new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

OmniZoomer: Learning to Move and Zoom in on Sphere at High-Resolution

Omnidirectional images (ODIs) have become increasingly popular, as their large field-of-view (FoV) can offer viewers the chance to freely choose the view directions in immersive environments such as virtual reality. The M\"obius transformation is typically employed to further provide the opportunity for movement and zoom on ODIs, but applying it to the image level often results in blurry effect and aliasing problem. In this paper, we propose a novel deep learning-based approach, called OmniZoomer, to incorporate the M\"obius transformation into the network for movement and zoom on ODIs. By learning various transformed feature maps under different conditions, the network is enhanced to handle the increasing edge curvatures, which alleviates the blurry effect. Moreover, to address the aliasing problem, we propose two key components. Firstly, to compensate for the lack of pixels for describing curves, we enhance the feature maps in the high-resolution (HR) space and calculate the transformed index map with a spatial index generation module. Secondly, considering that ODIs are inherently represented in the spherical space, we propose a spherical resampling module that combines the index map and HR feature maps to transform the feature maps for better spherical correlation. The transformed feature maps are decoded to output a zoomed ODI. Experiments show that our method can produce HR and high-quality ODIs with the flexibility to move and zoom in to the object of interest. Project page is available at http://vlislab22.github.io/OmniZoomer/.

Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region

In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.

Lie Group Decompositions for Equivariant Neural Networks

Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.

A noncommutative Bianchi I model with radiation

In the present work, we study the dynamical evolution of an homogeneous and anisotropic, noncommutative (NC) Bianchi I (BI) model coupled to a radiation perfect fluid. Our first motivation is determining if the present model tends to an homogeneous and isotropic NC Friedmann-Robertson-Walker (FRW) model, during its evolution. In order to simplify our task, we use the Misner parametrization of the BI metric. In terms of that parametrization the BI metric has three metric functions: the scale factor a(t) and the two parameters beta_pm (t), which measure the spatial anisotropy of the model. Our second motivation is trying to describe the present accelerated expansion of the universe using noncommutativity (NCTY). The NCTY is introduced by two nontrivial Poisson brackets between some geometrical as well as matter variables of the model. We recover the description in terms of commutative variables by introducing some variables transformations that depend on the NC parameter. Using those variables transformations, we rewrite the total NC Hamiltonian of the model in terms of commutative variables. From the resulting Hamiltonian, we obtain the dynamical equations for a generic perfect fluid. In order to solve these equations, we restrict our attention to a model where the perfect fluid is radiation. We solve, numerically, these equations and compare the NC solutions to the corresponding commutative ones. The comparison shows that the NC model may be considered as a possible candidate for describing the accelerated expansion of the universe. Finally, we obtain estimates for the NC parameter and compare the main results of the NC BI model coupled to radiation with the same NC BI model coupled to other perfect fluids. As our main result, we show that the solutions, after some time, produce an isotropic universe.