- Efficient Reinforcement Learning for Global Decision Making in the Presence of Local Agents at Scale We study reinforcement learning for global decision-making in the presence of many local agents, where the global decision-maker makes decisions affecting all local agents, and the objective is to learn a policy that maximizes the rewards of both the global and the local agents. Such problems find many applications, e.g. demand response, EV charging, queueing, etc. In this setting, scalability has been a long-standing challenge due to the size of the state/action space which can be exponential in the number of agents. This work proposes the SUB-SAMPLE-Q algorithm where the global agent subsamples kleq n local agents to compute an optimal policy in time that is only exponential in k, providing an exponential speedup from standard methods that are exponential in n. We show that the learned policy converges to the optimal policy in the order of O(1/k+epsilon_{k,m}) as the number of sub-sampled agents k increases, where epsilon_{k,m} is the Bellman noise. We also conduct numerical simulations in a demand-response setting and a queueing setting. 2 authors · Feb 29, 2024
1 Range Anxiety Among Battery Electric Vehicle Users: Both Distance and Waiting Time Matter Range anxiety is a major concern of battery electric vehicles (BEVs) users or potential users. Previous work has explored the influential factors of distance-related range anxiety. However, time-related range anxiety has rarely been explored. The time cost when charging or waiting to charge the BEVs can negatively impact BEV users' experience. As a preliminary attempt, this survey study investigated time-related anxiety by observing BEV users' charging decisions in scenarios when both battery level and time cost are of concern. We collected and analyzed responses from 217 BEV users in mainland China. The results revealed that time-related anxiety exists and could affect users' charging decisions. Further, users' charging decisions can be a result of the trade-off between distance-related and time-related anxiety, and can be moderated by several external factors (e.g., regions and individual differences). The findings can support the optimization of charge station distribution and EV charge recommendation algorithms. 4 authors · Jun 9, 2023
1 Privacy-Aware Energy Consumption Modeling of Connected Battery Electric Vehicles using Federated Learning Battery Electric Vehicles (BEVs) are increasingly significant in modern cities due to their potential to reduce air pollution. Precise and real-time estimation of energy consumption for them is imperative for effective itinerary planning and optimizing vehicle systems, which can reduce driving range anxiety and decrease energy costs. As public awareness of data privacy increases, adopting approaches that safeguard data privacy in the context of BEV energy consumption modeling is crucial. Federated Learning (FL) is a promising solution mitigating the risk of exposing sensitive information to third parties by allowing local data to remain on devices and only sharing model updates with a central server. Our work investigates the potential of using FL methods, such as FedAvg, and FedPer, to improve BEV energy consumption prediction while maintaining user privacy. We conducted experiments using data from 10 BEVs under simulated real-world driving conditions. Our results demonstrate that the FedAvg-LSTM model achieved a reduction of up to 67.84\% in the MAE value of the prediction results. Furthermore, we explored various real-world scenarios and discussed how FL methods can be employed in those cases. Our findings show that FL methods can effectively improve the performance of BEV energy consumption prediction while maintaining user privacy. 6 authors · Dec 12, 2023
- Distributional Reinforcement Learning-based Energy Arbitrage Strategies in Imbalance Settlement Mechanism Growth in the penetration of renewable energy sources makes supply more uncertain and leads to an increase in the system imbalance. This trend, together with the single imbalance pricing, opens an opportunity for balance responsible parties (BRPs) to perform energy arbitrage in the imbalance settlement mechanism. To this end, we propose a battery control framework based on distributional reinforcement learning (DRL). Our proposed control framework takes a risk-sensitive perspective, allowing BRPs to adjust their risk preferences: we aim to optimize a weighted sum of the arbitrage profit and a risk measure while constraining the daily number of cycles for the battery. We assess the performance of our proposed control framework using the Belgian imbalance prices of 2022 and compare two state-of-the-art RL methods, deep Q learning and soft actor-critic. Results reveal that the distributional soft actor-critic method can outperform other methods. Moreover, we note that our fully risk-averse agent appropriately learns to hedge against the risk related to the unknown imbalance price by (dis)charging the battery only when the agent is more certain about the price. 3 authors · Dec 23, 2023