcome communication barriers faced by the deaf. This study aims to explore the application of AI in developing models for a simplified sign language translation app and dictionary, designed for integration into public service facilities, to facilitate communication for individuals with hearing impairments, thereby enhancing inclusivity in public services. The researchers compared the performance of LSTM and 1D CNN + Transformer (1DCNNTrans) models for sign language recognition. Through rigorous testing and validation, it was found that the LSTM model achieved an accuracy of 94.67%, while the 1DCNNTrans model achieved an accuracy of 96.12%. Model performance evaluation indicated that although the LSTM exhibited lower inference latency, it showed weaknesses in classifying classes with similar keypoints. In contrast, the 1DCNNTrans model demonstrated greater stability and higher F1 scores for classes with varying levels of complexity compared to the LSTM model. Both models showed excellent performance, exceeding 90% validation accuracy and demonstrating rapid classification of 50 sign language gestures.
Improving Continuous Sign Language Recognition with Cross-Lingual Signs
This work dedicates to continuous sign language recognition (CSLR), which is a weakly supervised task dealing with the recognition of continuous signs from videos, without any prior knowledge about the temporal boundaries between consecutive signs. Data scarcity heavily impedes the progress of CSLR. Existing approaches typically train CSLR models on a monolingual corpus, which is orders of magnitude smaller than that of speech recognition. In this work, we explore the feasibility of utilizing multilingual sign language corpora to facilitate monolingual CSLR. Our work is built upon the observation of cross-lingual signs, which originate from different sign languages but have similar visual signals (e.g., hand shape and motion). The underlying idea of our approach is to identify the cross-lingual signs in one sign language and properly leverage them as auxiliary training data to improve the recognition capability of another. To achieve the goal, we first build two sign language dictionaries containing isolated signs that appear in two datasets. Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model. At last, we train a CSLR model on the combination of the target data with original labels and the auxiliary data with mapped labels. Experimentally, our approach achieves state-of-the-art performance on two widely-used CSLR datasets: Phoenix-2014 and Phoenix-2014T.
SignAvatars: A Large-scale 3D Sign Language Holistic Motion Dataset and Benchmark
We present SignAvatars, the first large-scale, multi-prompt 3D sign language (SL) motion dataset designed to bridge the communication gap for Deaf and hard-of-hearing individuals. While there has been an exponentially growing number of research regarding digital communication, the majority of existing communication technologies primarily cater to spoken or written languages, instead of SL, the essential communication method for Deaf and hard-of-hearing communities. Existing SL datasets, dictionaries, and sign language production (SLP) methods are typically limited to 2D as annotating 3D models and avatars for SL is usually an entirely manual and labor-intensive process conducted by SL experts, often resulting in unnatural avatars. In response to these challenges, we compile and curate the SignAvatars dataset, which comprises 70,000 videos from 153 signers, totaling 8.34 million frames, covering both isolated signs and continuous, co-articulated signs, with multiple prompts including HamNoSys, spoken language, and words. To yield 3D holistic annotations, including meshes and biomechanically-valid poses of body, hands, and face, as well as 2D and 3D keypoints, we introduce an automated annotation pipeline operating on our large corpus of SL videos. SignAvatars facilitates various tasks such as 3D sign language recognition (SLR) and the novel 3D SL production (SLP) from diverse inputs like text scripts, individual words, and HamNoSys notation. Hence, to evaluate the potential of SignAvatars, we further propose a unified benchmark of 3D SL holistic motion production. We believe that this work is a significant step forward towards bringing the digital world to the Deaf and hard-of-hearing communities as well as people interacting with them.
Ham2Pose: Animating Sign Language Notation into Pose Sequences
Translating spoken languages into Sign languages is necessary for open communication between the hearing and hearing-impaired communities. To achieve this goal, we propose the first method for animating a text written in HamNoSys, a lexical Sign language notation, into signed pose sequences. As HamNoSys is universal by design, our proposed method offers a generic solution invariant to the target Sign language. Our method gradually generates pose predictions using transformer encoders that create meaningful representations of the text and poses while considering their spatial and temporal information. We use weak supervision for the training process and show that our method succeeds in learning from partial and inaccurate data. Additionally, we offer a new distance measurement that considers missing keypoints, to measure the distance between pose sequences using DTW-MJE. We validate its correctness using AUTSL, a large-scale Sign language dataset, show that it measures the distance between pose sequences more accurately than existing measurements, and use it to assess the quality of our generated pose sequences. Code for the data pre-processing, the model, and the distance measurement is publicly released for future research.
iSign: A Benchmark for Indian Sign Language Processing
Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than 118K video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the workings of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks, and models via the following website: https://exploration-lab.github.io/iSign/
Combining Efficient and Precise Sign Language Recognition: Good pose estimation library is all you need
Sign language recognition could significantly improve the user experience for d/Deaf people with the general consumer technology, such as IoT devices or videoconferencing. However, current sign language recognition architectures are usually computationally heavy and require robust GPU-equipped hardware to run in real-time. Some models aim for lower-end devices (such as smartphones) by minimizing their size and complexity, which leads to worse accuracy. This highly scrutinizes accurate in-the-wild applications. We build upon the SPOTER architecture, which belongs to the latter group of light methods, as it came close to the performance of large models employed for this task. By substituting its original third-party pose estimation module with the MediaPipe library, we achieve an overall state-of-the-art result on the WLASL100 dataset. Significantly, our method beats previous larger architectures while still being twice as computationally efficient and almost 11 times faster on inference when compared to a relevant benchmark. To demonstrate our method's combined efficiency and precision, we built an online demo that enables users to translate sign lemmas of American sign language in their browsers. This is the first publicly available online application demonstrating this task to the best of our knowledge.
Asymmetric Loss For Multi-Label Classification
In a typical multi-label setting, a picture contains on average few positive labels, and many negative ones. This positive-negative imbalance dominates the optimization process, and can lead to under-emphasizing gradients from positive labels during training, resulting in poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), which operates differently on positive and negative samples. The loss enables to dynamically down-weights and hard-thresholds easy negative samples, while also discarding possibly mislabeled samples. We demonstrate how ASL can balance the probabilities of different samples, and how this balancing is translated to better mAP scores. With ASL, we reach state-of-the-art results on multiple popular multi-label datasets: MS-COCO, Pascal-VOC, NUS-WIDE and Open Images. We also demonstrate ASL applicability for other tasks, such as single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: https://github.com/Alibaba-MIIL/ASL.
Reconsidering Sentence-Level Sign Language Translation
Historically, sign language machine translation has been posed as a sentence-level task: datasets consisting of continuous narratives are chopped up and presented to the model as isolated clips. In this work, we explore the limitations of this task framing. First, we survey a number of linguistic phenomena in sign languages that depend on discourse-level context. Then as a case study, we perform the first human baseline for sign language translation that actually substitutes a human into the machine learning task framing, rather than provide the human with the entire document as context. This human baseline -- for ASL to English translation on the How2Sign dataset -- shows that for 33% of sentences in our sample, our fluent Deaf signer annotators were only able to understand key parts of the clip in light of additional discourse-level context. These results underscore the importance of understanding and sanity checking examples when adapting machine learning to new domains.
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning
This work focuses on sign language retrieval-a recently proposed task for sign language understanding. Sign language retrieval consists of two sub-tasks: text-to-sign-video (T2V) retrieval and sign-video-to-text (V2T) retrieval. Different from traditional video-text retrieval, sign language videos, not only contain visual signals but also carry abundant semantic meanings by themselves due to the fact that sign languages are also natural languages. Considering this character, we formulate sign language retrieval as a cross-lingual retrieval problem as well as a video-text retrieval task. Concretely, we take into account the linguistic properties of both sign languages and natural languages, and simultaneously identify the fine-grained cross-lingual (i.e., sign-to-word) mappings while contrasting the texts and the sign videos in a joint embedding space. This process is termed as cross-lingual contrastive learning. Another challenge is raised by the data scarcity issue-sign language datasets are orders of magnitude smaller in scale than that of speech recognition. We alleviate this issue by adopting a domain-agnostic sign encoder pre-trained on large-scale sign videos into the target domain via pseudo-labeling. Our framework, termed as domain-aware sign language retrieval via Cross-lingual Contrastive learning or CiCo for short, outperforms the pioneering method by large margins on various datasets, e.g., +22.4 T2V and +28.0 V2T R@1 improvements on How2Sign dataset, and +13.7 T2V and +17.1 V2T R@1 improvements on PHOENIX-2014T dataset. Code and models are available at: https://github.com/FangyunWei/SLRT.
SignCLIP: Connecting Text and Sign Language by Contrastive Learning
We present SignCLIP, which re-purposes CLIP (Contrastive Language-Image Pretraining) to project spoken language text and sign language videos, two classes of natural languages of distinct modalities, into the same space. SignCLIP is an efficient method of learning useful visual representations for sign language processing from large-scale, multilingual video-text pairs, without directly optimizing for a specific task or sign language which is often of limited size. We pretrain SignCLIP on Spreadthesign, a prominent sign language dictionary consisting of ~500 thousand video clips in up to 44 sign languages, and evaluate it with various downstream datasets. SignCLIP discerns in-domain signing with notable text-to-video/video-to-text retrieval accuracy. It also performs competitively for out-of-domain downstream tasks such as isolated sign language recognition upon essential few-shot prompting or fine-tuning. We analyze the latent space formed by the spoken language text and sign language poses, which provides additional linguistic insights. Our code and models are openly available.
A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars
The objective of this paper is to develop a functional system for translating spoken languages into sign languages, referred to as Spoken2Sign translation. The Spoken2Sign task is orthogonal and complementary to traditional sign language to spoken language (Sign2Spoken) translation. To enable Spoken2Sign translation, we present a simple baseline consisting of three steps: 1) creating a gloss-video dictionary using existing Sign2Spoken benchmarks; 2) estimating a 3D sign for each sign video in the dictionary; 3) training a Spoken2Sign model, which is composed of a Text2Gloss translator, a sign connector, and a rendering module, with the aid of the yielded gloss-3D sign dictionary. The translation results are then displayed through a sign avatar. As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs. In addition to its capability of Spoken2Sign translation, we also demonstrate that two by-products of our approach-3D keypoint augmentation and multi-view understanding-can assist in keypoint-based sign language understanding. Code and models are available at https://github.com/FangyunWei/SLRT.
Gloss-free Sign Language Translation: Improving from Visual-Language Pretraining
Sign Language Translation (SLT) is a challenging task due to its cross-domain nature, involving the translation of visual-gestural language to text. Many previous methods employ an intermediate representation, i.e., gloss sequences, to facilitate SLT, thus transforming it into a two-stage task of sign language recognition (SLR) followed by sign language translation (SLT). However, the scarcity of gloss-annotated sign language data, combined with the information bottleneck in the mid-level gloss representation, has hindered the further development of the SLT task. To address this challenge, we propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-VLP), which improves SLT by inheriting language-oriented prior knowledge from pre-trained models, without any gloss annotation assistance. Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training (CLIP) with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual Encoder and Text Decoder from the first stage. The seamless combination of these novel designs forms a robust sign language representation and significantly improves gloss-free sign language translation. In particular, we have achieved unprecedented improvements in terms of BLEU-4 score on the PHOENIX14T dataset (>+5) and the CSL-Daily dataset (>+3) compared to state-of-the-art gloss-free SLT methods. Furthermore, our approach also achieves competitive results on the PHOENIX14T dataset when compared with most of the gloss-based methods. Our code is available at https://github.com/zhoubenjia/GFSLT-VLP.
Uni-Sign: Toward Unified Sign Language Understanding at Scale
Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose Uni-Sign, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, Uni-Sign unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that Uni-Sign achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at github.com/ZechengLi19/Uni-Sign.
Is context all you need? Scaling Neural Sign Language Translation to Large Domains of Discourse
Sign Language Translation (SLT) is a challenging task that aims to generate spoken language sentences from sign language videos, both of which have different grammar and word/gloss order. From a Neural Machine Translation (NMT) perspective, the straightforward way of training translation models is to use sign language phrase-spoken language sentence pairs. However, human interpreters heavily rely on the context to understand the conveyed information, especially for sign language interpretation, where the vocabulary size may be significantly smaller than their spoken language equivalent. Taking direct inspiration from how humans translate, we propose a novel multi-modal transformer architecture that tackles the translation task in a context-aware manner, as a human would. We use the context from previous sequences and confident predictions to disambiguate weaker visual cues. To achieve this we use complementary transformer encoders, namely: (1) A Video Encoder, that captures the low-level video features at the frame-level, (2) A Spotting Encoder, that models the recognized sign glosses in the video, and (3) A Context Encoder, which captures the context of the preceding sign sequences. We combine the information coming from these encoders in a final transformer decoder to generate spoken language translations. We evaluate our approach on the recently published large-scale BOBSL dataset, which contains ~1.2M sequences, and on the SRF dataset, which was part of the WMT-SLT 2022 challenge. We report significant improvements on state-of-the-art translation performance using contextual information, nearly doubling the reported BLEU-4 scores of baseline approaches.
DiffSLT: Enhancing Diversity in Sign Language Translation via Diffusion Model
Sign language translation (SLT) is challenging, as it involves converting sign language videos into natural language. Previous studies have prioritized accuracy over diversity. However, diversity is crucial for handling lexical and syntactic ambiguities in machine translation, suggesting it could similarly benefit SLT. In this work, we propose DiffSLT, a novel gloss-free SLT framework that leverages a diffusion model, enabling diverse translations while preserving sign language semantics. DiffSLT transforms random noise into the target latent representation, conditioned on the visual features of input video. To enhance visual conditioning, we design Guidance Fusion Module, which fully utilizes the multi-level spatiotemporal information of the visual features. We also introduce DiffSLT-P, a DiffSLT variant that conditions on pseudo-glosses and visual features, providing key textual guidance and reducing the modality gap. As a result, DiffSLT and DiffSLT-P significantly improve diversity over previous gloss-free SLT methods and achieve state-of-the-art performance on two SLT datasets, thereby markedly improving translation quality.
Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor.
SignBank+: Multilingual Sign Language Translation Dataset
This work advances the field of sign language machine translation by focusing on dataset quality and simplification of the translation system. We introduce SignBank+, a clean version of the SignBank dataset, optimized for machine translation. Contrary to previous works that employ complex factorization techniques for translation, we advocate for a simplified text-to-text translation approach. Our evaluation shows that models trained on SignBank+ surpass those on the original dataset, establishing a new benchmark and providing an open resource for future research.
LLaSM: Large Language and Speech Model
Multi-modal large language models have garnered significant interest recently. Though, most of the works focus on vision-language multi-modal models providing strong capabilities in following vision-and-language instructions. However, we claim that speech is also an important modality through which humans interact with the world. Hence, it is crucial for a general-purpose assistant to be able to follow multi-modal speech-and-language instructions. In this work, we propose Large Language and Speech Model (LLaSM). LLaSM is an end-to-end trained large multi-modal speech-language model with cross-modal conversational abilities, capable of following speech-and-language instructions. Our early experiments show that LLaSM demonstrates a more convenient and natural way for humans to interact with artificial intelligence. Specifically, we also release a large Speech Instruction Following dataset LLaSM-Audio-Instructions. Code and demo are available at https://github.com/LinkSoul-AI/LLaSM and https://huggingface.co/spaces/LinkSoul/LLaSM. The LLaSM-Audio-Instructions dataset is available at https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions.
Snow Mountain: Dataset of Audio Recordings of The Bible in Low Resource Languages
Automatic Speech Recognition (ASR) has increasing utility in the modern world. There are a many ASR models available for languages with large amounts of training data like English. However, low-resource languages are poorly represented. In response we create and release an open-licensed and formatted dataset of audio recordings of the Bible in low-resource northern Indian languages. We setup multiple experimental splits and train and analyze two competitive ASR models to serve as the baseline for future research using this data.
Sign Language Translation with Iterative Prototype
This paper presents IP-SLT, a simple yet effective framework for sign language translation (SLT). Our IP-SLT adopts a recurrent structure and enhances the semantic representation (prototype) of the input sign language video via an iterative refinement manner. Our idea mimics the behavior of human reading, where a sentence can be digested repeatedly, till reaching accurate understanding. Technically, IP-SLT consists of feature extraction, prototype initialization, and iterative prototype refinement. The initialization module generates the initial prototype based on the visual feature extracted by the feature extraction module. Then, the iterative refinement module leverages the cross-attention mechanism to polish the previous prototype by aggregating it with the original video feature. Through repeated refinement, the prototype finally converges to a more stable and accurate state, leading to a fluent and appropriate translation. In addition, to leverage the sequential dependence of prototypes, we further propose an iterative distillation loss to compress the knowledge of the final iteration into previous ones. As the autoregressive decoding process is executed only once in inference, our IP-SLT is ready to improve various SLT systems with acceptable overhead. Extensive experiments are conducted on public benchmarks to demonstrate the effectiveness of the IP-SLT.
AV-Odyssey Bench: Can Your Multimodal LLMs Really Understand Audio-Visual Information?
Recently, multimodal large language models (MLLMs), such as GPT-4o, Gemini 1.5 Pro, and Reka Core, have expanded their capabilities to include vision and audio modalities. While these models demonstrate impressive performance across a wide range of audio-visual applications, our proposed DeafTest reveals that MLLMs often struggle with simple tasks humans find trivial: 1) determining which of two sounds is louder, and 2) determining which of two sounds has a higher pitch. Motivated by these observations, we introduce AV-Odyssey Bench, a comprehensive audio-visual benchmark designed to assess whether those MLLMs can truly understand the audio-visual information. This benchmark encompasses 4,555 carefully crafted problems, each incorporating text, visual, and audio components. To successfully infer answers, models must effectively leverage clues from both visual and audio inputs. To ensure precise and objective evaluation of MLLM responses, we have structured the questions as multiple-choice, eliminating the need for human evaluation or LLM-assisted assessment. We benchmark a series of closed-source and open-source models and summarize the observations. By revealing the limitations of current models, we aim to provide useful insight for future dataset collection and model development.