new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets

Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.

Class-dependent Compression of Deep Neural Networks

Today's deep neural networks require substantial computation resources for their training, storage, and inference, which limits their effective use on resource-constrained devices. Many recent research activities explore different options for compressing and optimizing deep models. On the one hand, in many real-world applications, we face the data imbalance challenge, i.e. when the number of labeled instances of one class considerably outweighs the number of labeled instances of the other class. On the other hand, applications may pose a class imbalance problem, i.e. higher number of false positives produced when training a model and optimizing its performance may be tolerable, yet the number of false negatives must stay low. The problem originates from the fact that some classes are more important for the application than others, e.g. detection problems in medical and surveillance domains. Motivated by the success of the lottery ticket hypothesis, in this paper we propose an iterative deep model compression technique, which keeps the number of false negatives of the compressed model close to the one of the original model at the price of increasing the number of false positives if necessary. Our experimental evaluation using two benchmark data sets shows that the resulting compressed sub-networks 1) achieve up to 35% lower number of false negatives than the compressed model without class optimization, 2) provide an overall higher AUC_ROC measure, and 3) use up to 99% fewer parameters compared to the original network.

Learning semantic sentence representations from visually grounded language without lexical knowledge

Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics.

Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising without Clean Images

Recently, there has been extensive research interest in training deep networks to denoise images without clean reference. However, the representative approaches such as Noise2Noise, Noise2Void, Stein's unbiased risk estimator (SURE), etc. seem to differ from one another and it is difficult to find the coherent mathematical structure. To address this, here we present a novel approach, called Noise2Score, which reveals a missing link in order to unite these seemingly different approaches. Specifically, we show that image denoising problems without clean images can be addressed by finding the mode of the posterior distribution and that the Tweedie's formula offers an explicit solution through the score function (i.e. the gradient of log likelihood). Our method then uses the recent finding that the score function can be stably estimated from the noisy images using the amortized residual denoising autoencoder, the method of which is closely related to Noise2Noise or Nose2Void. Our Noise2Score approach is so universal that the same network training can be used to remove noises from images that are corrupted by any exponential family distributions and noise parameters. Using extensive experiments with Gaussian, Poisson, and Gamma noises, we show that Noise2Score significantly outperforms the state-of-the-art self-supervised denoising methods in the benchmark data set such as (C)BSD68, Set12, and Kodak, etc.

TAME: Task Agnostic Continual Learning using Multiple Experts

The goal of lifelong learning is to continuously learn from non-stationary distributions, where the non-stationarity is typically imposed by a sequence of distinct tasks. Prior works have mostly considered idealistic settings, where the identity of tasks is known at least at training. In this paper we focus on a fundamentally harder, so-called task-agnostic setting where the task identities are not known and the learning machine needs to infer them from the observations. Our algorithm, which we call TAME (Task-Agnostic continual learning using Multiple Experts), automatically detects the shift in data distributions and switches between task expert networks in an online manner. At training, the strategy for switching between tasks hinges on an extremely simple observation that for each new coming task there occurs a statistically-significant deviation in the value of the loss function that marks the onset of this new task. At inference, the switching between experts is governed by the selector network that forwards the test sample to its relevant expert network. The selector network is trained on a small subset of data drawn uniformly at random. We control the growth of the task expert networks as well as selector network by employing online pruning. Our experimental results show the efficacy of our approach on benchmark continual learning data sets, outperforming the previous task-agnostic methods and even the techniques that admit task identities at both training and testing, while at the same time using a comparable model size.

A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation

Deep learning in computer vision has achieved great success with the price of large-scale labeled training data. However, exhaustive data annotation is impracticable for each task of all domains of interest, due to high labor costs and unguaranteed labeling accuracy. Besides, the uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist. All these nuisances may hinder the verification of typical theories and exposure to new findings. To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization. We in this work push forward along this line by doing profound and extensive research on bare supervised learning and downstream domain adaptation. Specifically, under the well-controlled, IID data setting enabled by 3D rendering, we systematically verify the typical, important learning insights, e.g., shortcut learning, and discover the new laws of various data regimes and network architectures in generalization. We further investigate the effect of image formation factors on generalization, e.g., object scale, material texture, illumination, camera viewpoint, and background in a 3D scene. Moreover, we use the simulation-to-reality adaptation as a downstream task for comparing the transferability between synthetic and real data when used for pre-training, which demonstrates that synthetic data pre-training is also promising to improve real test results. Lastly, to promote future research, we develop a new large-scale synthetic-to-real benchmark for image classification, termed S2RDA, which provides more significant challenges for transfer from simulation to reality. The code and datasets are available at https://github.com/huitangtang/On_the_Utility_of_Synthetic_Data.

A Benchmark for Math Misconceptions: Bridging Gaps in Middle School Algebra with AI-Supported Instruction

This study introduces an evaluation benchmark for middle school algebra to be used in artificial intelligence(AI) based educational platforms. The goal is to support the design of AI systems that can enhance learner conceptual understanding of algebra by taking into account their current level of algebra comprehension. The data set comprises 55 misconceptions about algebra, common errors, and 220 diagnostic examples identified in previous peer-reviewed studies. We provide an example application using a large language model, observing a range of precision and recall scores depending on the topic and experimental setup that reaches 83.9% when including educator feedback and restricting it by topic. We found that topics such as ratios and proportions prove as difficult for LLMs as they are for students. We included a human assessment of LLMs results and feedback from five middle school math educators on the clarity and occurrence of misconceptions in the dataset and the potential use of AI in conjunction with the dataset. Most educators (80% or more) indicated that they encounter these misconceptions among their students, suggesting the relevance of the data set to teaching middle school algebra. Despite varying familiarity with AI tools, four out of five educators expressed interest in using the data set with AI to diagnose student misconceptions or train teachers. The results emphasize the importance of topic-constrained testing, the need for multimodal approaches, and the relevance of human expertise to gain practical insights when using AI for human learning.

Targeted Image Data Augmentation Increases Basic Skills Captioning Robustness

Artificial neural networks typically struggle in generalizing to out-of-context examples. One reason for this limitation is caused by having datasets that incorporate only partial information regarding the potential correlational structure of the world. In this work, we propose TIDA (Targeted Image-editing Data Augmentation), a targeted data augmentation method focused on improving models' human-like abilities (e.g., gender recognition) by filling the correlational structure gap using a text-to-image generative model. More specifically, TIDA identifies specific skills in captions describing images (e.g., the presence of a specific gender in the image), changes the caption (e.g., "woman" to "man"), and then uses a text-to-image model to edit the image in order to match the novel caption (e.g., uniquely changing a woman to a man while maintaining the context identical). Based on the Flickr30K benchmark, we show that, compared with the original data set, a TIDA-enhanced dataset related to gender, color, and counting abilities induces better performance in several image captioning metrics. Furthermore, on top of relying on the classical BLEU metric, we conduct a fine-grained analysis of the improvements of our models against the baseline in different ways. We compared text-to-image generative models and found different behaviors of the image captioning models in terms of encoding visual encoding and textual decoding.

TabReD: A Benchmark of Tabular Machine Learning in-the-Wild

Benchmarks that closely reflect downstream application scenarios are essential for the streamlined adoption of new research in tabular machine learning (ML). In this work, we examine existing tabular benchmarks and find two common characteristics of industry-grade tabular data that are underrepresented in the datasets available to the academic community. First, tabular data often changes over time in real-world deployment scenarios. This impacts model performance and requires time-based train and test splits for correct model evaluation. Yet, existing academic tabular datasets often lack timestamp metadata to enable such evaluation. Second, a considerable portion of datasets in production settings stem from extensive data acquisition and feature engineering pipelines. For each specific dataset, this can have a different impact on the absolute and relative number of predictive, uninformative, and correlated features, which in turn can affect model selection. To fill the aforementioned gaps in academic benchmarks, we introduce TabReD -- a collection of eight industry-grade tabular datasets covering a wide range of domains from finance to food delivery services. We assess a large number of tabular ML models in the feature-rich, temporally-evolving data setting facilitated by TabReD. We demonstrate that evaluation on time-based data splits leads to different methods ranking, compared to evaluation on random splits more common in academic benchmarks. Furthermore, on the TabReD datasets, MLP-like architectures and GBDT show the best results, while more sophisticated DL models are yet to prove their effectiveness.

Training on the Benchmark Is Not All You Need

The success of Large Language Models (LLMs) relies heavily on the huge amount of pre-training data learned in the pre-training phase. The opacity of the pre-training process and the training data causes the results of many benchmark tests to become unreliable. If any model has been trained on a benchmark test set, it can seriously hinder the health of the field. In order to automate and efficiently test the capabilities of large language models, numerous mainstream benchmarks adopt a multiple-choice format. As the swapping of the contents of multiple-choice options does not affect the meaning of the question itself, we propose a simple and effective data leakage detection method based on this property. Specifically, we shuffle the contents of the options in the data to generate the corresponding derived data sets, and then detect data leakage based on the model's log probability distribution over the derived data sets. If there is a maximum and outlier in the set of log probabilities, it indicates that the data is leaked. Our method is able to work under black-box conditions without access to model training data or weights, effectively identifying data leakage from benchmark test sets in model pre-training data, including both normal scenarios and complex scenarios where options may have been shuffled intentionally or unintentionally. Through experiments based on two LLMs and benchmark designs, we demonstrate the effectiveness of our method. In addition, we evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets and give a ranking of the leaked LLMs for each benchmark, and we find that the Qwen family of LLMs has the highest degree of data leakage.

STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models

How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.

LLM-Assisted Content Analysis: Using Large Language Models to Support Deductive Coding

Deductive coding is a widely used qualitative research method for determining the prevalence of themes across documents. While useful, deductive coding is often burdensome and time consuming since it requires researchers to read, interpret, and reliably categorize a large body of unstructured text documents. Large language models (LLMs), like ChatGPT, are a class of quickly evolving AI tools that can perform a range of natural language processing and reasoning tasks. In this study, we explore the use of LLMs to reduce the time it takes for deductive coding while retaining the flexibility of a traditional content analysis. We outline the proposed approach, called LLM-assisted content analysis (LACA), along with an in-depth case study using GPT-3.5 for LACA on a publicly available deductive coding data set. Additionally, we conduct an empirical benchmark using LACA on 4 publicly available data sets to assess the broader question of how well GPT-3.5 performs across a range of deductive coding tasks. Overall, we find that GPT-3.5 can often perform deductive coding at levels of agreement comparable to human coders. Additionally, we demonstrate that LACA can help refine prompts for deductive coding, identify codes for which an LLM is randomly guessing, and help assess when to use LLMs vs. human coders for deductive coding. We conclude with several implications for future practice of deductive coding and related research methods.

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments

Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.

Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations

Weather forecasting is one of the cornerstones of meteorological work. In this paper, we present a new benchmark dataset named Weather2K, which aims to make up for the deficiencies of existing weather forecasting datasets in terms of real-time, reliability, and diversity, as well as the key bottleneck of data quality. To be specific, our Weather2K is featured from the following aspects: 1) Reliable and real-time data. The data is hourly collected from 2,130 ground weather stations covering an area of 6 million square kilometers. 2) Multivariate meteorological variables. 20 meteorological factors and 3 constants for position information are provided with a length of 40,896 time steps. 3) Applicable to diverse tasks. We conduct a set of baseline tests on time series forecasting and spatio-temporal forecasting. To the best of our knowledge, our Weather2K is the first attempt to tackle weather forecasting task by taking full advantage of the strengths of observation data from ground weather stations. Based on Weather2K, we further propose Meteorological Factors based Multi-Graph Convolution Network (MFMGCN), which can effectively construct the intrinsic correlation among geographic locations based on meteorological factors. Sufficient experiments show that MFMGCN improves both the forecasting performance and temporal robustness. We hope our Weather2K can significantly motivate researchers to develop efficient and accurate algorithms to advance the task of weather forecasting. The dataset can be available at https://github.com/bycnfz/weather2k/.

PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance

Although large language models (LLMs) has shown great performance on natural language processing (NLP) in the financial domain, there are no publicly available financial tailtored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 136K data samples to support the fine-tuning, and an evaluation benchmark with 5 tasks and 9 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including five financial NLP tasks and one financial prediction task. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.

SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words

Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at https://github.com/amphionspace/SD-Eval.

WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition

In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation protocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.

Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs

Graph neural networks are emerging as promising methods for modeling molecular graphs, in which nodes and edges correspond to atoms and chemical bonds, respectively. Recent studies show that when 3D molecular geometries, such as bond lengths and angles, are available, molecular property prediction tasks can be made more accurate. However, computing of 3D molecular geometries requires quantum calculations that are computationally prohibitive. For example, accurate calculation of 3D geometries of a small molecule requires hours of computing time using density functional theory (DFT). Here, we propose to predict the ground-state 3D geometries from molecular graphs using machine learning methods. To make this feasible, we develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from DFT. We also provide a set of software tools for data processing, splitting, training, and evaluation, etc. Specifically, we propose to assess the error and validity of predicted geometries using four metrics. We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space. Experimental results show that, compared with generating 3D geometries with RDKit, our method can achieve comparable prediction accuracy but with much smaller computational costs. Our Molecule3D is available as a module of the MoleculeX software library (https://github.com/divelab/MoleculeX).

DataComp-LM: In search of the next generation of training sets for language models

We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations. Participants in the DCLM benchmark can experiment with data curation strategies such as deduplication, filtering, and data mixing at model scales ranging from 412M to 7B parameters. As a baseline for DCLM, we conduct extensive experiments and find that model-based filtering is key to assembling a high-quality training set. The resulting dataset, DCLM-Baseline enables training a 7B parameter language model from scratch to 64% 5-shot accuracy on MMLU with 2.6T training tokens. Compared to MAP-Neo, the previous state-of-the-art in open-data language models, DCLM-Baseline represents a 6.6 percentage point improvement on MMLU while being trained with 40% less compute. Our baseline model is also comparable to Mistral-7B-v0.3 and Llama 3 8B on MMLU (63% & 66%), and performs similarly on an average of 53 natural language understanding tasks while being trained with 6.6x less compute than Llama 3 8B. Our results highlight the importance of dataset design for training language models and offer a starting point for further research on data curation.

BOOT: Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for generating synthetic training data from the teacher model or need to perform expensive online learning with the help of real data. In this work, we present a novel technique called BOOT, that overcomes these limitations with an efficient data-free distillation algorithm. The core idea is to learn a time-conditioned model that predicts the output of a pre-trained diffusion model teacher given any time step. Such a model can be efficiently trained based on bootstrapping from two consecutive sampled steps. Furthermore, our method can be easily adapted to large-scale text-to-image diffusion models, which are challenging for conventional methods given the fact that the training sets are often large and difficult to access. We demonstrate the effectiveness of our approach on several benchmark datasets in the DDIM setting, achieving comparable generation quality while being orders of magnitude faster than the diffusion teacher. The text-to-image results show that the proposed approach is able to handle highly complex distributions, shedding light on more efficient generative modeling.

DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition

Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.

No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance

Web-crawled pretraining datasets underlie the impressive "zero-shot" evaluation performance of multimodal models, such as CLIP for classification/retrieval and Stable-Diffusion for image generation. However, it is unclear how meaningful the notion of "zero-shot" generalization is for such multimodal models, as it is not known to what extent their pretraining datasets encompass the downstream concepts targeted for during "zero-shot" evaluation. In this work, we ask: How is the performance of multimodal models on downstream concepts influenced by the frequency of these concepts in their pretraining datasets? We comprehensively investigate this question across 34 models and five standard pretraining datasets (CC-3M, CC-12M, YFCC-15M, LAION-400M, LAION-Aesthetics), generating over 300GB of data artifacts. We consistently find that, far from exhibiting "zero-shot" generalization, multimodal models require exponentially more data to achieve linear improvements in downstream "zero-shot" performance, following a sample inefficient log-linear scaling trend. This trend persists even when controlling for sample-level similarity between pretraining and downstream datasets, and testing on purely synthetic data distributions. Furthermore, upon benchmarking models on long-tailed data sampled based on our analysis, we demonstrate that multimodal models across the board perform poorly. We contribute this long-tail test set as the "Let it Wag!" benchmark to further research in this direction. Taken together, our study reveals an exponential need for training data which implies that the key to "zero-shot" generalization capabilities under large-scale training paradigms remains to be found.

LiveBench: A Challenging, Contamination-Free LLM Benchmark

Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.

Rethinking Benchmark and Contamination for Language Models with Rephrased Samples

Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator.

Fast and Accurate Zero-Training Classification for Tabular Engineering Data

In engineering design, navigating complex decision-making landscapes demands a thorough exploration of the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate optimization, or evaluate designs. However, the implementation of these methods usually demands machine-learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and accurate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a Prior-Data Fitted Network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets and performs in-context learning. We evaluated TabPFN's efficacy across eight engineering design classification problems, contrasting it with seven other algorithms, including a state-of-the-art AutoML method. For these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-specific tuning to make data-driven engineering design accessible to a broader community and open ways to efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set for evaluating new classification algorithms in engineering design.

OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models

Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.

MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark

Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging MCQ benchmark called MMLU-CF. This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage. To avoid unintentional data leakage, we source data from a broader domain and design three decontamination rules. To prevent malicious data leakage, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent verification. Our evaluation of mainstream LLMs reveals that the powerful GPT-4o achieves merely a 5-shot score of 73.4% and a 0-shot score of 71.9% on the test set, which indicates the effectiveness of our approach in creating a more rigorous and contamination-free evaluation standard. The GitHub repository is available at https://github.com/microsoft/MMLU-CF and the dataset refers to https://huggingface.co/datasets/microsoft/MMLU-CF.

Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning

In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.

JAILJUDGE: A Comprehensive Jailbreak Judge Benchmark with Multi-Agent Enhanced Explanation Evaluation Framework

Despite advancements in enhancing LLM safety against jailbreak attacks, evaluating LLM defenses remains a challenge, with current methods often lacking explainability and generalization to complex scenarios, leading to incomplete assessments (e.g., direct judgment without reasoning, low F1 score of GPT-4 in complex cases, bias in multilingual scenarios). To address this, we present JAILJUDGE, a comprehensive benchmark featuring diverse risk scenarios, including synthetic, adversarial, in-the-wild, and multilingual prompts, along with high-quality human-annotated datasets. The JAILJUDGE dataset includes over 35k+ instruction-tune data with reasoning explainability and JAILJUDGETEST, a 4.5k+ labeled set for risk scenarios, and a 6k+ multilingual set across ten languages. To enhance evaluation with explicit reasoning, we propose the JailJudge MultiAgent framework, which enables explainable, fine-grained scoring (1 to 10). This framework supports the construction of instruction-tuning ground truth and facilitates the development of JAILJUDGE Guard, an end-to-end judge model that provides reasoning and eliminates API costs. Additionally, we introduce JailBoost, an attacker-agnostic attack enhancer, and GuardShield, a moderation defense, both leveraging JAILJUDGE Guard. Our experiments demonstrate the state-of-the-art performance of JailJudge methods (JailJudge MultiAgent, JAILJUDGE Guard) across diverse models (e.g., GPT-4, Llama-Guard) and zero-shot scenarios. JailBoost and GuardShield significantly improve jailbreak attack and defense tasks under zero-shot settings, with JailBoost enhancing performance by 29.24% and GuardShield reducing defense ASR from 40.46% to 0.15%.

TarGEN: Targeted Data Generation with Large Language Models

The rapid advancement of large language models (LLMs) has sparked interest in data synthesis techniques, aiming to generate diverse and high-quality synthetic datasets. However, these synthetic datasets often suffer from a lack of diversity and added noise. In this paper, we present TarGEN, a multi-step prompting strategy for generating high-quality synthetic datasets utilizing a LLM. An advantage of TarGEN is its seedless nature; it does not require specific task instances, broadening its applicability beyond task replication. We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances during dataset creation, ensuring reliable labels. To assess our technique's effectiveness, we emulate 8 tasks from the SuperGLUE benchmark and finetune various language models, including encoder-only, encoder-decoder, and decoder-only models on both synthetic and original training sets. Evaluation on the original test set reveals that models trained on datasets generated by TarGEN perform approximately 1-2% points better than those trained on original datasets (82.84% via syn. vs. 81.12% on og. using Flan-T5). When incorporating instruction tuning, the performance increases to 84.54% on synthetic data vs. 81.49% on original data by Flan-T5. A comprehensive analysis of the synthetic dataset compared to the original dataset reveals that the synthetic dataset demonstrates similar or higher levels of dataset complexity and diversity. Furthermore, the synthetic dataset displays a bias level that aligns closely with the original dataset. Finally, when pre-finetuned on our synthetic SuperGLUE dataset, T5-3B yields impressive results on the OpenLLM leaderboard, surpassing the model trained on the Self-Instruct dataset by 4.14% points. We hope that TarGEN can be helpful for quality data generation and reducing the human efforts to create complex benchmarks.

Data Contamination Can Cross Language Barriers

The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data. Existing contamination detection methods are typically based on the text overlap between training and evaluation data, which can be too superficial to reflect deeper forms of contamination. In this paper, we first present a cross-lingual form of contamination that inflates LLMs' performance while evading current detection methods, deliberately injected by overfitting LLMs on the translated versions of benchmark test sets. Then, we propose generalization-based approaches to unmask such deeply concealed contamination. Specifically, we examine the LLM's performance change after modifying the original benchmark by replacing the false answer choices with correct ones from other questions. Contaminated models can hardly generalize to such easier situations, where the false choices can be not even wrong, as all choices are correct in their memorization. Experimental results demonstrate that cross-lingual contamination can easily fool existing detection methods, but not ours. In addition, we discuss the potential utilization of cross-lingual contamination in interpreting LLMs' working mechanisms and in post-training LLMs for enhanced multilingual capabilities. The code and dataset we use can be obtained from https://github.com/ShangDataLab/Deep-Contam.

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.

TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs

Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark

Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.

Don't Make Your LLM an Evaluation Benchmark Cheater

Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.

MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark

Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras. This task has practical applications in various fields, such as visual surveillance, crowd behavior analysis, and anomaly detection. However, due to the difficulty and cost of collecting and labeling data, existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting, which limits their ability to model real-world dynamics and generalize to diverse camera configurations. To address this issue, we present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments - campus and factory - across various time, weather, and season conditions. This dataset provides a challenging test-bed for studying multi-camera tracking under diverse real-world complexities and includes an additional input modality of spatially aligned and temporally synchronized RGB and thermal cameras, which enhances the accuracy of multi-camera tracking. MTMMC is a super-set of existing datasets, benefiting independent fields such as person detection, re-identification, and multiple object tracking. We provide baselines and new learning setups on this dataset and set the reference scores for future studies. The datasets, models, and test server will be made publicly available.

Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection

Machine learning applications on extremely low-power devices, commonly referred to as tiny machine learning (TinyML), promises a smarter and more connected world. However, the advancement of current TinyML research is hindered by the limited size and quality of pertinent datasets. To address this challenge, we introduce Wake Vision, a large-scale, diverse dataset tailored for person detection -- the canonical task for TinyML visual sensing. Wake Vision comprises over 6 million images, which is a hundredfold increase compared to the previous standard, and has undergone thorough quality filtering. Using Wake Vision for training results in a 2.41\% increase in accuracy compared to the established benchmark. Alongside the dataset, we provide a collection of five detailed benchmark sets that assess model performance on specific segments of the test data, such as varying lighting conditions, distances from the camera, and demographic characteristics of subjects. These novel fine-grained benchmarks facilitate the evaluation of model quality in challenging real-world scenarios that are often ignored when focusing solely on overall accuracy. Through an evaluation of a MobileNetV2 TinyML model on the benchmarks, we show that the input resolution plays a more crucial role than the model width in detecting distant subjects and that the impact of quantization on model robustness is minimal, thanks to the dataset quality. These findings underscore the importance of a detailed evaluation to identify essential factors for model development. The dataset, benchmark suite, code, and models are publicly available under the CC-BY 4.0 license, enabling their use for commercial use cases.

Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives

Recent advancements in Vision-Language Models (VLMs) have sparked interest in their use for autonomous driving, particularly in generating interpretable driving decisions through natural language. However, the assumption that VLMs inherently provide visually grounded, reliable, and interpretable explanations for driving remains largely unexamined. To address this gap, we introduce DriveBench, a benchmark dataset designed to evaluate VLM reliability across 17 settings (clean, corrupted, and text-only inputs), encompassing 19,200 frames, 20,498 question-answer pairs, three question types, four mainstream driving tasks, and a total of 12 popular VLMs. Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding, especially under degraded or missing visual inputs. This behavior, concealed by dataset imbalances and insufficient evaluation metrics, poses significant risks in safety-critical scenarios like autonomous driving. We further observe that VLMs struggle with multi-modal reasoning and display heightened sensitivity to input corruptions, leading to inconsistencies in performance. To address these challenges, we propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding. Additionally, we highlight the potential of leveraging VLMs' awareness of corruptions to enhance their reliability, offering a roadmap for developing more trustworthy and interpretable decision-making systems in real-world autonomous driving contexts. The benchmark toolkit is publicly accessible.

Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments

In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal Find n' Propagate approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate.

DataComp: In search of the next generation of multimodal datasets

Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.

GeoPlant: Spatial Plant Species Prediction Dataset

The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.

Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching

We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.

Mellow: a small audio language model for reasoning

Multimodal Audio-Language Models (ALMs) can understand and reason over both audio and text. Typically, reasoning performance correlates with model size, with the best results achieved by models exceeding 8 billion parameters. However, no prior work has explored enabling small audio-language models to perform reasoning tasks, despite the potential applications for edge devices. To address this gap, we introduce Mellow, a small Audio-Language Model specifically designed for reasoning. Mellow achieves state-of-the-art performance among existing small audio-language models and surpasses several larger models in reasoning capabilities. For instance, Mellow scores 52.11 on MMAU, comparable to SoTA Qwen2 Audio (which scores 52.5) while using 50 times fewer parameters and being trained on 60 times less data (audio hrs). To train Mellow, we introduce ReasonAQA, a dataset designed to enhance audio-grounded reasoning in models. It consists of a mixture of existing datasets (30% of the data) and synthetically generated data (70%). The synthetic dataset is derived from audio captioning datasets, where Large Language Models (LLMs) generate detailed and multiple-choice questions focusing on audio events, objects, acoustic scenes, signal properties, semantics, and listener emotions. To evaluate Mellow's reasoning ability, we benchmark it on a diverse set of tasks, assessing on both in-distribution and out-of-distribution data, including audio understanding, deductive reasoning, and comparative reasoning. Finally, we conduct extensive ablation studies to explore the impact of projection layer choices, synthetic data generation methods, and language model pretraining on reasoning performance. Our training dataset, findings, and baseline pave the way for developing small ALMs capable of reasoning.

BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation

The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. While current synthetic data generators offer a promising alternative, particularly for embodied AI tasks, they often fall short for computer vision tasks due to low asset and rendering quality, limited diversity, and unrealistic physical properties. We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K. BVS supports a large number of adjustable parameters at the scene level (e.g., lighting, object placement), the object level (e.g., joint configuration, attributes such as "filled" and "folded"), and the camera level (e.g., field of view, focal length). Researchers can arbitrarily vary these parameters during data generation to perform controlled experiments. We showcase three example application scenarios: systematically evaluating the robustness of models across different continuous axes of domain shift, evaluating scene understanding models on the same set of images, and training and evaluating simulation-to-real transfer for a novel vision task: unary and binary state prediction. Project website: https://behavior-vision-suite.github.io/

NeuMap: Neural Coordinate Mapping by Auto-Transdecoder for Camera Localization

This paper presents an end-to-end neural mapping method for camera localization, dubbed NeuMap, encoding a whole scene into a grid of latent codes, with which a Transformer-based auto-decoder regresses 3D coordinates of query pixels. State-of-the-art feature matching methods require each scene to be stored as a 3D point cloud with per-point features, consuming several gigabytes of storage per scene. While compression is possible, performance drops significantly at high compression rates. Conversely, coordinate regression methods achieve high compression by storing scene information in a neural network but suffer from reduced robustness. NeuMap combines the advantages of both approaches by utilizing 1) learnable latent codes for efficient scene representation and 2) a scene-agnostic Transformer-based auto-decoder to infer coordinates for query pixels. This scene-agnostic network design learns robust matching priors from large-scale data and enables rapid optimization of codes for new scenes while keeping the network weights fixed. Extensive evaluations on five benchmarks show that NeuMap significantly outperforms other coordinate regression methods and achieves comparable performance to feature matching methods while requiring a much smaller scene representation size. For example, NeuMap achieves 39.1% accuracy in the Aachen night benchmark with only 6MB of data, whereas alternative methods require 100MB or several gigabytes and fail completely under high compression settings. The codes are available at https://github.com/Tangshitao/NeuMap

CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers

Scene understanding based on image segmentation is a crucial component of autonomous vehicles. Pixel-wise semantic segmentation of RGB images can be advanced by exploiting complementary features from the supplementary modality (X-modality). However, covering a wide variety of sensors with a modality-agnostic model remains an unresolved problem due to variations in sensor characteristics among different modalities. Unlike previous modality-specific methods, in this work, we propose a unified fusion framework, CMX, for RGB-X semantic segmentation. To generalize well across different modalities, that often include supplements as well as uncertainties, a unified cross-modal interaction is crucial for modality fusion. Specifically, we design a Cross-Modal Feature Rectification Module (CM-FRM) to calibrate bi-modal features by leveraging the features from one modality to rectify the features of the other modality. With rectified feature pairs, we deploy a Feature Fusion Module (FFM) to perform sufficient exchange of long-range contexts before mixing. To verify CMX, for the first time, we unify five modalities complementary to RGB, i.e., depth, thermal, polarization, event, and LiDAR. Extensive experiments show that CMX generalizes well to diverse multi-modal fusion, achieving state-of-the-art performances on five RGB-Depth benchmarks, as well as RGB-Thermal, RGB-Polarization, and RGB-LiDAR datasets. Besides, to investigate the generalizability to dense-sparse data fusion, we establish an RGB-Event semantic segmentation benchmark based on the EventScape dataset, on which CMX sets the new state-of-the-art. The source code of CMX is publicly available at https://github.com/huaaaliu/RGBX_Semantic_Segmentation.

Robin3D: Improving 3D Large Language Model via Robust Instruction Tuning

Recent advancements in 3D Large Language Models (3DLLMs) have highlighted their potential in building general-purpose agents in the 3D real world, yet challenges remain due to the lack of high-quality robust instruction-following data, leading to limited discriminative power and generalization of 3DLLMs. In this paper, we introduce Robin3D, a powerful 3DLLM trained on large-scale instruction-following data generated by our novel data engine, Robust Instruction Generation (RIG) engine. RIG generates two key instruction data: 1) the Adversarial Instruction-following data, which features mixed negative and positive samples to enhance the model's discriminative understanding. 2) the Diverse Instruction-following data, which contains various instruction styles to enhance model's generalization. As a result, we construct 1 million instruction-following data, consisting of 344K Adversarial samples, 508K Diverse samples, and 165K benchmark training set samples. To better handle these complex instructions, Robin3D first incorporates Relation-Augmented Projector to enhance spatial understanding, and then strengthens the object referring and grounding ability through ID-Feature Bonding. Robin3D consistently outperforms previous methods across five widely-used 3D multimodal learning benchmarks, without the need for task-specific fine-tuning. Notably, we achieve a 7.8\% improvement in the grounding task (Multi3DRefer) and a 6.9\% improvement in the captioning task (Scan2Cap).

Prediction with Action: Visual Policy Learning via Joint Denoising Process

Diffusion models have demonstrated remarkable capabilities in image generation tasks, including image editing and video creation, representing a good understanding of the physical world. On the other line, diffusion models have also shown promise in robotic control tasks by denoising actions, known as diffusion policy. Although the diffusion generative model and diffusion policy exhibit distinct capabilities--image prediction and robotic action, respectively--they technically follow a similar denoising process. In robotic tasks, the ability to predict future images and generate actions is highly correlated since they share the same underlying dynamics of the physical world. Building on this insight, we introduce PAD, a novel visual policy learning framework that unifies image Prediction and robot Action within a joint Denoising process. Specifically, PAD utilizes Diffusion Transformers (DiT) to seamlessly integrate images and robot states, enabling the simultaneous prediction of future images and robot actions. Additionally, PAD supports co-training on both robotic demonstrations and large-scale video datasets and can be easily extended to other robotic modalities, such as depth images. PAD outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark, by utilizing a single text-conditioned visual policy within a data-efficient imitation learning setting. Furthermore, PAD demonstrates superior generalization to unseen tasks in real-world robot manipulation settings with 28.0% success rate increase compared to the strongest baseline. Project page at https://sites.google.com/view/pad-paper

Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation

Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops

Safety Evaluation of DeepSeek Models in Chinese Contexts

Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmark and periodically update this report to provide more comprehensive and accurate assessment outcomes. Please refer to the latest version of the paper for the most recent evaluation results and conclusions.

Investigating Data Contamination in Modern Benchmarks for Large Language Models

Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.

Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark

Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.

D4RL: Datasets for Deep Data-Driven Reinforcement Learning

The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.

HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation

Human image animation involves generating videos from a character photo, allowing user control and unlocking potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation.To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of copyright-free real-world videos from the internet. Through a carefully designed rule-based filtering strategy, we ensure the inclusion of high-quality videos, resulting in a collection of 20K human-centric videos in 1080P resolution. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. For the synthetic data, we gather 2,300 copyright-free 3D avatar assets to augment existing available 3D assets. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Code and data will be publicly available at https://github.com/zhenzhiwang/HumanVid/.

Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages

End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input.

Integrating Summarization and Retrieval for Enhanced Personalization via Large Language Models

Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.

TextAtlas5M: A Large-scale Dataset for Dense Text Image Generation

Text-conditioned image generation has gained significant attention in recent years and are processing increasingly longer and comprehensive text prompt. In everyday life, dense and intricate text appears in contexts like advertisements, infographics, and signage, where the integration of both text and visuals is essential for conveying complex information. However, despite these advances, the generation of images containing long-form text remains a persistent challenge, largely due to the limitations of existing datasets, which often focus on shorter and simpler text. To address this gap, we introduce TextAtlas5M, a novel dataset specifically designed to evaluate long-text rendering in text-conditioned image generation. Our dataset consists of 5 million long-text generated and collected images across diverse data types, enabling comprehensive evaluation of large-scale generative models on long-text image generation. We further curate 3000 human-improved test set TextAtlasEval across 3 data domains, establishing one of the most extensive benchmarks for text-conditioned generation. Evaluations suggest that the TextAtlasEval benchmarks present significant challenges even for the most advanced proprietary models (e.g. GPT4o with DallE-3), while their open-source counterparts show an even larger performance gap. These evidences position TextAtlas5M as a valuable dataset for training and evaluating future-generation text-conditioned image generation models.

Two-shot Video Object Segmentation

Previous works on video object segmentation (VOS) are trained on densely annotated videos. Nevertheless, acquiring annotations in pixel level is expensive and time-consuming. In this work, we demonstrate the feasibility of training a satisfactory VOS model on sparsely annotated videos-we merely require two labeled frames per training video while the performance is sustained. We term this novel training paradigm as two-shot video object segmentation, or two-shot VOS for short. The underlying idea is to generate pseudo labels for unlabeled frames during training and to optimize the model on the combination of labeled and pseudo-labeled data. Our approach is extremely simple and can be applied to a majority of existing frameworks. We first pre-train a VOS model on sparsely annotated videos in a semi-supervised manner, with the first frame always being a labeled one. Then, we adopt the pre-trained VOS model to generate pseudo labels for all unlabeled frames, which are subsequently stored in a pseudo-label bank. Finally, we retrain a VOS model on both labeled and pseudo-labeled data without any restrictions on the first frame. For the first time, we present a general way to train VOS models on two-shot VOS datasets. By using 7.3% and 2.9% labeled data of YouTube-VOS and DAVIS benchmarks, our approach achieves comparable results in contrast to the counterparts trained on fully labeled set. Code and models are available at https://github.com/yk-pku/Two-shot-Video-Object-Segmentation.

Selfie: Self-supervised Pretraining for Image Embedding

We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs.

What are the best systems? New perspectives on NLP Benchmarking

In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.

AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models

Evaluation is critical for assessing capabilities, tracking scientific progress, and informing model selection. In this paper, we present three desiderata for a good benchmark for language models: (i) salience (e.g., knowledge about World War II is more salient than a random day in history), (ii) novelty (i.e., the benchmark reveals new trends in model rankings not shown by previous benchmarks), and (iii) difficulty (i.e., the benchmark should be difficult for existing models, leaving headroom for future improvement). We operationalize these three desiderata and cast benchmark creation as a search problem, that of finding benchmarks that that satisfy all three desiderata. To tackle this search problem, we present AutoBencher, which uses a language model to automatically search for datasets that meet the three desiderata. AutoBencher uses privileged information (e.g. relevant documents) to construct reliable datasets, and adaptivity with reranking to optimize for the search objective. We use AutoBencher to create datasets for math, multilingual, and knowledge-intensive question answering. The scalability of AutoBencher allows it to test fine-grained categories and tail knowledge, creating datasets that are on average 27% more novel and 22% more difficult than existing benchmarks. A closer investigation of our constructed datasets shows that we can identify specific gaps in LM knowledge in language models that are not captured by existing benchmarks, such as Gemini Pro performing much worse on question answering about the Permian Extinction and Fordism, while OpenAGI-7B performing surprisingly well on QA about COVID-19.

DCA-Bench: A Benchmark for Dataset Curation Agents

The quality of datasets plays an increasingly crucial role in the research and development of modern artificial intelligence (AI). Despite the proliferation of open dataset platforms nowadays, data quality issues, such as insufficient documentation, inaccurate annotations, and ethical concerns, remain common in datasets widely used in AI. Furthermore, these issues are often subtle and difficult to be detected by rule-based scripts, requiring expensive manual identification and verification by dataset users or maintainers. With the increasing capability of large language models (LLMs), it is promising to streamline the curation of datasets with LLM agents. In this work, as the initial step towards this goal, we propose a dataset curation agent benchmark, DCA-Bench, to measure LLM agents' capability of detecting hidden dataset quality issues. Specifically, we collect diverse real-world dataset quality issues from eight open dataset platforms as a testbed. Additionally, to establish an automatic pipeline for evaluating the success of LLM agents, which requires a nuanced understanding of the agent outputs, we implement a dedicated Evaluator using another LLM agent. We demonstrate that the LLM-based Evaluator empirically aligns well with human evaluation, allowing reliable automatic evaluation on the proposed benchmark. We further conduct experiments on several baseline LLM agents on the proposed benchmark and demonstrate the complexity of the task, indicating that applying LLMs to real-world dataset curation still requires further in-depth exploration and innovation. Finally, the proposed benchmark can also serve as a testbed for measuring the capability of LLMs in problem discovery rather than just problem-solving. The benchmark suite is available at https://github.com/TRAIS-Lab/dca-bench.

Aligning benchmark datasets for table structure recognition

Benchmark datasets for table structure recognition (TSR) must be carefully processed to ensure they are annotated consistently. However, even if a dataset's annotations are self-consistent, there may be significant inconsistency across datasets, which can harm the performance of models trained and evaluated on them. In this work, we show that aligning these benchmarksx2014removing both errors and inconsistency between themx2014improves model performance significantly. We demonstrate this through a data-centric approach where we adopt a single model architecture, the Table Transformer (TATR), that we hold fixed throughout. Baseline exact match accuracy for TATR evaluated on the ICDAR-2013 benchmark is 65% when trained on PubTables-1M, 42% when trained on FinTabNet, and 69% combined. After reducing annotation mistakes and inter-dataset inconsistency, performance of TATR evaluated on ICDAR-2013 increases substantially to 75% when trained on PubTables-1M, 65% when trained on FinTabNet, and 81% combined. We show through ablations over the modification steps that canonicalization of the table annotations has a significantly positive effect on performance, while other choices balance necessary trade-offs that arise when deciding a benchmark dataset's final composition. Overall we believe our work has significant implications for benchmark design for TSR and potentially other tasks as well. All dataset processing and training code will be released.

A Benchmark Dataset for Multimodal Prediction of Enzymatic Function Coupling DNA Sequences and Natural Language

Predicting gene function from its DNA sequence is a fundamental challenge in biology. Many deep learning models have been proposed to embed DNA sequences and predict their enzymatic function, leveraging information in public databases linking DNA sequences to an enzymatic function label. However, much of the scientific community's knowledge of biological function is not represented in these categorical labels, and is instead captured in unstructured text descriptions of mechanisms, reactions, and enzyme behavior. These descriptions are often captured alongside DNA sequences in biological databases, albeit in an unstructured manner. Deep learning of models predicting enzymatic function are likely to benefit from incorporating this multi-modal data encoding scientific knowledge of biological function. There is, however, no dataset designed for machine learning algorithms to leverage this multi-modal information. Here we propose a novel dataset and benchmark suite that enables the exploration and development of large multi-modal neural network models on gene DNA sequences and natural language descriptions of gene function. We present baseline performance on benchmarks for both unsupervised and supervised tasks that demonstrate the difficulty of this modeling objective, while demonstrating the potential benefit of incorporating multi-modal data types in function prediction compared to DNA sequences alone. Our dataset is at: https://hoarfrost-lab.github.io/BioTalk/.

MeetingBank: A Benchmark Dataset for Meeting Summarization

As the number of recorded meetings increases, it becomes increasingly important to utilize summarization technology to create useful summaries of these recordings. However, there is a crucial lack of annotated meeting corpora for developing this technology, as it can be hard to collect meetings, especially when the topics discussed are confidential. Furthermore, meeting summaries written by experienced writers are scarce, making it hard for abstractive summarizers to produce sensible output without a reliable reference. This lack of annotated corpora has hindered the development of meeting summarization technology. In this paper, we present MeetingBank, a new benchmark dataset of city council meetings over the past decade. MeetingBank is unique among other meeting corpora due to its divide-and-conquer approach, which involves dividing professionally written meeting minutes into shorter passages and aligning them with specific segments of the meeting. This breaks down the process of summarizing a lengthy meeting into smaller, more manageable tasks. The dataset provides a new testbed of various meeting summarization systems and also allows the public to gain insight into how council decisions are made. We make the collection, including meeting video links, transcripts, reference summaries, agenda, and other metadata, publicly available to facilitate the development of better meeting summarization techniques. Our dataset can be accessed at: https://meetingbank.github.io

A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis

While conversational generative AI has shown considerable potential in enhancing decision-making for agricultural professionals, its exploration has predominantly been anchored in text-based interactions. The evolution of multimodal conversational AI, leveraging vast amounts of image-text data from diverse sources, marks a significant stride forward. However, the application of such advanced vision-language models in the agricultural domain, particularly for crop disease diagnosis, remains underexplored. In this work, we present the crop disease domain multimodal (CDDM) dataset, a pioneering resource designed to advance the field of agricultural research through the application of multimodal learning techniques. The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge, from disease identification to management practices. By integrating visual and textual data, CDDM facilitates the development of sophisticated question-answering systems capable of providing precise, useful advice to farmers and agricultural professionals. We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis. Specifically, we employed a novel finetuning strategy that utilizes low-rank adaptation (LoRA) to finetune the visual encoder, adapter and language model simultaneously. Our contributions include not only the dataset but also a finetuning strategy and a benchmark to stimulate further research in agricultural technology, aiming to bridge the gap between advanced AI techniques and practical agricultural applications. The dataset is available at https: //github.com/UnicomAI/UnicomBenchmark/tree/main/CDDMBench.

IndiBias: A Benchmark Dataset to Measure Social Biases in Language Models for Indian Context

The pervasive influence of social biases in language data has sparked the need for benchmark datasets that capture and evaluate these biases in Large Language Models (LLMs). Existing efforts predominantly focus on English language and the Western context, leaving a void for a reliable dataset that encapsulates India's unique socio-cultural nuances. To bridge this gap, we introduce IndiBias, a comprehensive benchmarking dataset designed specifically for evaluating social biases in the Indian context. We filter and translate the existing CrowS-Pairs dataset to create a benchmark dataset suited to the Indian context in Hindi language. Additionally, we leverage LLMs including ChatGPT and InstructGPT to augment our dataset with diverse societal biases and stereotypes prevalent in India. The included bias dimensions encompass gender, religion, caste, age, region, physical appearance, and occupation. We also build a resource to address intersectional biases along three intersectional dimensions. Our dataset contains 800 sentence pairs and 300 tuples for bias measurement across different demographics. The dataset is available in English and Hindi, providing a size comparable to existing benchmark datasets. Furthermore, using IndiBias we compare ten different language models on multiple bias measurement metrics. We observed that the language models exhibit more bias across a majority of the intersectional groups.

Ax-to-Grind Urdu: Benchmark Dataset for Urdu Fake News Detection

Misinformation can seriously impact society, affecting anything from public opinion to institutional confidence and the political horizon of a state. Fake News (FN) proliferation on online websites and Online Social Networks (OSNs) has increased profusely. Various fact-checking websites include news in English and barely provide information about FN in regional languages. Thus the Urdu FN purveyors cannot be discerned using factchecking portals. SOTA approaches for Fake News Detection (FND) count upon appropriately labelled and large datasets. FND in regional and resource-constrained languages lags due to the lack of limited-sized datasets and legitimate lexical resources. The previous datasets for Urdu FND are limited-sized, domain-restricted, publicly unavailable and not manually verified where the news is translated from English into Urdu. In this paper, we curate and contribute the first largest publicly available dataset for Urdu FND, Ax-to-Grind Urdu, to bridge the identified gaps and limitations of existing Urdu datasets in the literature. It constitutes 10,083 fake and real news on fifteen domains collected from leading and authentic Urdu newspapers and news channel websites in Pakistan and India. FN for the Ax-to-Grind dataset is collected from websites and crowdsourcing. The dataset contains news items in Urdu from the year 2017 to the year 2023. Expert journalists annotated the dataset. We benchmark the dataset with an ensemble model of mBERT,XLNet, and XLM RoBERTa. The selected models are originally trained on multilingual large corpora. The results of the proposed model are based on performance metrics, F1-score, accuracy, precision, recall and MCC value.

BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation

We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.

So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification

Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named "So2Sat LCZ42," which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.

Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10$-$90 GHz

The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.

UMAD: University of Macau Anomaly Detection Benchmark Dataset

Anomaly detection is critical in surveillance systems and patrol robots by identifying anomalous regions in images for early warning. Depending on whether reference data are utilized, anomaly detection can be categorized into anomaly detection with reference and anomaly detection without reference. Currently, anomaly detection without reference, which is closely related to out-of-distribution (OoD) object detection, struggles with learning anomalous patterns due to the difficulty of collecting sufficiently large and diverse anomaly datasets with the inherent rarity and novelty of anomalies. Alternatively, anomaly detection with reference employs the scheme of change detection to identify anomalies by comparing semantic changes between a reference image and a query one. However, there are very few ADr works due to the scarcity of public datasets in this domain. In this paper, we aim to address this gap by introducing the UMAD Benchmark Dataset. To our best knowledge, this is the first benchmark dataset designed specifically for anomaly detection with reference in robotic patrolling scenarios, e.g., where an autonomous robot is employed to detect anomalous objects by comparing a reference and a query video sequences. The reference sequences can be taken by the robot along a specified route when there are no anomalous objects in the scene. The query sequences are captured online by the robot when it is patrolling in the same scene following the same route. Our benchmark dataset is elaborated such that each query image can find a corresponding reference based on accurate robot localization along the same route in the prebuilt 3D map, with which the reference and query images can be geometrically aligned using adaptive warping. Besides the proposed benchmark dataset, we evaluate the baseline models of ADr on this dataset.

CRASAR-U-DROIDs: A Large Scale Benchmark Dataset for Building Alignment and Damage Assessment in Georectified sUAS Imagery

This document presents the Center for Robot Assisted Search And Rescue - Uncrewed Aerial Systems - Disaster Response Overhead Inspection Dataset (CRASAR-U-DROIDs) for building damage assessment and spatial alignment collected from small uncrewed aerial systems (sUAS) geospatial imagery. This dataset is motivated by the increasing use of sUAS in disaster response and the lack of previous work in utilizing high-resolution geospatial sUAS imagery for machine learning and computer vision models, the lack of alignment with operational use cases, and with hopes of enabling further investigations between sUAS and satellite imagery. The CRASAR-U-DRIODs dataset consists of fifty-two (52) orthomosaics from ten (10) federally declared disasters (Hurricane Ian, Hurricane Ida, Hurricane Harvey, Hurricane Idalia, Hurricane Laura, Hurricane Michael, Musset Bayou Fire, Mayfield Tornado, Kilauea Eruption, and Champlain Towers Collapse) spanning 67.98 square kilometers (26.245 square miles), containing 21,716 building polygons and damage labels, and 7,880 adjustment annotations. The imagery was tiled and presented in conjunction with overlaid building polygons to a pool of 130 annotators who provided human judgments of damage according to the Joint Damage Scale. These annotations were then reviewed via a two-stage review process in which building polygon damage labels were first reviewed individually and then again by committee. Additionally, the building polygons have been aligned spatially to precisely overlap with the imagery to enable more performant machine learning models to be trained. It appears that CRASAR-U-DRIODs is the largest labeled dataset of sUAS orthomosaic imagery.

NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security

Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.

MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations

Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.

A Benchmark Dataset for Tornado Detection and Prediction using Full-Resolution Polarimetric Weather Radar Data

Weather radar is the primary tool used by forecasters to detect and warn for tornadoes in near-real time. In order to assist forecasters in warning the public, several algorithms have been developed to automatically detect tornadic signatures in weather radar observations. Recently, Machine Learning (ML) algorithms, which learn directly from large amounts of labeled data, have been shown to be highly effective for this purpose. Since tornadoes are extremely rare events within the corpus of all available radar observations, the selection and design of training datasets for ML applications is critical for the performance, robustness, and ultimate acceptance of ML algorithms. This study introduces a new benchmark dataset, TorNet to support development of ML algorithms in tornado detection and prediction. TorNet contains full-resolution, polarimetric, Level-II WSR-88D data sampled from 10 years of reported storm events. A number of ML baselines for tornado detection are developed and compared, including a novel deep learning (DL) architecture capable of processing raw radar imagery without the need for manual feature extraction required for existing ML algorithms. Despite not benefiting from manual feature engineering or other preprocessing, the DL model shows increased detection performance compared to non-DL and operational baselines. The TorNet dataset, as well as source code and model weights of the DL baseline trained in this work, are made freely available.

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

In this paper, we present a general scheme for building reproducible and extensible datasets for website phishing detection. The aim is to (1) enable comparison of systems using different features, (2) overtake the short-lived nature of phishing websites, and (3) keep track of the evolution of phishing tactics. For experimenting the proposed scheme, we start by adopting a refined classification of website phishing features and we systematically select a total of 87 commonly recognized ones, we classify them, and we made them subjects for relevance and runtime analysis. We use the collected set of features to build a dataset in light of the proposed scheme. Thereafter, we use a conceptual replication approach to check the genericity of former findings for the built dataset. Specifically, we evaluate the performance of classifiers on individual classes and on combinations of classes, we investigate different combinations of models, and we explore the effects of filter and wrapper methods on the selection of discriminative features. The results show that Random Forest is the most predictive classifier. Features gathered from external services are found the most discriminative where features extracted from web page contents are found less distinguishing. Besides external service based features, some web page content features are found time consuming and not suitable for runtime detection. The use of hybrid features provided the best accuracy score of 96.61%. By investigating different feature selection methods, filter-based ranking together with incremental removal of less important features improved the performance up to 96.83% better than wrapper methods.

AeroPath: An airway segmentation benchmark dataset with challenging pathology

To improve the prognosis of patients suffering from pulmonary diseases, such as lung cancer, early diagnosis and treatment are crucial. The analysis of CT images is invaluable for diagnosis, whereas high quality segmentation of the airway tree are required for intervention planning and live guidance during bronchoscopy. Recently, the Multi-domain Airway Tree Modeling (ATM'22) challenge released a large dataset, both enabling training of deep-learning based models and bringing substantial improvement of the state-of-the-art for the airway segmentation task. However, the ATM'22 dataset includes few patients with severe pathologies affecting the airway tree anatomy. In this study, we introduce a new public benchmark dataset (AeroPath), consisting of 27 CT images from patients with pathologies ranging from emphysema to large tumors, with corresponding trachea and bronchi annotations. Second, we present a multiscale fusion design for automatic airway segmentation. Models were trained on the ATM'22 dataset, tested on the AeroPath dataset, and further evaluated against competitive open-source methods. The same performance metrics as used in the ATM'22 challenge were used to benchmark the different considered approaches. Lastly, an open web application is developed, to easily test the proposed model on new data. The results demonstrated that our proposed architecture predicted topologically correct segmentations for all the patients included in the AeroPath dataset. The proposed method is robust and able to handle various anomalies, down to at least the fifth airway generation. In addition, the AeroPath dataset, featuring patients with challenging pathologies, will contribute to development of new state-of-the-art methods. The AeroPath dataset and the web application are made openly available.

RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification

In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.

FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in High-Resolution Remote Sensing Imagery

With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.

Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline

Interactive Medical Image Segmentation (IMIS) has long been constrained by the limited availability of large-scale, diverse, and densely annotated datasets, which hinders model generalization and consistent evaluation across different models. In this paper, we introduce the IMed-361M benchmark dataset, a significant advancement in general IMIS research. First, we collect and standardize over 6.4 million medical images and their corresponding ground truth masks from multiple data sources. Then, leveraging the strong object recognition capabilities of a vision foundational model, we automatically generated dense interactive masks for each image and ensured their quality through rigorous quality control and granularity management. Unlike previous datasets, which are limited by specific modalities or sparse annotations, IMed-361M spans 14 modalities and 204 segmentation targets, totaling 361 million masks-an average of 56 masks per image. Finally, we developed an IMIS baseline network on this dataset that supports high-quality mask generation through interactive inputs, including clicks, bounding boxes, text prompts, and their combinations. We evaluate its performance on medical image segmentation tasks from multiple perspectives, demonstrating superior accuracy and scalability compared to existing interactive segmentation models. To facilitate research on foundational models in medical computer vision, we release the IMed-361M and model at https://github.com/uni-medical/IMIS-Bench.

Introducing Three New Benchmark Datasets for Hierarchical Text Classification

Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.

FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection

With the advance of AI, road object detection has been a prominent topic in computer vision, mostly using perspective cameras. Fisheye lens provides omnidirectional wide coverage for using fewer cameras to monitor road intersections, however with view distortions. To our knowledge, there is no existing open dataset prepared for traffic surveillance on fisheye cameras. This paper introduces an open FishEye8K benchmark dataset for road object detection tasks, which comprises 157K bounding boxes across five classes (Pedestrian, Bike, Car, Bus, and Truck). In addition, we present benchmark results of State-of-The-Art (SoTA) models, including variations of YOLOv5, YOLOR, YOLO7, and YOLOv8. The dataset comprises 8,000 images recorded in 22 videos using 18 fisheye cameras for traffic monitoring in Hsinchu, Taiwan, at resolutions of 1080times1080 and 1280times1280. The data annotation and validation process were arduous and time-consuming, due to the ultra-wide panoramic and hemispherical fisheye camera images with large distortion and numerous road participants, particularly people riding scooters. To avoid bias, frames from a particular camera were assigned to either the training or test sets, maintaining a ratio of about 70:30 for both the number of images and bounding boxes in each class. Experimental results show that YOLOv8 and YOLOR outperform on input sizes 640times640 and 1280times1280, respectively. The dataset will be available on GitHub with PASCAL VOC, MS COCO, and YOLO annotation formats. The FishEye8K benchmark will provide significant contributions to the fisheye video analytics and smart city applications.

A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning

In this work we introduce Sen4AgriNet, a Sentinel-2 based time series multi country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. Sen4AgriNet dataset is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labeling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. It is constructed to cover the period 2016-2020 for Catalonia and France, while it can be extended to include additional countries. Currently, it contains 42.5 million parcels, which makes it significantly larger than other available archives. We extract two sub-datasets to highlight its value for diverse Deep Learning applications; the Object Aggregated Dataset (OAD) and the Patches Assembled Dataset (PAD). OAD capitalizes zonal statistics of each parcel, thus creating a powerful label-to-features instance for classification algorithms. On the other hand, PAD structure generalizes the classification problem to parcel extraction and semantic segmentation and labeling. The PAD and OAD are examined under three different scenarios to showcase and model the effects of spatial and temporal variability across different years and different countries.

CrowdSpeech and VoxDIY: Benchmark Datasets for Crowdsourced Audio Transcription

Domain-specific data is the crux of the successful transfer of machine learning systems from benchmarks to real life. In simple problems such as image classification, crowdsourcing has become one of the standard tools for cheap and time-efficient data collection: thanks in large part to advances in research on aggregation methods. However, the applicability of crowdsourcing to more complex tasks (e.g., speech recognition) remains limited due to the lack of principled aggregation methods for these modalities. The main obstacle towards designing aggregation methods for more advanced applications is the absence of training data, and in this work, we focus on bridging this gap in speech recognition. For this, we collect and release CrowdSpeech -- the first publicly available large-scale dataset of crowdsourced audio transcriptions. Evaluation of existing and novel aggregation methods on our data shows room for improvement, suggesting that our work may entail the design of better algorithms. At a higher level, we also contribute to the more general challenge of developing the methodology for reliable data collection via crowdsourcing. In that, we design a principled pipeline for constructing datasets of crowdsourced audio transcriptions in any novel domain. We show its applicability on an under-resourced language by constructing VoxDIY -- a counterpart of CrowdSpeech for the Russian language. We also release the code that allows a full replication of our data collection pipeline and share various insights on best practices of data collection via crowdsourcing.

ScanBank: A Benchmark Dataset for Figure Extraction from Scanned Electronic Theses and Dissertations

We focus on electronic theses and dissertations (ETDs), aiming to improve access and expand their utility, since more than 6 million are publicly available, and they constitute an important corpus to aid research and education across disciplines. The corpus is growing as new born-digital documents are included, and since millions of older theses and dissertations have been converted to digital form to be disseminated electronically in institutional repositories. In ETDs, as with other scholarly works, figures and tables can communicate a large amount of information in a concise way. Although methods have been proposed for extracting figures and tables from born-digital PDFs, they do not work well with scanned ETDs. Considering this problem, our assessment of state-of-the-art figure extraction systems is that the reason they do not function well on scanned PDFs is that they have only been trained on born-digital documents. To address this limitation, we present ScanBank, a new dataset containing 10 thousand scanned page images, manually labeled by humans as to the presence of the 3.3 thousand figures or tables found therein. We use this dataset to train a deep neural network model based on YOLOv5 to accurately extract figures and tables from scanned ETDs. We pose and answer important research questions aimed at finding better methods for figure extraction from scanned documents. One of those concerns the value for training, of data augmentation techniques applied to born-digital documents which are used to train models better suited for figure extraction from scanned documents. To the best of our knowledge, ScanBank is the first manually annotated dataset for figure and table extraction for scanned ETDs. A YOLOv5-based model, trained on ScanBank, outperforms existing comparable open-source and freely available baseline methods by a considerable margin.