- Reactor Mk.1 performances: MMLU, HumanEval and BBH test results The paper presents the performance results of Reactor Mk.1, ARCs flagship large language model, through a benchmarking process analysis. The model utilizes the Lychee AI engine and possesses less than 100 billion parameters, resulting in a combination of efficiency and potency. The Reactor Mk.1 outperformed models such as GPT-4o, Claude Opus, and Llama 3, with achieved scores of 92% on the MMLU dataset, 91% on HumanEval dataset, and 88% on BBH dataset. It excels in both managing difficult jobs and reasoning, establishing as a prominent AI solution in the present cutting-edge AI technology. 2 authors · Jun 15, 2024
- Multiphysics Continuous Shape Optimization of the TAP Reactor Components The Transatomic Power (TAP) reactor has an unusual design for a molten salt reactor technology, building upon the foundation laid by the Molten Salt Reactor Experiment (MSRE). This design introduces three key modifications to enhance efficiency and compactness: a revised fuel salt composition, an alternative moderator material, and moderator pins surrounded by the molten salt fuel. Unlike traditional solid-fueled reactors that rely on excess positive reactivity at the beginning of life, the TAP concept employs a dynamic approach. The core's design, featuring a cylindrical geometry with square assemblies of moderator rods surrounded by flowing fuel salt, provides flexibility in adjusting the moderator-to-fuel ratio during operation - using movable moderator rods - further adding criticality control capability in addition to the control rods system. Shape optimization of the core can play a crucial role in enhancing performance and efficiency. By applying multiphysics continuous shape optimization techniques to key components, such as the unit cells of the TAP reactor or its moderator assemblies, we can fine-tune the reactor's geometry to achieve optimal performance in key physics like neutronics and thermal hydraulics. We explore this aspect using the optimization module in the Multiphysics Object Oriented Simulation Environment (MOOSE) framework which allows for multiphysics continuous shape optimization. The results reported here illustrate the benefits of applying continuous shape optimization in the design of nuclear reactor components and can help in extending the TAP reactor's performance. 3 authors · Feb 2