new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

The Mira-Titan Universe IV. High Precision Power Spectrum Emulation

Modern cosmological surveys are delivering datasets characterized by unprecedented quality and statistical completeness; this trend is expected to continue into the future as new ground- and space-based surveys come online. In order to maximally extract cosmological information from these observations, matching theoretical predictions are needed. At low redshifts, the surveys probe the nonlinear regime of structure formation where cosmological simulations are the primary means of obtaining the required information. The computational cost of sufficiently resolved large-volume simulations makes it prohibitive to run very large ensembles. Nevertheless, precision emulators built on a tractable number of high-quality simulations can be used to build very fast prediction schemes to enable a variety of cosmological inference studies. We have recently introduced the Mira-Titan Universe simulation suite designed to construct emulators for a range of cosmological probes. The suite covers the standard six cosmological parameters {omega_m,omega_b, sigma_8, h, n_s, w_0} and, in addition, includes massive neutrinos and a dynamical dark energy equation of state, {omega_{nu}, w_a}. In this paper we present the final emulator for the matter power spectrum based on 111 cosmological simulations, each covering a (2.1Gpc)^3 volume and evolving 3200^3 particles. An additional set of 1776 lower-resolution simulations and TimeRG perturbation theory results for the power spectrum are used to cover scales straddling the linear to mildly nonlinear regimes. The emulator provides predictions at the two to three percent level of accuracy over a wide range of cosmological parameters and is publicly released as part of this paper.

Inflationary Attractors Predictions for Static Neutron Stars in the Mass-Gap Region

In this work we study static neutron stars in the context of several inflationary models which are popular in cosmology. These inflationary models are non-minimally coupled scalar theories which yield a viable inflationary phenomenology in both Jordan and Einstein frames. By considering the constraints from inflationary theories, which basically determine the values of the potential strength, usually considered as a free parameter in astrophysical neutron star works, we construct and solve the Tolman-Oppenheimer-Volkoff equations using a solid python-3 LSODA integrator. For our study we consider several popular inflationary models, such as the universal attractors, the R^p attractors (three distinct model values), the induced inflation, the quadratic inflation, the Higgs inflation and the a-attractors (two distinct model values) and for the following popular equations of state the WFF1, the SLy, the APR, the MS1, the AP3, the AP4, the ENG, the MPA1 and the MS1b. We construct the M-R diagram and we confront the resulting theory with theoretical and observational constraints. As we demonstrate, remarkably, all the neutron stars produced by all the inflationary models we considered are compatible with all the constraints for the MPA1 equation of state. It is notable that for this particular equation of state, the maximum masses of the neutron stars are in the mass-gap region with M>2.5M_{odot}, but lower than the 3 solar masses causal limit. We also make the observation that as the NICER constraints are pushed towards larger radii, as for example in the case of the black widow pulsar PSR J0952-0607, it seems that equations of state that produce neutron stars with maximum masses in the mass gap region, with M>2.5M_{odot}, but lower than the 3 solar masses causal limit, are favored and are compatible with the modified NICER constraints.

The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope

Measurements of the dark energy equation-of-state parameter, w, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-z and high-z data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-z Hubble residuals by 0.046 pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=-0.938 pm 0.053, consistent with LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=-0.933pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-z samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.

Mass-Radius Relationships for Solid Exoplanets

We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.

Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls

Neural network (NN) potentials promise highly accurate molecular dynamics (MD) simulations within the computational complexity of classical MD force fields. However, when applied outside their training domain, NN potential predictions can be inaccurate, increasing the need for Uncertainty Quantification (UQ). Bayesian modeling provides the mathematical framework for UQ, but classical Bayesian methods based on Markov chain Monte Carlo (MCMC) are computationally intractable for NN potentials. By training graph NN potentials for coarse-grained systems of liquid water and alanine dipeptide, we demonstrate here that scalable Bayesian UQ via stochastic gradient MCMC (SG-MCMC) yields reliable uncertainty estimates for MD observables. We show that cold posteriors can reduce the required training data size and that for reliable UQ, multiple Markov chains are needed. Additionally, we find that SG-MCMC and the Deep Ensemble method achieve comparable results, despite shorter training and less hyperparameter tuning of the latter. We show that both methods can capture aleatoric and epistemic uncertainty reliably, but not systematic uncertainty, which needs to be minimized by adequate modeling to obtain accurate credible intervals for MD observables. Our results represent a step towards accurate UQ that is of vital importance for trustworthy NN potential-based MD simulations required for decision-making in practice.

Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material

In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.

Channels of Stellar-mass Black Hole Formation

On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.

Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap

TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.

Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System

Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures.

Massive neutrinos and cosmic composition

Cosmological data probe massive neutrinos via their effects on the geometry of the Universe and the growth of structure, both of which are degenerate with the late-time expansion history. We clarify the nature of these degeneracies and the individual roles of both probes in neutrino mass inference. Geometry is strongly sensitive to neutrino masses: within LambdaCDM, the primary cosmic microwave background anisotropies alone impose that the matter fraction Omega_m must increase fivefold with increasing neutrino mass. Moreover, large-scale structure observables, like weak lensing of the CMB, are dimensionless and thus depend not on the matter density (as often quoted) but in fact the matter fraction. We explore the consequential impact of this distinction on the interplay between probes of structure, low-redshift distances, and CMB anisotropies. We derive constraints on the neutrino's masses independently from their suppression of structure and impact on geometry, showing that the latter is at least as important as the former. While the Dark Energy Spectroscopic Instrument's recent baryon acoustic oscillation data place stringent bounds largely deriving from their geometric incompatibility with massive neutrinos, all recent type Ia supernova datasets drive marginal preferences for nonzero neutrino masses because they prefer substantially larger matter fractions. Recent CMB lensing data, however, neither exclude neutrinos' suppression of structure nor constrain it strongly enough to discriminate between mass hierarchies. Current data thus evince not a need for modified dynamics of neutrino perturbations or structure growth but rather an inconsistent compatibility with massive neutrinos' impact on the expansion history. We identify two of DESI's measurements that strongly influence its constraints, and we also discuss neutrino mass measurements in models that alter the sound horizon.

A noncommutative Bianchi I model with radiation

In the present work, we study the dynamical evolution of an homogeneous and anisotropic, noncommutative (NC) Bianchi I (BI) model coupled to a radiation perfect fluid. Our first motivation is determining if the present model tends to an homogeneous and isotropic NC Friedmann-Robertson-Walker (FRW) model, during its evolution. In order to simplify our task, we use the Misner parametrization of the BI metric. In terms of that parametrization the BI metric has three metric functions: the scale factor a(t) and the two parameters beta_pm (t), which measure the spatial anisotropy of the model. Our second motivation is trying to describe the present accelerated expansion of the universe using noncommutativity (NCTY). The NCTY is introduced by two nontrivial Poisson brackets between some geometrical as well as matter variables of the model. We recover the description in terms of commutative variables by introducing some variables transformations that depend on the NC parameter. Using those variables transformations, we rewrite the total NC Hamiltonian of the model in terms of commutative variables. From the resulting Hamiltonian, we obtain the dynamical equations for a generic perfect fluid. In order to solve these equations, we restrict our attention to a model where the perfect fluid is radiation. We solve, numerically, these equations and compare the NC solutions to the corresponding commutative ones. The comparison shows that the NC model may be considered as a possible candidate for describing the accelerated expansion of the universe. Finally, we obtain estimates for the NC parameter and compare the main results of the NC BI model coupled to radiation with the same NC BI model coupled to other perfect fluids. As our main result, we show that the solutions, after some time, produce an isotropic universe.

Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB

We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.

NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition

Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the function space, must resolve the smallest scaled physics to ensure the accuracy and stability of the simulation, resulting in high computational costs from large input, output, and neural networks. This paper proposes a general acceleration methodology called NeuralStagger by spatially and temporally decomposing the original learning tasks into several coarser-resolution subtasks. We define a coarse-resolution neural solver for each subtask, which requires fewer computational resources, and jointly train them with the vanilla physics-constrained loss by simply arranging their outputs to reconstruct the original solution. Due to the perfect parallelism between them, the solution is achieved as fast as a coarse-resolution neural solver. In addition, the trained solvers bring the flexibility of simulating with multiple levels of resolution. We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations, which leads to an additional 10sim100times speed-up. Moreover, the experiment also shows that the learned model could be well used for optimal control.

Conditions for radiative zones in the molecular hydrogen envelope of Jupiter and Saturn: The role of alkali metals

Interior models of gas giants in the Solar System traditionally assume a fully convective molecular hydrogen envelope. However, recent observations from the Juno mission suggest a possible depletion of alkali metals in Jupiter's molecular hydrogen envelope, indicating that a stable radiative layer could exist at the kilobar level. Recent studies propose that deep stable layers help reconcile various Jupiter observations, including its atmospheric water and CO abundances and the depth of its zonal winds. However, opacity tables used to infer stable layers are often outdated and incomplete, leaving the precise molecular hydrogen envelope composition required for a deep radiative zone uncertain. In this paper, we determine atmospheric compositions that can lead to the formation of a radiative zone at the kilobar level in Jupiter and Saturn today. We computed radiative opacity tables covering pressures up to 10^5 bar, including the most abundant molecules present in the gas giants of the Solar System, as well as contributions from free electrons, metal hydrides, oxides, and atomic species, using the most up-to-date line lists published in the literature. These tables were used to calculate Rosseland-mean opacities for the molecular hydrogen envelopes of Jupiter and Saturn, which were then compared to the critical mean opacity required to maintain convection. We find that the presence of a radiative zone is controlled by the existence of K, Na, and NaH in the atmosphere of Jupiter and Saturn. For Jupiter, the elemental abundance of K and Na must be less than sim 10^{-3} times solar to form a radiative zone. In contrast, for Saturn, the required abundance for K and Na is below sim 10^{-4} times solar.

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

The JWST EXCELS survey: direct estimates of C, N, and O abundances in two relatively metal-rich galaxies at zsimeq5

We present a spectroscopic analysis of two star-forming galaxies at z~5 observed with JWST/NIRSpec as part of the Early eXtragalactic Continuum and Emission Line Science (EXCELS) survey. The detection of the C III]lambdalambda1906,09, [O II]lambdalambda3726,29, [O III]lambdalambda4363,5007, and [N II]lambda6584 nebular emission lines enables investigation of the C/O, N/O, and C/N abundance ratios using the temperature-sensitive method. The two galaxies have stellar masses of log(M_{star}/M_{odot} ) = 8.13pm0.09 and log(M_{star}/M_{odot} )=8.52pm0.13 and corresponding metallicities of Z~0.2Z_{odot} and Z~0.3Z_{odot}. These metallicities are somewhat higher than is typical for other z>5 galaxies with similar stellar mass and are in fact comparable to high-redshift analogue galaxies at z~0. Both galaxies display evidence for N/O enhancement with respect to the z~0 sample, with log(N/O)=-1.07pm0.17 and log(N/O)=-0.86pm0.15 respectively. In contrast, we find low C abundances, with log(C/O)=-0.82pm0.22 and log(C/O)=-1.02pm0.22, consistent with the predicted yields of core-collapse supernovae. Following the trend observed in other high-redshift sources, we find that the C/N ratios are lower at fixed O/H compared to the majority of local galaxies. In contrast to the top-heavy IMF invoked in some studies to explain low C/N ratios in metal-poor galaxies, we find, via comparison to chemical evolution models, that a standard or bottom-heavy IMF better explains the observed abundance ratios in more enriched systems due to an increase in N-enrichment from intermediate mass (4-7M_{odot}) stars. Our results demonstrate that robust measurements of CNO abundances with JWST can reveal unique enrichment pathways in galaxies as a function of both metallicity and redshift.

Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows

Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new Spatiotemporal Fourier Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues. This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed architecture initiates the training with a few epochs for SFNO, concluding with the freezing of most model parameters. Then, the last linear spectral convolution layer is fine-tuned without the frequency truncation. The optimization uses a negative Sobolev norm for the first time as the loss in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is almost exact thanks to the Parseval identity. This design allows the neural operators to effectively tackle low-frequency errors while the relief of the de-aliasing filter addresses high-frequency errors. Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.