Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSoccer on Social Media
In the era of digitalization, social media has become an integral part of our lives, serving as a significant hub for individuals and businesses to share information, communicate, and engage. This is also the case for professional sports, where leagues, clubs and players are using social media to reach out to their fans. In this respect, a huge amount of time is spent curating multimedia content for various social media platforms and their target users. With the emergence of Artificial Intelligence (AI), AI-based tools for automating content generation and enhancing user experiences on social media have become widely popular. However, to effectively utilize such tools, it is imperative to comprehend the demographics and preferences of users on different platforms, understand how content providers post information in these channels, and how different types of multimedia are consumed by audiences. This report presents an analysis of social media platforms, in terms of demographics, supported multimedia modalities, and distinct features and specifications for different modalities, followed by a comparative case study of select European soccer leagues and teams, in terms of their social media practices. Through this analysis, we demonstrate that social media, while being very important for and widely used by supporters from all ages, also requires a fine-tuned effort on the part of soccer professionals, in order to elevate fan experiences and foster engagement.
Soccer on Your Tabletop
We present a system that transforms a monocular video of a soccer game into a moving 3D reconstruction, in which the players and field can be rendered interactively with a 3D viewer or through an Augmented Reality device. At the heart of our paper is an approach to estimate the depth map of each player, using a CNN that is trained on 3D player data extracted from soccer video games. We compare with state of the art body pose and depth estimation techniques, and show results on both synthetic ground truth benchmarks, and real YouTube soccer footage.
SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset
The application of Automatic Speech Recognition (ASR) technology in soccer offers numerous opportunities for sports analytics. Specifically, extracting audio commentaries with ASR provides valuable insights into the events of the game, and opens the door to several downstream applications such as automatic highlight generation. This paper presents SoccerNet-Echoes, an augmentation of the SoccerNet dataset with automatically generated transcriptions of audio commentaries from soccer game broadcasts, enhancing video content with rich layers of textual information derived from the game audio using ASR. These textual commentaries, generated using the Whisper model and translated with Google Translate, extend the usefulness of the SoccerNet dataset in diverse applications such as enhanced action spotting, automatic caption generation, and game summarization. By incorporating textual data alongside visual and auditory content, SoccerNet-Echoes aims to serve as a comprehensive resource for the development of algorithms specialized in capturing the dynamics of soccer games. We detail the methods involved in the curation of this dataset and the integration of ASR. We also highlight the implications of a multimodal approach in sports analytics, and how the enriched dataset can support diverse applications, thus broadening the scope of research and development in the field of sports analytics.
SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper introduces SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.
SoccerNet 2023 Challenges Results
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos
Tracking objects in soccer videos is extremely important to gather both player and team statistics, whether it is to estimate the total distance run, the ball possession or the team formation. Video processing can help automating the extraction of those information, without the need of any invasive sensor, hence applicable to any team on any stadium. Yet, the availability of datasets to train learnable models and benchmarks to evaluate methods on a common testbed is very limited. In this work, we propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each, representative of challenging soccer scenarios, and a complete 45-minutes half-time for long-term tracking. The dataset is fully annotated with bounding boxes and tracklet IDs, enabling the training of MOT baselines in the soccer domain and a full benchmarking of those methods on our segregated challenge sets. Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved, with several improvement required in case of fast motion or in scenarios of severe occlusion.
SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos
Understanding broadcast videos is a challenging task in computer vision, as it requires generic reasoning capabilities to appreciate the content offered by the video editing. In this work, we propose SoccerNet-v2, a novel large-scale corpus of manual annotations for the SoccerNet video dataset, along with open challenges to encourage more research in soccer understanding and broadcast production. Specifically, we release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos. We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection, and we define a novel replay grounding task. For each task, we provide and discuss benchmark results, reproducible with our open-source adapted implementations of the most relevant works in the field. SoccerNet-v2 is presented to the broader research community to help push computer vision closer to automatic solutions for more general video understanding and production purposes.
SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
SoccerNet 2022 Challenges Results
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet.
Demo: Soccer Information Retrieval via Natural Queries using SoccerRAG
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper demonstrates SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. We present a novel interactive user interface (UI) based on the Chainlit framework which wraps around the core functionality, and enable users to interact with the SoccerRAG framework in a chatbot-like visual manner.
Player Pressure Map -- A Novel Representation of Pressure in Soccer for Evaluating Player Performance in Different Game Contexts
In soccer, contextual player performance metrics are invaluable to coaches. For example, the ability to perform under pressure during matches distinguishes the elite from the average. Appropriate pressure metric enables teams to assess players' performance accurately under pressure and design targeted training scenarios to address their weaknesses. The primary objective of this paper is to leverage both tracking and event data and game footage to capture the pressure experienced by the possession team in a soccer game scene. We propose a player pressure map to represent a given game scene, which lowers the dimension of raw data and still contains rich contextual information. Not only does it serve as an effective tool for visualizing and evaluating the pressure on the team and each individual, but it can also be utilized as a backbone for accessing players' performance. Overall, our model provides coaches and analysts with a deeper understanding of players' performance under pressure so that they make data-oriented tactical decisions.
Dynamic NeRFs for Soccer Scenes
The long-standing problem of novel view synthesis has many applications, notably in sports broadcasting. Photorealistic novel view synthesis of soccer actions, in particular, is of enormous interest to the broadcast industry. Yet only a few industrial solutions have been proposed, and even fewer that achieve near-broadcast quality of the synthetic replays. Except for their setup of multiple static cameras around the playfield, the best proprietary systems disclose close to no information about their inner workings. Leveraging multiple static cameras for such a task indeed presents a challenge rarely tackled in the literature, for a lack of public datasets: the reconstruction of a large-scale, mostly static environment, with small, fast-moving elements. Recently, the emergence of neural radiance fields has induced stunning progress in many novel view synthesis applications, leveraging deep learning principles to produce photorealistic results in the most challenging settings. In this work, we investigate the feasibility of basing a solution to the task on dynamic NeRFs, i.e., neural models purposed to reconstruct general dynamic content. We compose synthetic soccer environments and conduct multiple experiments using them, identifying key components that help reconstruct soccer scenes with dynamic NeRFs. We show that, although this approach cannot fully meet the quality requirements for the target application, it suggests promising avenues toward a cost-efficient, automatic solution. We also make our work dataset and code publicly available, with the goal to encourage further efforts from the research community on the task of novel view synthesis for dynamic soccer scenes. For code, data, and video results, please see https://soccernerfs.isach.be.
Towards Universal Soccer Video Understanding
As a globally celebrated sport, soccer has attracted widespread interest from fans all over the world. This paper aims to develop a comprehensive multi-modal framework for soccer video understanding. Specifically, we make the following contributions in this paper: (i) we introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1,988 complete matches, with an automated annotation pipeline; (ii) we present the first visual-language foundation model in the soccer domain, MatchVision, which leverages spatiotemporal information across soccer videos and excels in various downstream tasks; (iii) we conduct extensive experiments and ablation studies on event classification, commentary generation, and multi-view foul recognition. MatchVision demonstrates state-of-the-art performance on all of them, substantially outperforming existing models, which highlights the superiority of our proposed data and model. We believe that this work will offer a standard paradigm for sports understanding research.
Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning
We apply multi-agent deep reinforcement learning (RL) to train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision. This setting reflects many challenges of real-world robotics, including active perception, agile full-body control, and long-horizon planning in a dynamic, partially-observable, multi-agent domain. We rely on large-scale, simulation-based data generation to obtain complex behaviors from egocentric vision which can be successfully transferred to physical robots using low-cost sensors. To achieve adequate visual realism, our simulation combines rigid-body physics with learned, realistic rendering via multiple Neural Radiance Fields (NeRFs). We combine teacher-based multi-agent RL and cross-experiment data reuse to enable the discovery of sophisticated soccer strategies. We analyze active-perception behaviors including object tracking and ball seeking that emerge when simply optimizing perception-agnostic soccer play. The agents display equivalent levels of performance and agility as policies with access to privileged, ground-truth state. To our knowledge, this paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer, mapping raw pixel observations to joint-level actions, that can be deployed in the real world. Videos of the game-play and analyses can be seen on our website https://sites.google.com/view/vision-soccer .
Forecasting Events in Soccer Matches Through Language
This paper introduces an approach to predicting the next event in a soccer match, a challenge bearing remarkable similarities to the problem faced by Large Language Models (LLMs). Unlike other methods that severely limit event dynamics in soccer, often abstracting from many variables or relying on a mix of sequential models, our research proposes a novel technique inspired by the methodologies used in LLMs. These models predict a complete chain of variables that compose an event, significantly simplifying the construction of Large Event Models (LEMs) for soccer. Utilizing deep learning on the publicly available WyScout dataset, the proposed approach notably surpasses the performance of previous LEM proposals in critical areas, such as the prediction accuracy of the next event type. This paper highlights the utility of LEMs in various applications, including betting and match analytics. Moreover, we show that LEMs provide a simulation backbone on which many analytics pipelines can be built, an approach opposite to the current specialized single-purpose models. LEMs represent a pivotal advancement in soccer analytics, establishing a foundational framework for multifaceted analytics pipelines through a singular machine-learning model.
Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study
Extracting meaningful insights from large and complex datasets poses significant challenges, particularly in ensuring the accuracy and relevance of retrieved information. Traditional data retrieval methods such as sequential search and index-based retrieval often fail when handling intricate and interconnected data structures, resulting in incomplete or misleading outputs. To overcome these limitations, we introduce Structured-GraphRAG, a versatile framework designed to enhance information retrieval across structured datasets in natural language queries. Structured-GraphRAG utilizes multiple knowledge graphs, which represent data in a structured format and capture complex relationships between entities, enabling a more nuanced and comprehensive retrieval of information. This graph-based approach reduces the risk of errors in language model outputs by grounding responses in a structured format, thereby enhancing the reliability of results. We demonstrate the effectiveness of Structured-GraphRAG by comparing its performance with that of a recently published method using traditional retrieval-augmented generation. Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times. While our case study focuses on soccer data, the framework's design is broadly applicable, offering a powerful tool for data analysis and enhancing language model applications across various structured domains.
Temporal dynamics of goal scoring in soccer
We investigated the temporal distribution of goals in soccer using event-level data from 3,433 matches across 21 leagues and competitions. Contrary to the prevailing notion of randomness, we found that the probability of a goal being scored is higher as matches progress, and we observed fewer-than-expected goals in the early minutes of each half. Further analysis of the time between subsequent goals shows an exponential decay, indicating that most goals naturally cluster closer together in time. By splitting this distribution by the team that scores the next goal, we observe bursty goal-scoring dynamics, wherein the same team is more likely to score again shortly after its previous goal. These findings highlight the importance of match context (whether driven by fatigue, tactical adaptations, or psychological momentum) in shaping when teams are able to score. Moreover, the results open avenues for extending data-driven methods for identifying high-impact moments in a match and refining strategic decision-making in soccer's evolving analytical landscape.
Temporally Precise Action Spotting in Soccer Videos Using Dense Detection Anchors
We present a model for temporally precise action spotting in videos, which uses a dense set of detection anchors, predicting a detection confidence and corresponding fine-grained temporal displacement for each anchor. We experiment with two trunk architectures, both of which are able to incorporate large temporal contexts while preserving the smaller-scale features required for precise localization: a one-dimensional version of a u-net, and a Transformer encoder (TE). We also suggest best practices for training models of this kind, by applying Sharpness-Aware Minimization (SAM) and mixup data augmentation. We achieve a new state-of-the-art on SoccerNet-v2, the largest soccer video dataset of its kind, with marked improvements in temporal localization. Additionally, our ablations show: the importance of predicting the temporal displacements; the trade-offs between the u-net and TE trunks; and the benefits of training with SAM and mixup.
GOAL: A Challenging Knowledge-grounded Video Captioning Benchmark for Real-time Soccer Commentary Generation
Despite the recent emergence of video captioning models, how to generate vivid, fine-grained video descriptions based on the background knowledge (i.e., long and informative commentary about the domain-specific scenes with appropriate reasoning) is still far from being solved, which however has great applications such as automatic sports narrative. In this paper, we present GOAL, a benchmark of over 8.9k soccer video clips, 22k sentences, and 42k knowledge triples for proposing a challenging new task setting as Knowledge-grounded Video Captioning (KGVC). Moreover, we conduct experimental adaption of existing methods to show the difficulty and potential directions for solving this valuable and applicable task. Our data and code are available at https://github.com/THU-KEG/goal.
Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting
In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.
Action Spotting using Dense Detection Anchors Revisited: Submission to the SoccerNet Challenge 2022
This brief technical report describes our submission to the Action Spotting SoccerNet Challenge 2022. The challenge was part of the CVPR 2022 ActivityNet Workshop. Our submission was based on a recently proposed method which focuses on increasing temporal precision via a densely sampled set of detection anchors. Due to its emphasis on temporal precision, this approach had shown significant improvements in the tight average-mAP metric. Tight average-mAP was used as the evaluation criterion for the challenge, and is defined using small temporal evaluation tolerances, thus being more sensitive to small temporal errors. In order to further improve results, here we introduce small changes in the pre- and post-processing steps, and also combine different input feature types via late fusion. These changes brought improvements that helped us achieve the first place in the challenge and also led to a new state-of-the-art on SoccerNet's test set when using the dataset's standard experimental protocol. This report briefly reviews the action spotting method based on dense detection anchors, then focuses on the modifications introduced for the challenge. We also describe the experimental protocols and training procedures we used, and finally present our results.