Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Three-Player GAN for Super-Resolution in Magnetic Resonance Imaging
Learning based single image super resolution (SISR) task is well investigated in 2D images. However, SISR for 3D Magnetics Resonance Images (MRI) is more challenging compared to 2D, mainly due to the increased number of neural network parameters, the larger memory requirement and the limited amount of available training data. Current SISR methods for 3D volumetric images are based on Generative Adversarial Networks (GANs), especially Wasserstein GANs due to their training stability. Other common architectures in the 2D domain, e.g. transformer models, require large amounts of training data and are therefore not suitable for the limited 3D data. However, Wasserstein GANs can be problematic because they may not converge to a global optimum and thus produce blurry results. Here, we propose a new method for 3D SR based on the GAN framework. Specifically, we use instance noise to balance the GAN training. Furthermore, we use a relativistic GAN loss function and an updating feature extractor during the training process. We show that our method produces highly accurate results. We also show that we need very few training samples. In particular, we need less than 30 samples instead of thousands of training samples that are typically required in previous studies. Finally, we show improved out-of-sample results produced by our model.
Accelerating Video Diffusion Models via Distribution Matching
Generative models, particularly diffusion models, have made significant success in data synthesis across various modalities, including images, videos, and 3D assets. However, current diffusion models are computationally intensive, often requiring numerous sampling steps that limit their practical application, especially in video generation. This work introduces a novel framework for diffusion distillation and distribution matching that dramatically reduces the number of inference steps while maintaining-and potentially improving-generation quality. Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator, specifically targeting video generation. By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames with substantially fewer sampling steps. To be specific, the proposed method incorporates a denoising GAN discriminator to distil from the real data and a pre-trained image diffusion model to enhance the frame quality and the prompt-following capabilities. Experimental results using AnimateDiff as the teacher model showcase the method's effectiveness, achieving superior performance in just four sampling steps compared to existing techniques.
Improved Distribution Matching Distillation for Fast Image Synthesis
Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.
Free-Form Image Inpainting with Gated Convolution
We present a generative image inpainting system to complete images with free-form mask and guidance. The system is based on gated convolutions learned from millions of images without additional labelling efforts. The proposed gated convolution solves the issue of vanilla convolution that treats all input pixels as valid ones, generalizes partial convolution by providing a learnable dynamic feature selection mechanism for each channel at each spatial location across all layers. Moreover, as free-form masks may appear anywhere in images with any shape, global and local GANs designed for a single rectangular mask are not applicable. Thus, we also present a patch-based GAN loss, named SN-PatchGAN, by applying spectral-normalized discriminator on dense image patches. SN-PatchGAN is simple in formulation, fast and stable in training. Results on automatic image inpainting and user-guided extension demonstrate that our system generates higher-quality and more flexible results than previous methods. Our system helps user quickly remove distracting objects, modify image layouts, clear watermarks and edit faces. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpainting
Unsupervised Cross-Domain Image Generation
We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.
Demystifying MMD GANs
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramer GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the "Fr\'echet Inception Distance" (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.
Conditional GANs with Auxiliary Discriminative Classifier
Conditional generative models aim to learn the underlying joint distribution of data and labels to achieve conditional data generation. Among them, the auxiliary classifier generative adversarial network (AC-GAN) has been widely used, but suffers from the problem of low intra-class diversity of the generated samples. The fundamental reason pointed out in this paper is that the classifier of AC-GAN is generator-agnostic, which therefore cannot provide informative guidance for the generator to approach the joint distribution, resulting in a minimization of the conditional entropy that decreases the intra-class diversity. Motivated by this understanding, we propose a novel conditional GAN with an auxiliary discriminative classifier (ADC-GAN) to resolve the above problem. Specifically, the proposed auxiliary discriminative classifier becomes generator-aware by recognizing the class-labels of the real data and the generated data discriminatively. Our theoretical analysis reveals that the generator can faithfully learn the joint distribution even without the original discriminator, making the proposed ADC-GAN robust to the value of the coefficient hyperparameter and the selection of the GAN loss, and stable during training. Extensive experimental results on synthetic and real-world datasets demonstrate the superiority of ADC-GAN in conditional generative modeling compared to state-of-the-art classifier-based and projection-based conditional GANs.
Text2FaceGAN: Face Generation from Fine Grained Textual Descriptions
Powerful generative adversarial networks (GAN) have been developed to automatically synthesize realistic images from text. However, most existing tasks are limited to generating simple images such as flowers from captions. In this work, we extend this problem to the less addressed domain of face generation from fine-grained textual descriptions of face, e.g., "A person has curly hair, oval face, and mustache". We are motivated by the potential of automated face generation to impact and assist critical tasks such as criminal face reconstruction. Since current datasets for the task are either very small or do not contain captions, we generate captions for images in the CelebA dataset by creating an algorithm to automatically convert a list of attributes to a set of captions. We then model the highly multi-modal problem of text to face generation as learning the conditional distribution of faces (conditioned on text) in same latent space. We utilize the current state-of-the-art GAN (DC-GAN with GAN-CLS loss) for learning conditional multi-modality. The presence of more fine-grained details and variable length of the captions makes the problem easier for a user but more difficult to handle compared to the other text-to-image tasks. We flipped the labels for real and fake images and added noise in discriminator. Generated images for diverse textual descriptions show promising results. In the end, we show how the widely used inceptions score is not a good metric to evaluate the performance of generative models used for synthesizing faces from text.
Scene123: One Prompt to 3D Scene Generation via Video-Assisted and Consistency-Enhanced MAE
As Artificial Intelligence Generated Content (AIGC) advances, a variety of methods have been developed to generate text, images, videos, and 3D objects from single or multimodal inputs, contributing efforts to emulate human-like cognitive content creation. However, generating realistic large-scale scenes from a single input presents a challenge due to the complexities involved in ensuring consistency across extrapolated views generated by models. Benefiting from recent video generation models and implicit neural representations, we propose Scene123, a 3D scene generation model, that not only ensures realism and diversity through the video generation framework but also uses implicit neural fields combined with Masked Autoencoders (MAE) to effectively ensures the consistency of unseen areas across views. Specifically, we initially warp the input image (or an image generated from text) to simulate adjacent views, filling the invisible areas with the MAE model. However, these filled images usually fail to maintain view consistency, thus we utilize the produced views to optimize a neural radiance field, enhancing geometric consistency. Moreover, to further enhance the details and texture fidelity of generated views, we employ a GAN-based Loss against images derived from the input image through the video generation model. Extensive experiments demonstrate that our method can generate realistic and consistent scenes from a single prompt. Both qualitative and quantitative results indicate that our approach surpasses existing state-of-the-art methods. We show encourage video examples at https://yiyingyang12.github.io/Scene123.github.io/.
Sample what you cant compress
For learned image representations, basic autoencoders often produce blurry results. Reconstruction quality can be improved by incorporating additional penalties such as adversarial (GAN) and perceptual losses. Arguably, these approaches lack a principled interpretation. Concurrently, in generative settings diffusion has demonstrated a remarkable ability to create crisp, high quality results and has solid theoretical underpinnings (from variational inference to direct study as the Fisher Divergence). Our work combines autoencoder representation learning with diffusion and is, to our knowledge, the first to demonstrate the efficacy of jointly learning a continuous encoder and decoder under a diffusion-based loss. We demonstrate that this approach yields better reconstruction quality as compared to GAN-based autoencoders while being easier to tune. We also show that the resulting representation is easier to model with a latent diffusion model as compared to the representation obtained from a state-of-the-art GAN-based loss. Since our decoder is stochastic, it can generate details not encoded in the otherwise deterministic latent representation; we therefore name our approach "Sample what you can't compress", or SWYCC for short.
Activation Maximization Generative Adversarial Nets
Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. With class aware gradient and cross-entropy decomposition, we reveal how class labels and associated losses influence GAN's training. Based on that, we propose Activation Maximization Generative Adversarial Networks (AM-GAN) as an advanced solution. Comprehensive experiments have been conducted to validate our analysis and evaluate the effectiveness of our solution, where AM-GAN outperforms other strong baselines and achieves state-of-the-art Inception Score (8.91) on CIFAR-10. In addition, we demonstrate that, with the Inception ImageNet classifier, Inception Score mainly tracks the diversity of the generator, and there is, however, no reliable evidence that it can reflect the true sample quality. We thus propose a new metric, called AM Score, to provide a more accurate estimation of the sample quality. Our proposed model also outperforms the baseline methods in the new metric.
Improving Polyphonic Sound Event Detection on Multichannel Recordings with the Sørensen-Dice Coefficient Loss and Transfer Learning
The S{\o}rensen--Dice Coefficient has recently seen rising popularity as a loss function (also known as Dice loss) due to its robustness in tasks where the number of negative samples significantly exceeds that of positive samples, such as semantic segmentation, natural language processing, and sound event detection. Conventional training of polyphonic sound event detection systems with binary cross-entropy loss often results in suboptimal detection performance as the training is often overwhelmed by updates from negative samples. In this paper, we investigated the effect of the Dice loss, intra- and inter-modal transfer learning, data augmentation, and recording formats, on the performance of polyphonic sound event detection systems with multichannel inputs. Our analysis showed that polyphonic sound event detection systems trained with Dice loss consistently outperformed those trained with cross-entropy loss across different training settings and recording formats in terms of F1 score and error rate. We achieved further performance gains via the use of transfer learning and an appropriate combination of different data augmentation techniques.
Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management, with a focus on improving the estimation of Value at Risk (VaR) and Expected Shortfall (ES). FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance. Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework. The results demonstrate that FE-GAN significantly outperforms traditional architectures in both VaR and ES estimation. Tail-GAN, leveraging its task-specific loss function, consistently outperforms WGAN in ES estimation, while both models exhibit similar performance in VaR estimation. Despite these promising results, the study acknowledges limitations, including reliance on highly correlated temporal data and restricted applicability to other domains. Future research directions include exploring alternative input generation methods, dynamic forecasting models, and advanced neural network architectures to further enhance GANs-based financial risk estimation.
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.
Perceptual Quality Improvement in Videoconferencing using Keyframes-based GAN
In the latest years, videoconferencing has taken a fundamental role in interpersonal relations, both for personal and business purposes. Lossy video compression algorithms are the enabling technology for videoconferencing, as they reduce the bandwidth required for real-time video streaming. However, lossy video compression decreases the perceived visual quality. Thus, many techniques for reducing compression artifacts and improving video visual quality have been proposed in recent years. In this work, we propose a novel GAN-based method for compression artifacts reduction in videoconferencing. Given that, in this context, the speaker is typically in front of the camera and remains the same for the entire duration of the transmission, we can maintain a set of reference keyframes of the person from the higher-quality I-frames that are transmitted within the video stream and exploit them to guide the visual quality improvement; a novel aspect of this approach is the update policy that maintains and updates a compact and effective set of reference keyframes. First, we extract multi-scale features from the compressed and reference frames. Then, our architecture combines these features in a progressive manner according to facial landmarks. This allows the restoration of the high-frequency details lost after the video compression. Experiments show that the proposed approach improves visual quality and generates photo-realistic results even with high compression rates. Code and pre-trained networks are publicly available at https://github.com/LorenzoAgnolucci/Keyframes-GAN.
AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss
Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain under-explored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that involves only an autoencoder with a carefully designed bottleneck. We formally show that this scheme can achieve distribution-matching style transfer by training only on a self-reconstruction loss. Based on this scheme, we proposed AUTOVC, which achieves state-of-the-art results in many-to-many voice conversion with non-parallel data, and which is the first to perform zero-shot voice conversion.
GAN-EM: GAN based EM learning framework
Expectation maximization (EM) algorithm is to find maximum likelihood solution for models having latent variables. A typical example is Gaussian Mixture Model (GMM) which requires Gaussian assumption, however, natural images are highly non-Gaussian so that GMM cannot be applied to perform clustering task on pixel space. To overcome such limitation, we propose a GAN based EM learning framework that can maximize the likelihood of images and estimate the latent variables with only the constraint of L-Lipschitz continuity. We call this model GAN-EM, which is a framework for image clustering, semi-supervised classification and dimensionality reduction. In M-step, we design a novel loss function for discriminator of GAN to perform maximum likelihood estimation (MLE) on data with soft class label assignments. Specifically, a conditional generator captures data distribution for K classes, and a discriminator tells whether a sample is real or fake for each class. Since our model is unsupervised, the class label of real data is regarded as latent variable, which is estimated by an additional network (E-net) in E-step. The proposed GAN-EM achieves state-of-the-art clustering and semi-supervised classification results on MNIST, SVHN and CelebA, as well as comparable quality of generated images to other recently developed generative models.
LFS-GAN: Lifelong Few-Shot Image Generation
We address a challenging lifelong few-shot image generation task for the first time. In this situation, a generative model learns a sequence of tasks using only a few samples per task. Consequently, the learned model encounters both catastrophic forgetting and overfitting problems at a time. Existing studies on lifelong GANs have proposed modulation-based methods to prevent catastrophic forgetting. However, they require considerable additional parameters and cannot generate high-fidelity and diverse images from limited data. On the other hand, the existing few-shot GANs suffer from severe catastrophic forgetting when learning multiple tasks. To alleviate these issues, we propose a framework called Lifelong Few-Shot GAN (LFS-GAN) that can generate high-quality and diverse images in lifelong few-shot image generation task. Our proposed framework learns each task using an efficient task-specific modulator - Learnable Factorized Tensor (LeFT). LeFT is rank-constrained and has a rich representation ability due to its unique reconstruction technique. Furthermore, we propose a novel mode seeking loss to improve the diversity of our model in low-data circumstances. Extensive experiments demonstrate that the proposed LFS-GAN can generate high-fidelity and diverse images without any forgetting and mode collapse in various domains, achieving state-of-the-art in lifelong few-shot image generation task. Surprisingly, we find that our LFS-GAN even outperforms the existing few-shot GANs in the few-shot image generation task. The code is available at Github.
HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading
Osteoporotic vertebral compression fractures (VCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, clinical data indicate that many VCFs exhibit irregular compression, complicating accurate diagnosis. While deep learning methods have shown promise in aiding VCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-VCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and our private dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic sensitivity in clinical settings and assisting in surgical decision-making. Our code is available: https://github.com/zhibaishouheilab/HealthiVert-GAN.
PD-GAN: Probabilistic Diverse GAN for Image Inpainting
We propose PD-GAN, a probabilistic diverse GAN for image inpainting. Given an input image with arbitrary hole regions, PD-GAN produces multiple inpainting results with diverse and visually realistic content. Our PD-GAN is built upon a vanilla GAN which generates images based on random noise. During image generation, we modulate deep features of input random noise from coarse-to-fine by injecting an initially restored image and the hole regions in multiple scales. We argue that during hole filling, the pixels near the hole boundary should be more deterministic (i.e., with higher probability trusting the context and initially restored image to create natural inpainting boundary), while those pixels lie in the center of the hole should enjoy more degrees of freedom (i.e., more likely to depend on the random noise for enhancing diversity). To this end, we propose spatially probabilistic diversity normalization (SPDNorm) inside the modulation to model the probability of generating a pixel conditioned on the context information. SPDNorm dynamically balances the realism and diversity inside the hole region, making the generated content more diverse towards the hole center and resemble neighboring image content more towards the hole boundary. Meanwhile, we propose a perceptual diversity loss to further empower PD-GAN for diverse content generation. Experiments on benchmark datasets including CelebA-HQ, Places2 and Paris Street View indicate that PD-GAN is effective for diverse and visually realistic image restoration.
Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation
Our work explores temporal self-supervision for GAN-based video generation tasks. While adversarial training successfully yields generative models for a variety of areas, temporal relationships in the generated data are much less explored. Natural temporal changes are crucial for sequential generation tasks, e.g. video super-resolution and unpaired video translation. For the former, state-of-the-art methods often favor simpler norm losses such as L^2 over adversarial training. However, their averaging nature easily leads to temporally smooth results with an undesirable lack of spatial detail. For unpaired video translation, existing approaches modify the generator networks to form spatio-temporal cycle consistencies. In contrast, we focus on improving learning objectives and propose a temporally self-supervised algorithm. For both tasks, we show that temporal adversarial learning is key to achieving temporally coherent solutions without sacrificing spatial detail. We also propose a novel Ping-Pong loss to improve the long-term temporal consistency. It effectively prevents recurrent networks from accumulating artifacts temporally without depressing detailed features. Additionally, we propose a first set of metrics to quantitatively evaluate the accuracy as well as the perceptual quality of the temporal evolution. A series of user studies confirm the rankings computed with these metrics. Code, data, models, and results are provided at https://github.com/thunil/TecoGAN. The project page https://ge.in.tum.de/publications/2019-tecogan-chu/ contains supplemental materials.
Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN
Adverse weather image translation belongs to the unsupervised image-to-image (I2I) translation task which aims to transfer adverse condition domain (eg, rainy night) to standard domain (eg, day). It is a challenging task because images from adverse domains have some artifacts and insufficient information. Recently, many studies employing Generative Adversarial Networks (GANs) have achieved notable success in I2I translation but there are still limitations in applying them to adverse weather enhancement. Symmetric architecture based on bidirectional cycle-consistency loss is adopted as a standard framework for unsupervised domain transfer methods. However, it can lead to inferior translation result if the two domains have imbalanced information. To address this issue, we propose a novel GAN model, i.e., AU-GAN, which has an asymmetric architecture for adverse domain translation. We insert a proposed feature transfer network ({T}-net) in only a normal domain generator (i.e., rainy night-> day) to enhance encoded features of the adverse domain image. In addition, we introduce asymmetric feature matching for disentanglement of encoded features. Finally, we propose uncertainty-aware cycle-consistency loss to address the regional uncertainty of a cyclic reconstructed image. We demonstrate the effectiveness of our method by qualitative and quantitative comparisons with state-of-the-art models. Codes are available at https://github.com/jgkwak95/AU-GAN.
GAN Vocoder: Multi-Resolution Discriminator Is All You Need
Several of the latest GAN-based vocoders show remarkable achievements, outperforming autoregressive and flow-based competitors in both qualitative and quantitative measures while synthesizing orders of magnitude faster. In this work, we hypothesize that the common factor underlying their success is the multi-resolution discriminating framework, not the minute details in architecture, loss function, or training strategy. We experimentally test the hypothesis by evaluating six different generators paired with one shared multi-resolution discriminating framework. For all evaluative measures with respect to text-to-speech syntheses and for all perceptual metrics, their performances are not distinguishable from one another, which supports our hypothesis.
FA-GAN: Artifacts-free and Phase-aware High-fidelity GAN-based Vocoder
Generative adversarial network (GAN) based vocoders have achieved significant attention in speech synthesis with high quality and fast inference speed. However, there still exist many noticeable spectral artifacts, resulting in the quality decline of synthesized speech. In this work, we adopt a novel GAN-based vocoder designed for few artifacts and high fidelity, called FA-GAN. To suppress the aliasing artifacts caused by non-ideal upsampling layers in high-frequency components, we introduce the anti-aliased twin deconvolution module in the generator. To alleviate blurring artifacts and enrich the reconstruction of spectral details, we propose a novel fine-grained multi-resolution real and imaginary loss to assist in the modeling of phase information. Experimental results reveal that FA-GAN outperforms the compared approaches in promoting audio quality and alleviating spectral artifacts, and exhibits superior performance when applied to unseen speaker scenarios.
NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-shot Real Image Animation
Nerf-based Generative models have shown impressive capacity in generating high-quality images with consistent 3D geometry. Despite successful synthesis of fake identity images randomly sampled from latent space, adopting these models for generating face images of real subjects is still a challenging task due to its so-called inversion issue. In this paper, we propose a universal method to surgically fine-tune these NeRF-GAN models in order to achieve high-fidelity animation of real subjects only by a single image. Given the optimized latent code for an out-of-domain real image, we employ 2D loss functions on the rendered image to reduce the identity gap. Furthermore, our method leverages explicit and implicit 3D regularizations using the in-domain neighborhood samples around the optimized latent code to remove geometrical and visual artifacts. Our experiments confirm the effectiveness of our method in realistic, high-fidelity, and 3D consistent animation of real faces on multiple NeRF-GAN models across different datasets.
Noise Dimension of GAN: An Image Compression Perspective
Generative adversial network (GAN) is a type of generative model that maps a high-dimensional noise to samples in target distribution. However, the dimension of noise required in GAN is not well understood. Previous approaches view GAN as a mapping from a continuous distribution to another continous distribution. In this paper, we propose to view GAN as a discrete sampler instead. From this perspective, we build a connection between the minimum noise required and the bits to losslessly compress the images. Furthermore, to understand the behaviour of GAN when noise dimension is limited, we propose divergence-entropy trade-off. This trade-off depicts the best divergence we can achieve when noise is limited. And as rate distortion trade-off, it can be numerically solved when source distribution is known. Finally, we verifies our theory with experiments on image generation.
GNeRF: GAN-based Neural Radiance Field without Posed Camera
We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.
BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network
Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between real and fake data in the feature space. In the literature, it has been demonstrated that slicing adversarial network (SAN), an improved GAN training framework that can find the optimal projection, is effective in the image generation task. In this paper, we investigate the effectiveness of SAN in the vocoding task. For this purpose, we propose a scheme to modify least-squares GAN, which most GAN-based vocoders adopt, so that their loss functions satisfy the requirements of SAN. Through our experiments, we demonstrate that SAN can improve the performance of GAN-based vocoders, including BigVGAN, with small modifications. Our code is available at https://github.com/sony/bigvsan.
MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.
Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations
Training deep generative models usually requires a large amount of data. To alleviate the data collection cost, the task of zero-shot GAN adaptation aims to reuse well-trained generators to synthesize images of an unseen target domain without any further training samples. Due to the data absence, the textual description of the target domain and the vision-language models, e.g., CLIP, are utilized to effectively guide the generator. However, with only a single representative text feature instead of real images, the synthesized images gradually lose diversity as the model is optimized, which is also known as mode collapse. To tackle the problem, we propose a novel method to find semantic variations of the target text in the CLIP space. Specifically, we explore diverse semantic variations based on the informative text feature of the target domain while regularizing the uncontrolled deviation of the semantic information. With the obtained variations, we design a novel directional moment loss that matches the first and second moments of image and text direction distributions. Moreover, we introduce elastic weight consolidation and a relation consistency loss to effectively preserve valuable content information from the source domain, e.g., appearances. Through extensive experiments, we demonstrate the efficacy of the proposed methods in ensuring sample diversity in various scenarios of zero-shot GAN adaptation. We also conduct ablation studies to validate the effect of each proposed component. Notably, our model achieves a new state-of-the-art on zero-shot GAN adaptation in terms of both diversity and quality.
TorchGAN: A Flexible Framework for GAN Training and Evaluation
TorchGAN is a PyTorch based framework for writing succinct and comprehensible code for training and evaluation of Generative Adversarial Networks. The framework's modular design allows effortless customization of the model architecture, loss functions, training paradigms, and evaluation metrics. The key features of TorchGAN are its extensibility, built-in support for a large number of popular models, losses and evaluation metrics, and zero overhead compared to vanilla PyTorch. By using the framework to implement several popular GAN models, we demonstrate its extensibility and ease of use. We also benchmark the training time of our framework for said models against the corresponding baseline PyTorch implementations and observe that TorchGAN's features bear almost zero overhead.
Maintaining Natural Image Statistics with the Contextual Loss
Maintaining natural image statistics is a crucial factor in restoration and generation of realistic looking images. When training CNNs, photorealism is usually attempted by adversarial training (GAN), that pushes the output images to lie on the manifold of natural images. GANs are very powerful, but not perfect. They are hard to train and the results still often suffer from artifacts. In this paper we propose a complementary approach, that could be applied with or without GAN, whose goal is to train a feed-forward CNN to maintain natural internal statistics. We look explicitly at the distribution of features in an image and train the network to generate images with natural feature distributions. Our approach reduces by orders of magnitude the number of images required for training and achieves state-of-the-art results on both single-image super-resolution, and high-resolution surface normal estimation.
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.
Binary Embedding-based Retrieval at Tencent
Large-scale embedding-based retrieval (EBR) is the cornerstone of search-related industrial applications. Given a user query, the system of EBR aims to identify relevant information from a large corpus of documents that may be tens or hundreds of billions in size. The storage and computation turn out to be expensive and inefficient with massive documents and high concurrent queries, making it difficult to further scale up. To tackle the challenge, we propose a binary embedding-based retrieval (BEBR) engine equipped with a recurrent binarization algorithm that enables customized bits per dimension. Specifically, we compress the full-precision query and document embeddings, formulated as float vectors in general, into a composition of multiple binary vectors using a lightweight transformation model with residual multilayer perception (MLP) blocks. We can therefore tailor the number of bits for different applications to trade off accuracy loss and cost savings. Importantly, we enable task-agnostic efficient training of the binarization model using a new embedding-to-embedding strategy. We also exploit the compatible training of binary embeddings so that the BEBR engine can support indexing among multiple embedding versions within a unified system. To further realize efficient search, we propose Symmetric Distance Calculation (SDC) to achieve lower response time than Hamming codes. We successfully employed the introduced BEBR to Tencent products, including Sogou, Tencent Video, QQ World, etc. The binarization algorithm can be seamlessly generalized to various tasks with multiple modalities. Extensive experiments on offline benchmarks and online A/B tests demonstrate the efficiency and effectiveness of our method, significantly saving 30%~50% index costs with almost no loss of accuracy at the system level.
MASTER: A Multi-Agent System with LLM Specialized MCTS
Large Language Models (LLM) are increasingly being explored for problem-solving tasks. However, their strategic planning capability is often viewed with skepticism. Recent studies have incorporated the Monte Carlo Tree Search (MCTS) algorithm to augment the planning capacity of LLM. Despite its potential, MCTS relies on extensive sampling simulations to approximate the true reward distribution, which leads to two primary issues. Firstly, MCTS is effective for tasks like the Game of Go, where simulation results can yield objective rewards (e.g., 1 for a win and 0 for a loss). However, for tasks such as question answering, the result of a simulation is the answer to the question, which cannot yield an objective reward without the ground truth. Secondly, obtaining statistically significant reward estimations typically requires a sample size exceeding 30 simulations, resulting in excessive token usage and time consumption. To address these challenges, we present the Multi-Agent System with Tactical Execution and Reasoning using LLM Specialized MCTS (MASTER), a novel framework that coordinates agent recruitment and communication through LLM specialized MCTS. This system autonomously adjusts the number of agents based on task complexity and ensures focused communication among them. Comprehensive experiments across various tasks demonstrate the effectiveness of our proposed framework. It achieves 76% accuracy on HotpotQA and 80% on WebShop, setting new state-of-the-art performance on these datasets.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
EfficientViT: Lightweight Multi-Scale Attention for On-Device Semantic Segmentation
Semantic segmentation enables many appealing real-world applications, such as computational photography, autonomous driving, etc. However, the vast computational cost makes deploying state-of-the-art semantic segmentation models on edge devices with limited hardware resources difficult. This work presents EfficientViT, a new family of semantic segmentation models with a novel lightweight multi-scale attention for on-device semantic segmentation. Unlike prior semantic segmentation models that rely on heavy self-attention, hardware-inefficient large-kernel convolution, or complicated topology structure to obtain good performances, our lightweight multi-scale attention achieves a global receptive field and multi-scale learning (two critical features for semantic segmentation models) with only lightweight and hardware-efficient operations. As such, EfficientViT delivers remarkable performance gains over previous state-of-the-art semantic segmentation models across popular benchmark datasets with significant speedup on the mobile platform. Without performance loss on Cityscapes, our EfficientViT provides up to 15x and 9.3x mobile latency reduction over SegFormer and SegNeXt, respectively. Maintaining the same mobile latency, EfficientViT provides +7.4 mIoU gain on ADE20K over SegNeXt. Code: https://github.com/mit-han-lab/efficientvit.
VoCo-LLaMA: Towards Vision Compression with Large Language Models
Vision-Language Models (VLMs) have achieved remarkable success in various multi-modal tasks, but they are often bottlenecked by the limited context window and high computational cost of processing high-resolution image inputs and videos. Vision compression can alleviate this problem by reducing the vision token count. Previous approaches compress vision tokens with external modules and force LLMs to understand the compressed ones, leading to visual information loss. However, the LLMs' understanding paradigm of vision tokens is not fully utilised in the compression learning process. We propose VoCo-LLaMA, the first approach to compress vision tokens using LLMs. By introducing Vision Compression tokens during the vision instruction tuning phase and leveraging attention distillation, our method distill how LLMs comprehend vision tokens into their processing of VoCo tokens. VoCo-LLaMA facilitates effective vision compression and improves the computational efficiency during the inference stage. Specifically, our method achieves minimal performance loss with a compression ratio of 576times, resulting in up to 94.8% fewer FLOPs and 69.6% acceleration in inference time. Furthermore, through continuous training using time-series compressed token sequences of video frames, VoCo-LLaMA demonstrates the ability to understand temporal correlations, outperforming previous methods on popular video question-answering benchmarks. Our approach presents a promising way to unlock the full potential of VLMs' contextual window, enabling more scalable multi-modal applications. The project page, along with the associated code, can be accessed via https://yxxxb.github.io/VoCo-LLaMA-page/{this https URL}.
TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning
On-device learning enables edge devices to continually adapt the AI models to new data, which requires a small memory footprint to fit the tight memory constraint of edge devices. Existing work solves this problem by reducing the number of trainable parameters. However, this doesn't directly translate to memory saving since the major bottleneck is the activations, not parameters. In this work, we present Tiny-Transfer-Learning (TinyTL) for memory-efficient on-device learning. TinyTL freezes the weights while only learns the bias modules, thus no need to store the intermediate activations. To maintain the adaptation capacity, we introduce a new memory-efficient bias module, the lite residual module, to refine the feature extractor by learning small residual feature maps adding only 3.8% memory overhead. Extensive experiments show that TinyTL significantly saves the memory (up to 6.5x) with little accuracy loss compared to fine-tuning the full network. Compared to fine-tuning the last layer, TinyTL provides significant accuracy improvements (up to 34.1%) with little memory overhead. Furthermore, combined with feature extractor adaptation, TinyTL provides 7.3-12.9x memory saving without sacrificing accuracy compared to fine-tuning the full Inception-V3.
MuseumMaker: Continual Style Customization without Catastrophic Forgetting
Pre-trained large text-to-image (T2I) models with an appropriate text prompt has attracted growing interests in customized images generation field. However, catastrophic forgetting issue make it hard to continually synthesize new user-provided styles while retaining the satisfying results amongst learned styles. In this paper, we propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner, and gradually accumulate these creative artistic works as a Museum. When facing with a new customization style, we develop a style distillation loss module to extract and learn the styles of the training data for new image generation. It can minimize the learning biases caused by content of new training images, and address the catastrophic overfitting issue induced by few-shot images. To deal with catastrophic forgetting amongst past learned styles, we devise a dual regularization for shared-LoRA module to optimize the direction of model update, which could regularize the diffusion model from both weight and feature aspects, respectively. Meanwhile, to further preserve historical knowledge from past styles and address the limited representability of LoRA, we consider a task-wise token learning module where a unique token embedding is learned to denote a new style. As any new user-provided style come, our MuseumMaker can capture the nuances of the new styles while maintaining the details of learned styles. Experimental results on diverse style datasets validate the effectiveness of our proposed MuseumMaker method, showcasing its robustness and versatility across various scenarios.
Do uHear? Validation of uHear App for Preliminary Screening of Hearing Ability in Soundscape Studies
Studies involving soundscape perception often exclude participants with hearing loss to prevent impaired perception from affecting experimental results. Participants are typically screened with pure tone audiometry, the "gold standard" for identifying and quantifying hearing loss at specific frequencies, and excluded if a study-dependent threshold is not met. However, procuring professional audiometric equipment for soundscape studies may be cost-ineffective, and manually performing audiometric tests is labour-intensive. Moreover, testing requirements for soundscape studies may not require sensitivities and specificities as high as that in a medical diagnosis setting. Hence, in this study, we investigate the effectiveness of the uHear app, an iOS application, as an affordable and automatic alternative to a conventional audiometer in screening participants for hearing loss for the purpose of soundscape studies or listening tests in general. Based on audiometric comparisons with the audiometer of 163 participants, the uHear app was found to have high precision (98.04%) when using the World Health Organization (WHO) grading scheme for assessing normal hearing. Precision is further improved (98.69%) when all frequencies assessed with the uHear app is considered in the grading, which lends further support to this cost-effective, automated alternative to screen for normal hearing.
Heterogeneous Forgetting Compensation for Class-Incremental Learning
Class-incremental learning (CIL) has achieved remarkable successes in learning new classes consecutively while overcoming catastrophic forgetting on old categories. However, most existing CIL methods unreasonably assume that all old categories have the same forgetting pace, and neglect negative influence of forgetting heterogeneity among different old classes on forgetting compensation. To surmount the above challenges, we develop a novel Heterogeneous Forgetting Compensation (HFC) model, which can resolve heterogeneous forgetting of easy-to-forget and hard-to-forget old categories from both representation and gradient aspects. Specifically, we design a task-semantic aggregation block to alleviate heterogeneous forgetting from representation aspect. It aggregates local category information within each task to learn task-shared global representations. Moreover, we develop two novel plug-and-play losses: a gradient-balanced forgetting compensation loss and a gradient-balanced relation distillation loss to alleviate forgetting from gradient aspect. They consider gradient-balanced compensation to rectify forgetting heterogeneity of old categories and heterogeneous relation consistency. Experiments on several representative datasets illustrate effectiveness of our HFC model. The code is available at https://github.com/JiahuaDong/HFC.
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding
Large-scale cross-lingual language models (LM), such as mBERT, Unicoder and XLM, have achieved great success in cross-lingual representation learning. However, when applied to zero-shot cross-lingual transfer tasks, most existing methods use only single-language input for LM finetuning, without leveraging the intrinsic cross-lingual alignment between different languages that proves essential for multilingual tasks. In this paper, we propose FILTER, an enhanced fusion method that takes cross-lingual data as input for XLM finetuning. Specifically, FILTER first encodes text input in the source language and its translation in the target language independently in the shallow layers, then performs cross-language fusion to extract multilingual knowledge in the intermediate layers, and finally performs further language-specific encoding. During inference, the model makes predictions based on the text input in the target language and its translation in the source language. For simple tasks such as classification, translated text in the target language shares the same label as the source language. However, this shared label becomes less accurate or even unavailable for more complex tasks such as question answering, NER and POS tagging. To tackle this issue, we further propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language. Extensive experiments demonstrate that FILTER achieves new state of the art on two challenging multilingual multi-task benchmarks, XTREME and XGLUE.
Contrastive Localized Language-Image Pre-Training
Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations facilitating various applications. Recently, CLIP has been widely adopted as the vision backbone of multimodal large language models (MLLMs) to connect image inputs for language interactions. The success of CLIP as a vision-language foundation model relies on aligning web-crawled noisy text annotations at image levels. Nevertheless, such criteria may become insufficient for downstream tasks in need of fine-grained vision representations, especially when region-level understanding is demanding for MLLMs. In this paper, we improve the localization capability of CLIP with several advances. We propose a pre-training method called Contrastive Localized Language-Image Pre-training (CLOC) by complementing CLIP with region-text contrastive loss and modules. We formulate a new concept, promptable embeddings, of which the encoder produces image embeddings easy to transform into region representations given spatial hints. To support large-scale pre-training, we design a visually-enriched and spatially-localized captioning framework to effectively generate region-text pseudo-labels at scale. By scaling up to billions of annotated images, CLOC enables high-quality regional embeddings for image region recognition and retrieval tasks, and can be a drop-in replacement of CLIP to enhance MLLMs, especially on referring and grounding tasks.
End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression
Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
In this paper, we propose an Attentional Generative Adversarial Network (AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained text-to-image generation. With a novel attentional generative network, the AttnGAN can synthesize fine-grained details at different subregions of the image by paying attentions to the relevant words in the natural language description. In addition, a deep attentional multimodal similarity model is proposed to compute a fine-grained image-text matching loss for training the generator. The proposed AttnGAN significantly outperforms the previous state of the art, boosting the best reported inception score by 14.14% on the CUB dataset and 170.25% on the more challenging COCO dataset. A detailed analysis is also performed by visualizing the attention layers of the AttnGAN. It for the first time shows that the layered attentional GAN is able to automatically select the condition at the word level for generating different parts of the image.
ModuleFormer: Learning Modular Large Language Models From Uncurated Data
Large Language Models (LLMs) have achieved remarkable results. But existing models are expensive to train and deploy, and it is also difficult to expand their knowledge beyond pre-training data without forgetting previous knowledge. This paper proposes a new neural network architecture, ModuleFormer, that leverages modularity to improve the efficiency and flexibility of large language models. ModuleFormer is based on the Sparse Mixture of Experts (SMoE). Unlike the previous SMoE-based modular language model [Gururangan et al., 2021], which requires domain-labeled data to learn domain-specific experts, ModuleFormer can induce modularity from uncurated data with its new load balancing and load concentration losses. ModuleFormer is a modular architecture that includes two different types of modules, new stick-breaking attention heads, and feedforward experts. Different modules are sparsely activated conditions on the input token during training and inference. In our experiment, we found that the modular architecture enables three important abilities for large pre-trained language models: 1) Efficiency, since ModuleFormer only activates a subset of its modules for each input token, thus it could achieve the same performance as dense LLMs with more than two times throughput; 2) Extendability, ModuleFormer is more immune to catastrophic forgetting than dense LLMs and can be easily extended with new modules to learn new knowledge that is not included in the training data; 3) Specialisation, finetuning ModuleFormer could specialize a subset of modules to the finetuning task, and the task-unrelated modules could be easily pruned for a lightweight deployment.
FRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement
Convolutional recurrent networks (CRN) integrating a convolutional encoder-decoder (CED) structure and a recurrent structure have achieved promising performance for monaural speech enhancement. However, feature representation across frequency context is highly constrained due to limited receptive fields in the convolutions of CED. In this paper, we propose a convolutional recurrent encoder-decoder (CRED) structure to boost feature representation along the frequency axis. The CRED applies frequency recurrence on 3D convolutional feature maps along the frequency axis following each convolution, therefore, it is capable of catching long-range frequency correlations and enhancing feature representations of speech inputs. The proposed frequency recurrence is realized efficiently using a feedforward sequential memory network (FSMN). Besides the CRED, we insert two stacked FSMN layers between the encoder and the decoder to model further temporal dynamics. We name the proposed framework as Frequency Recurrent CRN (FRCRN). We design FRCRN to predict complex Ideal Ratio Mask (cIRM) in complex-valued domain and optimize FRCRN using both time-frequency-domain and time-domain losses. Our proposed approach achieved state-of-the-art performance on wideband benchmark datasets and achieved 2nd place for the real-time fullband track in terms of Mean Opinion Score (MOS) and Word Accuracy (WAcc) in the ICASSP 2022 Deep Noise Suppression (DNS) challenge (https://github.com/alibabasglab/FRCRN).
HAT: Hardware-Aware Transformers for Efficient Natural Language Processing
Transformers are ubiquitous in Natural Language Processing (NLP) tasks, but they are difficult to be deployed on hardware due to the intensive computation. To enable low-latency inference on resource-constrained hardware platforms, we propose to design Hardware-Aware Transformers (HAT) with neural architecture search. We first construct a large design space with arbitrary encoder-decoder attention and heterogeneous layers. Then we train a SuperTransformer that covers all candidates in the design space, and efficiently produces many SubTransformers with weight sharing. Finally, we perform an evolutionary search with a hardware latency constraint to find a specialized SubTransformer dedicated to run fast on the target hardware. Extensive experiments on four machine translation tasks demonstrate that HAT can discover efficient models for different hardware (CPU, GPU, IoT device). When running WMT'14 translation task on Raspberry Pi-4, HAT can achieve 3times speedup, 3.7times smaller size over baseline Transformer; 2.7times speedup, 3.6times smaller size over Evolved Transformer with 12,041times less search cost and no performance loss. HAT code is https://github.com/mit-han-lab/hardware-aware-transformers.git
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
Guided image synthesis enables everyday users to create and edit photo-realistic images with minimum effort. The key challenge is balancing faithfulness to the user input (e.g., hand-drawn colored strokes) and realism of the synthesized image. Existing GAN-based methods attempt to achieve such balance using either conditional GANs or GAN inversions, which are challenging and often require additional training data or loss functions for individual applications. To address these issues, we introduce a new image synthesis and editing method, Stochastic Differential Editing (SDEdit), based on a diffusion model generative prior, which synthesizes realistic images by iteratively denoising through a stochastic differential equation (SDE). Given an input image with user guide of any type, SDEdit first adds noise to the input, then subsequently denoises the resulting image through the SDE prior to increase its realism. SDEdit does not require task-specific training or inversions and can naturally achieve the balance between realism and faithfulness. SDEdit significantly outperforms state-of-the-art GAN-based methods by up to 98.09% on realism and 91.72% on overall satisfaction scores, according to a human perception study, on multiple tasks, including stroke-based image synthesis and editing as well as image compositing.
TrustMark: Universal Watermarking for Arbitrary Resolution Images
Imperceptible digital watermarking is important in copyright protection, misinformation prevention, and responsible generative AI. We propose TrustMark - a GAN-based watermarking method with novel design in architecture and spatio-spectra losses to balance the trade-off between watermarked image quality with the watermark recovery accuracy. Our model is trained with robustness in mind, withstanding various in- and out-place perturbations on the encoded image. Additionally, we introduce TrustMark-RM - a watermark remover method useful for re-watermarking. Our methods achieve state-of-art performance on 3 benchmarks comprising arbitrary resolution images.
Towards Realistic Ultrasound Fetal Brain Imaging Synthesis
Prenatal ultrasound imaging is the first-choice modality to assess fetal health. Medical image datasets for AI and ML methods must be diverse (i.e. diagnoses, diseases, pathologies, scanners, demographics, etc), however there are few public ultrasound fetal imaging datasets due to insufficient amounts of clinical data, patient privacy, rare occurrence of abnormalities in general practice, and limited experts for data collection and validation. To address such data scarcity, we proposed generative adversarial networks (GAN)-based models, diffusion-super-resolution-GAN and transformer-based-GAN, to synthesise images of fetal ultrasound brain planes from one public dataset. We reported that GAN-based methods can generate 256x256 pixel size of fetal ultrasound trans-cerebellum brain image plane with stable training losses, resulting in lower FID values for diffusion-super-resolution-GAN (average 7.04 and lower FID 5.09 at epoch 10) than the FID values of transformer-based-GAN (average 36.02 and lower 28.93 at epoch 60). The results of this work illustrate the potential of GAN-based methods to synthesise realistic high-resolution ultrasound images, leading to future work with other fetal brain planes, anatomies, devices and the need of a pool of experts to evaluate synthesised images. Code, data and other resources to reproduce this work are available at https://github.com/budai4medtech/midl2023.
Mechanisms of Generative Image-to-Image Translation Networks
Generative Adversarial Networks (GANs) are a class of neural networks that have been widely used in the field of image-to-image translation. In this paper, we propose a streamlined image-to-image translation network with a simpler architecture compared to existing models. We investigate the relationship between GANs and autoencoders and provide an explanation for the efficacy of employing only the GAN component for tasks involving image translation. We show that adversarial for GAN models yields results comparable to those of existing methods without additional complex loss penalties. Subsequently, we elucidate the rationale behind this phenomenon. We also incorporate experimental results to demonstrate the validity of our findings.
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism
Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis".
BGGAN: Bokeh-Glass Generative Adversarial Network for Rendering Realistic Bokeh
A photo captured with bokeh effect often means objects in focus are sharp while the out-of-focus areas are all blurred. DSLR can easily render this kind of effect naturally. However, due to the limitation of sensors, smartphones cannot capture images with depth-of-field effects directly. In this paper, we propose a novel generator called Glass-Net, which generates bokeh images not relying on complex hardware. Meanwhile, the GAN-based method and perceptual loss are combined for rendering a realistic bokeh effect in the stage of finetuning the model. Moreover, Instance Normalization(IN) is reimplemented in our network, which ensures our tflite model with IN can be accelerated on smartphone GPU. Experiments show that our method is able to render a high-quality bokeh effect and process one 1024 times 1536 pixel image in 1.9 seconds on all smartphone chipsets. This approach ranked First in AIM 2020 Rendering Realistic Bokeh Challenge Track 1 \& Track 2.
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
Training Generative Adversarial Networks with Limited Data
Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.
Feature Generating Networks for Zero-Shot Learning
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-the-art approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level semantic information, offering a shortcut directly from a semantic descriptor of a class to a class-conditional feature distribution. Our proposed approach, pairing a Wasserstein GAN with a classification loss, is able to generate sufficiently discriminative CNN features to train softmax classifiers or any multimodal embedding method. Our experimental results demonstrate a significant boost in accuracy over the state of the art on five challenging datasets -- CUB, FLO, SUN, AWA and ImageNet -- in both the zero-shot learning and generalized zero-shot learning settings.
Distilling Diffusion Models into Conditional GANs
We propose a method to distill a complex multistep diffusion model into a single-step conditional GAN student model, dramatically accelerating inference, while preserving image quality. Our approach interprets diffusion distillation as a paired image-to-image translation task, using noise-to-image pairs of the diffusion model's ODE trajectory. For efficient regression loss computation, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space, utilizing an ensemble of augmentations. Furthermore, we adapt a diffusion model to construct a multi-scale discriminator with a text alignment loss to build an effective conditional GAN-based formulation. E-LatentLPIPS converges more efficiently than many existing distillation methods, even accounting for dataset construction costs. We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models -- DMD, SDXL-Turbo, and SDXL-Lightning -- on the zero-shot COCO benchmark.
Reinforced Disentanglement for Face Swapping without Skip Connection
The SOTA face swap models still suffer the problem of either target identity (i.e., shape) being leaked or the target non-identity attributes (i.e., background, hair) failing to be fully preserved in the final results. We show that this insufficient disentanglement is caused by two flawed designs that were commonly adopted in prior models: (1) counting on only one compressed encoder to represent both the semantic-level non-identity facial attributes(i.e., pose) and the pixel-level non-facial region details, which is contradictory to satisfy at the same time; (2) highly relying on long skip-connections between the encoder and the final generator, leaking a certain amount of target face identity into the result. To fix them, we introduce a new face swap framework called 'WSC-swap' that gets rid of skip connections and uses two target encoders to respectively capture the pixel-level non-facial region attributes and the semantic non-identity attributes in the face region. To further reinforce the disentanglement learning for the target encoder, we employ both identity removal loss via adversarial training (i.e., GAN) and the non-identity preservation loss via prior 3DMM models like [11]. Extensive experiments on both FaceForensics++ and CelebA-HQ show that our results significantly outperform previous works on a rich set of metrics, including one novel metric for measuring identity consistency that was completely neglected before.
Detecting Overfitting of Deep Generative Networks via Latent Recovery
State of the art deep generative networks are capable of producing images with such incredible realism that they can be suspected of memorizing training images. It is why it is not uncommon to include visualizations of training set nearest neighbors, to suggest generated images are not simply memorized. We demonstrate this is not sufficient and motivates the need to study memorization/overfitting of deep generators with more scrutiny. This paper addresses this question by i) showing how simple losses are highly effective at reconstructing images for deep generators ii) analyzing the statistics of reconstruction errors when reconstructing training and validation images, which is the standard way to analyze overfitting in machine learning. Using this methodology, this paper shows that overfitting is not detectable in the pure GAN models proposed in the literature, in contrast with those using hybrid adversarial losses, which are amongst the most widely applied generative methods. The paper also shows that standard GAN evaluation metrics fail to capture memorization for some deep generators. Finally, the paper also shows how off-the-shelf GAN generators can be successfully applied to face inpainting and face super-resolution using the proposed reconstruction method, without hybrid adversarial losses.
Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration
Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.
GRAM-HD: 3D-Consistent Image Generation at High Resolution with Generative Radiance Manifolds
Recent works have shown that 3D-aware GANs trained on unstructured single image collections can generate multiview images of novel instances. The key underpinnings to achieve this are a 3D radiance field generator and a volume rendering process. However, existing methods either cannot generate high-resolution images (e.g., up to 256X256) due to the high computation cost of neural volume rendering, or rely on 2D CNNs for image-space upsampling which jeopardizes the 3D consistency across different views. This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering. Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency. We avoid the otherwise prohibitively-expensive computation cost by applying 2D convolutions on a set of 2D radiance manifolds defined in the recent generative radiance manifold (GRAM) approach, and apply dedicated loss functions for effective GAN training at high resolution. Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results that significantly outperform existing methods.