Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultilingual Clinical NER: Translation or Cross-lingual Transfer?
Natural language tasks like Named Entity Recognition (NER) in the clinical domain on non-English texts can be very time-consuming and expensive due to the lack of annotated data. Cross-lingual transfer (CLT) is a way to circumvent this issue thanks to the ability of multilingual large language models to be fine-tuned on a specific task in one language and to provide high accuracy for the same task in another language. However, other methods leveraging translation models can be used to perform NER without annotated data in the target language, by either translating the training set or test set. This paper compares cross-lingual transfer with these two alternative methods, to perform clinical NER in French and in German without any training data in those languages. To this end, we release MedNERF a medical NER test set extracted from French drug prescriptions and annotated with the same guidelines as an English dataset. Through extensive experiments on this dataset and on a German medical dataset (Frei and Kramer, 2021), we show that translation-based methods can achieve similar performance to CLT but require more care in their design. And while they can take advantage of monolingual clinical language models, those do not guarantee better results than large general-purpose multilingual models, whether with cross-lingual transfer or translation.
Cross-Lingual Transfer for Low-Resource Natural Language Processing
Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications.
Cross-lingual Transfer of Reward Models in Multilingual Alignment
Reinforcement learning with human feedback (RLHF) is shown to largely benefit from precise reward models (RMs). However, recent studies in reward modeling schemes are skewed towards English, limiting the applicability of RLHF in multilingual alignments. In this work, we investigate the cross-lingual transfer of RMs trained in diverse languages, primarily from English. Our experimental results demonstrate the strong cross-lingual transfer of English RMs, exceeding target language RMs by 3~4% average increase in Multilingual RewardBench. Furthermore, we analyze the cross-lingual transfer of RMs through the representation shifts. Finally, we perform multilingual alignment to exemplify how cross-lingual transfer in RM propagates to enhanced multilingual instruction-following capability, along with extensive analyses on off-the-shelf RMs. We release the code, model, and data.
Cross-lingual Transfer for Automatic Question Generation by Learning Interrogative Structures in Target Languages
Automatic question generation (QG) serves a wide range of purposes, such as augmenting question-answering (QA) corpora, enhancing chatbot systems, and developing educational materials. Despite its importance, most existing datasets predominantly focus on English, resulting in a considerable gap in data availability for other languages. Cross-lingual transfer for QG (XLT-QG) addresses this limitation by allowing models trained on high-resource language datasets to generate questions in low-resource languages. In this paper, we propose a simple and efficient XLT-QG method that operates without the need for monolingual, parallel, or labeled data in the target language, utilizing a small language model. Our model, trained solely on English QA datasets, learns interrogative structures from a limited set of question exemplars, which are then applied to generate questions in the target language. Experimental results show that our method outperforms several XLT-QG baselines and achieves performance comparable to GPT-3.5-turbo across different languages. Additionally, the synthetic data generated by our model proves beneficial for training multilingual QA models. With significantly fewer parameters than large language models and without requiring additional training for target languages, our approach offers an effective solution for QG and QA tasks across various languages.
Cross-lingual transfer of multilingual models on low resource African Languages
Large multilingual models have significantly advanced natural language processing (NLP) research. However, their high resource demands and potential biases from diverse data sources have raised concerns about their effectiveness across low-resource languages. In contrast, monolingual models, trained on a single language, may better capture the nuances of the target language, potentially providing more accurate results. This study benchmarks the cross-lingual transfer capabilities from a high-resource language to a low-resource language for both, monolingual and multilingual models, focusing on Kinyarwanda and Kirundi, two Bantu languages. We evaluate the performance of transformer based architectures like Multilingual BERT (mBERT), AfriBERT, and BantuBERTa against neural-based architectures such as BiGRU, CNN, and char-CNN. The models were trained on Kinyarwanda and tested on Kirundi, with fine-tuning applied to assess the extent of performance improvement and catastrophic forgetting. AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning, while BiGRU emerged as the best-performing neural model with 83.3% accuracy. We also analyze the degree of forgetting in the original language post-fine-tuning. While monolingual models remain competitive, this study highlights that multilingual models offer strong cross-lingual transfer capabilities in resource limited settings.
Self-Translate-Train: A Simple but Strong Baseline for Cross-lingual Transfer of Large Language Models
Cross-lingual transfer is a promising technique for utilizing data in a source language to improve performance in a target language. However, current techniques often require an external translation system or suffer from suboptimal performance due to over-reliance on cross-lingual generalization of multi-lingual pretrained language models. In this study, we propose a simple yet effective method called Self-Translate-Train. It leverages the translation capability of a large language model to generate synthetic training data in the target language and fine-tunes the model with its own generated data. We evaluate the proposed method on a wide range of tasks and show substantial performance gains across several non-English languages.
Event Extraction in Basque: Typologically motivated Cross-Lingual Transfer-Learning Analysis
Cross-lingual transfer-learning is widely used in Event Extraction for low-resource languages and involves a Multilingual Language Model that is trained in a source language and applied to the target language. This paper studies whether the typological similarity between source and target languages impacts the performance of cross-lingual transfer, an under-explored topic. We first focus on Basque as the target language, which is an ideal target language because it is typologically different from surrounding languages. Our experiments on three Event Extraction tasks show that the shared linguistic characteristic between source and target languages does have an impact on transfer quality. Further analysis of 72 language pairs reveals that for tasks that involve token classification such as entity and event trigger identification, common writing script and morphological features produce higher quality cross-lingual transfer. In contrast, for tasks involving structural prediction like argument extraction, common word order is the most relevant feature. In addition, we show that when increasing the training size, not all the languages scale in the same way in the cross-lingual setting. To perform the experiments we introduce EusIE, an event extraction dataset for Basque, which follows the Multilingual Event Extraction dataset (MEE). The dataset and code are publicly available.
Cross-Lingual Transfer from Related Languages: Treating Low-Resource Maltese as Multilingual Code-Switching
Although multilingual language models exhibit impressive cross-lingual transfer capabilities on unseen languages, the performance on downstream tasks is impacted when there is a script disparity with the languages used in the multilingual model's pre-training data. Using transliteration offers a straightforward yet effective means to align the script of a resource-rich language with a target language, thereby enhancing cross-lingual transfer capabilities. However, for mixed languages, this approach is suboptimal, since only a subset of the language benefits from the cross-lingual transfer while the remainder is impeded. In this work, we focus on Maltese, a Semitic language, with substantial influences from Arabic, Italian, and English, and notably written in Latin script. We present a novel dataset annotated with word-level etymology. We use this dataset to train a classifier that enables us to make informed decisions regarding the appropriate processing of each token in the Maltese language. We contrast indiscriminate transliteration or translation to mixing processing pipelines that only transliterate words of Arabic origin, thereby resulting in text with a mixture of scripts. We fine-tune the processed data on four downstream tasks and show that conditional transliteration based on word etymology yields the best results, surpassing fine-tuning with raw Maltese or Maltese processed with non-selective pipelines.
Improved Cross-Lingual Transfer Learning For Automatic Speech Translation
Research in multilingual speech-to-text translation is topical. Having a single model that supports multiple translation tasks is desirable. The goal of this work it to improve cross-lingual transfer learning in multilingual speech-to-text translation via semantic knowledge distillation. We show that by initializing the encoder of the encoder-decoder sequence-to-sequence translation model with SAMU-XLS-R, a multilingual speech transformer encoder trained using multi-modal (speech-text) semantic knowledge distillation, we achieve significantly better cross-lingual task knowledge transfer than the baseline XLS-R, a multilingual speech transformer encoder trained via self-supervised learning. We demonstrate the effectiveness of our approach on two popular datasets, namely, CoVoST-2 and Europarl. On the 21 translation tasks of the CoVoST-2 benchmark, we achieve an average improvement of 12.8 BLEU points over the baselines. In the zero-shot translation scenario, we achieve an average gain of 18.8 and 11.9 average BLEU points on unseen medium and low-resource languages. We make similar observations on Europarl speech translation benchmark.
Model and Data Transfer for Cross-Lingual Sequence Labelling in Zero-Resource Settings
Zero-resource cross-lingual transfer approaches aim to apply supervised models from a source language to unlabelled target languages. In this paper we perform an in-depth study of the two main techniques employed so far for cross-lingual zero-resource sequence labelling, based either on data or model transfer. Although previous research has proposed translation and annotation projection (data-based cross-lingual transfer) as an effective technique for cross-lingual sequence labelling, in this paper we experimentally demonstrate that high capacity multilingual language models applied in a zero-shot (model-based cross-lingual transfer) setting consistently outperform data-based cross-lingual transfer approaches. A detailed analysis of our results suggests that this might be due to important differences in language use. More specifically, machine translation often generates a textual signal which is different to what the models are exposed to when using gold standard data, which affects both the fine-tuning and evaluation processes. Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available.
Zero-shot Cross-Lingual Transfer for Synthetic Data Generation in Grammatical Error Detection
Grammatical Error Detection (GED) methods rely heavily on human annotated error corpora. However, these annotations are unavailable in many low-resource languages. In this paper, we investigate GED in this context. Leveraging the zero-shot cross-lingual transfer capabilities of multilingual pre-trained language models, we train a model using data from a diverse set of languages to generate synthetic errors in other languages. These synthetic error corpora are then used to train a GED model. Specifically we propose a two-stage fine-tuning pipeline where the GED model is first fine-tuned on multilingual synthetic data from target languages followed by fine-tuning on human-annotated GED corpora from source languages. This approach outperforms current state-of-the-art annotation-free GED methods. We also analyse the errors produced by our method and other strong baselines, finding that our approach produces errors that are more diverse and more similar to human errors.
LEIA: Facilitating Cross-Lingual Knowledge Transfer in Language Models with Entity-based Data Augmentation
Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages. The source code is available at https://github.com/studio-ousia/leia.
X-METRA-ADA: Cross-lingual Meta-Transfer Learning Adaptation to Natural Language Understanding and Question Answering
Multilingual models, such as M-BERT and XLM-R, have gained increasing popularity, due to their zero-shot cross-lingual transfer learning capabilities. However, their generalization ability is still inconsistent for typologically diverse languages and across different benchmarks. Recently, meta-learning has garnered attention as a promising technique for enhancing transfer learning under low-resource scenarios: particularly for cross-lingual transfer in Natural Language Understanding (NLU). In this work, we propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for NLU. Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages. We extensively evaluate our framework on two challenging cross-lingual NLU tasks: multilingual task-oriented dialog and typologically diverse question answering. We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages. Our analysis reveals that X-METRA-ADA can leverage limited data for faster adaptation.
PreAlign: Boosting Cross-Lingual Transfer by Early Establishment of Multilingual Alignment
Large language models demonstrate reasonable multilingual abilities, despite predominantly English-centric pretraining. However, the spontaneous multilingual alignment in these models is shown to be weak, leading to unsatisfactory cross-lingual transfer and knowledge sharing. Previous works attempt to address this issue by explicitly injecting multilingual alignment information during or after pretraining. Thus for the early stage in pretraining, the alignment is weak for sharing information or knowledge across languages. In this paper, we propose PreAlign, a framework that establishes multilingual alignment prior to language model pretraining. PreAlign injects multilingual alignment by initializing the model to generate similar representations of aligned words and preserves this alignment using a code-switching strategy during pretraining. Extensive experiments in a synthetic English to English-Clone setting demonstrate that PreAlign significantly outperforms standard multilingual joint training in language modeling, zero-shot cross-lingual transfer, and cross-lingual knowledge application. Further experiments in real-world scenarios further validate PreAlign's effectiveness across various model sizes.
Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages
Large pre-trained language models (PLMs) are at the forefront of advances in Natural Language Processing. One widespread use case of PLMs is "prompting" - or in-context learning - where a user provides a description of a task and some completed examples of the task to a PLM as context before prompting the PLM to perform the task on a new example. Only the largest, most capable PLMs are able to perform in-context learning effectively, and these models are typically trained with a predominantly English corpus, leaving all other languages behind. The data limitations in most languages preclude the training of language-specific PLMs capable of prompting. Albeit the surge in work of prompting settings, it is still unclear how PLMs should be adapted cross-lingually specifically for prompting. We evaluate the possible methods to adapt LLaMa, a 7B parameter open-source PLM mainly trained in English, for prompting in low-resource languages, namely for Kinyarwanda, Hausa, and Luganda. We consider three methods: few-shot prompting (prompt), language-adaptive fine-tuning (LAFT), and neural machine translation (translate), and evaluate on abstractive summarization, multi-class topic classification, and named-entity recognition. Although LAFT carries the greatest compute cost and intuitively should lead to the best results, our experiments exhibit that LAFT is only occasionally the optimal choice for adapting PLMs for prompting. Rather, the translate and prompt settings are a compute-efficient and cost-effective method of few-shot prompting for the selected low-resource languages. We find that the results are task and language dependent but find that the prompting method is the best on average across all tasks and languages. Results show that the prompt setting performs better than both translating and LAFT with statistical significance for all shots when aggregated across all tasks and languages.
Soft Prompt Tuning for Cross-Lingual Transfer: When Less is More
Soft Prompt Tuning (SPT) is a parameter-efficient method for adapting pre-trained language models (PLMs) to specific tasks by inserting learnable embeddings, or soft prompts, at the input layer of the PLM, without modifying its parameters. This paper investigates the potential of SPT for cross-lingual transfer. Unlike previous studies on SPT for cross-lingual transfer that often fine-tune both the soft prompt and the model parameters, we adhere to the original intent of SPT by keeping the model parameters frozen and only training the soft prompt. This does not only reduce the computational cost and storage overhead of full-model fine-tuning, but we also demonstrate that this very parameter efficiency intrinsic to SPT can enhance cross-lingual transfer performance to linguistically distant languages. Moreover, we explore how different factors related to the prompt, such as the length or its reparameterization, affect cross-lingual transfer performance.
TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes
LLMs such as ChatGPT and PaLM can be utilized to train on a new language and revitalize low-resource languages. However, it is evidently very costly to pretrain pr fine-tune LLMs to adopt new languages. Another challenge is the limitation of benchmark datasets and the metrics used to measure the performance of models in multilingual settings. This paper proposes cost-effective solutions to both of the aforementioned challenges. We introduce the Multilingual Instruction-Tuning Dataset (MITS), which is comprised of the translation of Alpaca-52K, Dolly-15K, and Vicuna Benchmark in 132 languages. Also, we propose a new method called TaCo: Translation-Assisted Cross-Linguality, which make uses of translation in a chain-of-thought process to instruction-tune LLMs on a new languages through a curriculum learning process. As a proof of concept, we experimented with the instruction-tuned Guanaco-33B model and performed further instruction tuning using the TaCo method in three low-resource languages and one high-resource language. Our results show that the TaCo method impresses the GPT-4 with 82% for a low-resource language in the Vicuna Benchmark dataset, and boosts performance by double in contrast to the performance of instruction tuning only. Our results show that TaCo is a promising method for creating multilingual LLMs, even for low-resource languages. We have released our datasets and the model adapters, and encourage the research community to make use of these resources towards advancing work on multilingual LLMs.
Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging
Massively multilingual language models have displayed strong performance in zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer setups, where models fine-tuned on task data in a source language are transferred without any or with only a few annotated instances to the target language(s). However, current work typically overestimates model performance as fine-tuned models are frequently evaluated at model checkpoints that generalize best to validation instances in the target languages. This effectively violates the main assumptions of "true" ZS-XLT and FS-XLT. Such XLT setups require robust methods that do not depend on labeled target language data for validation and model selection. In this work, aiming to improve the robustness of "true" ZS-XLT and FS-XLT, we propose a simple and effective method that averages different checkpoints (i.e., model snapshots) during task fine-tuning. We conduct exhaustive ZS-XLT and FS-XLT experiments across higher-level semantic tasks (NLI, extractive QA) and lower-level token classification tasks (NER, POS). The results indicate that averaging model checkpoints yields systematic and consistent performance gains across diverse target languages in all tasks. Importantly, it simultaneously substantially desensitizes XLT to varying hyperparameter choices in the absence of target language validation. We also show that checkpoint averaging benefits performance when further combined with run averaging (i.e., averaging the parameters of models fine-tuned over independent runs).
EntityCS: Improving Zero-Shot Cross-lingual Transfer with Entity-Centric Code Switching
Accurate alignment between languages is fundamental for improving cross-lingual pre-trained language models (XLMs). Motivated by the natural phenomenon of code-switching (CS) in multilingual speakers, CS has been used as an effective data augmentation method that offers language alignment at the word- or phrase-level, in contrast to sentence-level via parallel instances. Existing approaches either use dictionaries or parallel sentences with word alignment to generate CS data by randomly switching words in a sentence. However, such methods can be suboptimal as dictionaries disregard semantics, and syntax might become invalid after random word switching. In this work, we propose EntityCS, a method that focuses on Entity-level Code-Switching to capture fine-grained cross-lingual semantics without corrupting syntax. We use Wikidata and English Wikipedia to construct an entity-centric CS corpus by switching entities to their counterparts in other languages. We further propose entity-oriented masking strategies during intermediate model training on the EntityCS corpus for improving entity prediction. Evaluation of the trained models on four entity-centric downstream tasks shows consistent improvements over the baseline with a notable increase of 10% in Fact Retrieval. We release the corpus and models to assist research on code-switching and enriching XLMs with external knowledge.
AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages
Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yor\`ub\'a. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access.
Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified Multilingual Prompt
Prompt-based tuning has been proven effective for pretrained language models (PLMs). While most of the existing work focuses on the monolingual prompts, we study the multilingual prompts for multilingual PLMs, especially in the zero-shot cross-lingual setting. To alleviate the effort of designing different prompts for multiple languages, we propose a novel model that uses a unified prompt for all languages, called UniPrompt. Different from the discrete prompts and soft prompts, the unified prompt is model-based and language-agnostic. Specifically, the unified prompt is initialized by a multilingual PLM to produce language-independent representation, after which is fused with the text input. During inference, the prompts can be pre-computed so that no extra computation cost is needed. To collocate with the unified prompt, we propose a new initialization method for the target label word to further improve the model's transferability across languages. Extensive experiments show that our proposed methods can significantly outperform the strong baselines across different languages. We release data and code to facilitate future research.
A cost-benefit analysis of cross-lingual transfer methods
An effective method for cross-lingual transfer is to fine-tune a bilingual or multilingual model on a supervised dataset in one language and evaluating it on another language in a zero-shot manner. Translating examples at training time or inference time are also viable alternatives. However, there are costs associated with these methods that are rarely addressed in the literature. In this work, we analyze cross-lingual methods in terms of their effectiveness (e.g., accuracy), development and deployment costs, as well as their latencies at inference time. Our experiments on three tasks indicate that the best cross-lingual method is highly task-dependent. Finally, by combining zero-shot and translation methods, we achieve the state-of-the-art in two of the three datasets used in this work. Based on these results, we question the need for manually labeled training data in a target language. Code and translated datasets are available at https://github.com/unicamp-dl/cross-lingual-analysis
Zero-shot Cross-lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders
Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.
On the Cross-lingual Transferability of Monolingual Representations
State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.
Exploring Methods for Cross-lingual Text Style Transfer: The Case of Text Detoxification
Text detoxification is the task of transferring the style of text from toxic to neutral. While here are approaches yielding promising results in monolingual setup, e.g., (Dale et al., 2021; Hallinan et al., 2022), cross-lingual transfer for this task remains a challenging open problem (Moskovskiy et al., 2022). In this work, we present a large-scale study of strategies for cross-lingual text detoxification -- given a parallel detoxification corpus for one language; the goal is to transfer detoxification ability to another language for which we do not have such a corpus. Moreover, we are the first to explore a new task where text translation and detoxification are performed simultaneously, providing several strong baselines for this task. Finally, we introduce new automatic detoxification evaluation metrics with higher correlations with human judgments than previous benchmarks. We assess the most promising approaches also with manual markup, determining the answer for the best strategy to transfer the knowledge of text detoxification between languages.
It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning
Commonsense reasoning is one of the key problems in natural language processing, but the relative scarcity of labeled data holds back the progress for languages other than English. Pretrained cross-lingual models are a source of powerful language-agnostic representations, yet their inherent reasoning capabilities are still actively studied. In this work, we design a simple approach to commonsense reasoning which trains a linear classifier with weights of multi-head attention as features. To evaluate this approach, we create a multilingual Winograd Schema corpus by processing several datasets from prior work within a standardized pipeline and measure cross-lingual generalization ability in terms of out-of-sample performance. The method performs competitively with recent supervised and unsupervised approaches for commonsense reasoning, even when applied to other languages in a zero-shot manner. Also, we demonstrate that most of the performance is given by the same small subset of attention heads for all studied languages, which provides evidence of universal reasoning capabilities in multilingual encoders.
mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
Recent multilingual pretrained language models (mPLMs) have been shown to encode strong language-specific signals, which are not explicitly provided during pretraining. It remains an open question whether it is feasible to employ mPLMs to measure language similarity, and subsequently use the similarity results to select source languages for boosting cross-lingual transfer. To investigate this, we propose mPLMSim, a language similarity measure that induces the similarities across languages from mPLMs using multi-parallel corpora. Our study shows that mPLM-Sim exhibits moderately high correlations with linguistic similarity measures, such as lexicostatistics, genealogical language family, and geographical sprachbund. We also conduct a case study on languages with low correlation and observe that mPLM-Sim yields more accurate similarity results. Additionally, we find that similarity results vary across different mPLMs and different layers within an mPLM. We further investigate whether mPLMSim is effective for zero-shot cross-lingual transfer by conducting experiments on both low-level syntactic tasks and high-level semantic tasks. The experimental results demonstrate that mPLM-Sim is capable of selecting better source languages than linguistic measures, resulting in a 1%-2% improvement in zero-shot cross-lingual transfer performance.
Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond
We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI dataset), cross-lingual document classification (MLDoc dataset) and parallel corpus mining (BUCC dataset) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our implementation, the pre-trained encoder and the multilingual test set are available at https://github.com/facebookresearch/LASER
WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models
Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.
Transfer Language Selection for Zero-Shot Cross-Lingual Abusive Language Detection
We study the selection of transfer languages for automatic abusive language detection. Instead of preparing a dataset for every language, we demonstrate the effectiveness of cross-lingual transfer learning for zero-shot abusive language detection. This way we can use existing data from higher-resource languages to build better detection systems for low-resource languages. Our datasets are from seven different languages from three language families. We measure the distance between the languages using several language similarity measures, especially by quantifying the World Atlas of Language Structures. We show that there is a correlation between linguistic similarity and classifier performance. This discovery allows us to choose an optimal transfer language for zero shot abusive language detection.
The Impact of Cross-Lingual Adjustment of Contextual Word Representations on Zero-Shot Transfer
Large multilingual language models such as mBERT or XLM-R enable zero-shot cross-lingual transfer in various IR and NLP tasks. Cao et al. (2020) proposed a data- and compute-efficient method for cross-lingual adjustment of mBERT that uses a small parallel corpus to make embeddings of related words across languages similar to each other. They showed it to be effective in NLI for five European languages. In contrast we experiment with a typologically diverse set of languages (Spanish, Russian, Vietnamese, and Hindi) and extend their original implementations to new tasks (XSR, NER, and QA) and an additional training regime (continual learning). Our study reproduced gains in NLI for four languages, showed improved NER, XSR, and cross-lingual QA results in three languages (though some cross-lingual QA gains were not statistically significant), while mono-lingual QA performance never improved and sometimes degraded. Analysis of distances between contextualized embeddings of related and unrelated words (across languages) showed that fine-tuning leads to "forgetting" some of the cross-lingual alignment information. Based on this observation, we further improved NLI performance using continual learning.
Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models
Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.
Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning
Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization.
Distilling Efficient Language-Specific Models for Cross-Lingual Transfer
Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil.
Composable Sparse Fine-Tuning for Cross-Lingual Transfer
Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.
Language Fusion for Parameter-Efficient Cross-lingual Transfer
Limited availability of multilingual text corpora for training language models often leads to poor performance on downstream tasks due to undertrained representation spaces for languages other than English. This 'under-representation' has motivated recent cross-lingual transfer methods to leverage the English representation space by e.g. mixing English and 'non-English' tokens at the input level or extending model parameters to accommodate new languages. However, these approaches often come at the cost of increased computational complexity. We propose Fusion forLanguage Representations (FLARE) in adapters, a novel method that enhances representation quality and downstream performance for languages other than English while maintaining parameter efficiency. FLARE integrates source and target language representations within low-rank (LoRA) adapters using lightweight linear transformations, maintaining parameter efficiency while improving transfer performance. A series of experiments across representative cross-lingual natural language understanding tasks, including natural language inference, question-answering and sentiment analysis, demonstrate FLARE's effectiveness. FLARE achieves performance improvements of 4.9% for Llama 3.1 and 2.2% for Gemma~2 compared to standard LoRA fine-tuning on question-answering tasks, as measured by the exact match metric.
Argument Mining in Data Scarce Settings: Cross-lingual Transfer and Few-shot Techniques
Recent research on sequence labelling has been exploring different strategies to mitigate the lack of manually annotated data for the large majority of the world languages. Among others, the most successful approaches have been based on (i) the cross-lingual transfer capabilities of multilingual pre-trained language models (model-transfer), (ii) data translation and label projection (data-transfer) and (iii), prompt-based learning by reusing the mask objective to exploit the few-shot capabilities of pre-trained language models (few-shot). Previous work seems to conclude that model-transfer outperforms data-transfer methods and that few-shot techniques based on prompting are superior to updating the model's weights via fine-tuning. In this paper, we empirically demonstrate that, for Argument Mining, a sequence labelling task which requires the detection of long and complex discourse structures, previous insights on cross-lingual transfer or few-shot learning do not apply. Contrary to previous work, we show that for Argument Mining data transfer obtains better results than model-transfer and that fine-tuning outperforms few-shot methods. Regarding the former, the domain of the dataset used for data-transfer seems to be a deciding factor, while, for few-shot, the type of task (length and complexity of the sequence spans) and sampling method prove to be crucial.
Vocabulary Expansion for Low-resource Cross-lingual Transfer
Large language models (LLMs) have shown remarkable capabilities in many languages beyond English. Yet, LLMs require more inference steps when generating non-English text due to their reliance on English-centric tokenizers, vocabulary, and pre-training data, resulting in higher usage costs to non-English speakers. Vocabulary expansion with target language tokens is a widely used cross-lingual vocabulary adaptation approach to remedy this issue. Despite its effectiveness in inference speedup, the majority of previous work has focused on high-resource settings assuming access to a substantial amount of target language data to effectively initialize the embeddings of the new tokens and adapt the LLM to the target language. However, vocabulary expansion for LLMs in low-resource settings (i.e. languages and compute) has yet to be explored. In this paper, we investigate sample-efficient adaptation strategies from different angles, including target vocabulary size and initialization methods, and the amount of target data available for adaptation. Extensive experiments across typologically diverse languages, tasks and models show that simpler heuristic-based embedding initialization is more efficient and robust to changes in target vocabulary size and adaptation data in low-resource settings, outperforming a popular random initialization and a more sophisticated state-of-the-art approach that relies on external data and model.
UniBridge: A Unified Approach to Cross-Lingual Transfer Learning for Low-Resource Languages
In this paper, we introduce UniBridge (Cross-Lingual Transfer Learning with Optimized Embeddings and Vocabulary), a comprehensive approach developed to improve the effectiveness of Cross-Lingual Transfer Learning, particularly in languages with limited resources. Our approach tackles two essential elements of a language model: the initialization of embeddings and the optimal vocabulary size. Specifically, we propose a novel embedding initialization method that leverages both lexical and semantic alignment for a language. In addition, we present a method for systematically searching for the optimal vocabulary size, ensuring a balance between model complexity and linguistic coverage. Our experiments across multilingual datasets show that our approach greatly improves the F1-Score in several languages. UniBridge is a robust and adaptable solution for cross-lingual systems in various languages, highlighting the significance of initializing embeddings and choosing the right vocabulary size in cross-lingual environments.
The Impact of Language Adapters in Cross-Lingual Transfer for NLU
Modular deep learning has been proposed for the efficient adaption of pre-trained models to new tasks, domains and languages. In particular, combining language adapters with task adapters has shown potential where no supervised data exists for a language. In this paper, we explore the role of language adapters in zero-shot cross-lingual transfer for natural language understanding (NLU) benchmarks. We study the effect of including a target-language adapter in detailed ablation studies with two multilingual models and three multilingual datasets. Our results show that the effect of target-language adapters is highly inconsistent across tasks, languages and models. Retaining the source-language adapter instead often leads to an equivalent, and sometimes to a better, performance. Removing the language adapter after training has only a weak negative effect, indicating that the language adapters do not have a strong impact on the predictions.
Identifying the Correlation Between Language Distance and Cross-Lingual Transfer in a Multilingual Representation Space
Prior research has investigated the impact of various linguistic features on cross-lingual transfer performance. In this study, we investigate the manner in which this effect can be mapped onto the representation space. While past studies have focused on the impact on cross-lingual alignment in multilingual language models during fine-tuning, this study examines the absolute evolution of the respective language representation spaces produced by MLLMs. We place a specific emphasis on the role of linguistic characteristics and investigate their inter-correlation with the impact on representation spaces and cross-lingual transfer performance. Additionally, this paper provides preliminary evidence of how these findings can be leveraged to enhance transfer to linguistically distant languages.
Frustratingly Easy Label Projection for Cross-lingual Transfer
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
MultiEURLEX -- A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We highlight the effect of temporal concept drift and the importance of chronological, instead of random splits. We use the dataset as a testbed for zero-shot cross-lingual transfer, where we exploit annotated training documents in one language (source) to classify documents in another language (target). We find that fine-tuning a multilingually pretrained model (XLM-ROBERTA, MT5) in a single source language leads to catastrophic forgetting of multilingual knowledge and, consequently, poor zero-shot transfer to other languages. Adaptation strategies, namely partial fine-tuning, adapters, BITFIT, LNFIT, originally proposed to accelerate fine-tuning for new end-tasks, help retain multilingual knowledge from pretraining, substantially improving zero-shot cross-lingual transfer, but their impact also depends on the pretrained model used and the size of the label set.
Building a Japanese Document-Level Relation Extraction Dataset Assisted by Cross-Lingual Transfer
Document-level Relation Extraction (DocRE) is the task of extracting all semantic relationships from a document. While studies have been conducted on English DocRE, limited attention has been given to DocRE in non-English languages. This work delves into effectively utilizing existing English resources to promote DocRE studies in non-English languages, with Japanese as the representative case. As an initial attempt, we construct a dataset by transferring an English dataset to Japanese. However, models trained on such a dataset suffer from low recalls. We investigate the error cases and attribute the failure to different surface structures and semantics of documents translated from English and those written by native speakers. We thus switch to explore if the transferred dataset can assist human annotation on Japanese documents. In our proposal, annotators edit relation predictions from a model trained on the transferred dataset. Quantitative analysis shows that relation recommendations suggested by the model help reduce approximately 50% of the human edit steps compared with the previous approach. Experiments quantify the performance of existing DocRE models on our collected dataset, portraying the challenges of Japanese and cross-lingual DocRE.
MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer
The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml
Towards a Common Understanding of Contributing Factors for Cross-Lingual Transfer in Multilingual Language Models: A Review
In recent years, pre-trained Multilingual Language Models (MLLMs) have shown a strong ability to transfer knowledge across different languages. However, given that the aspiration for such an ability has not been explicitly incorporated in the design of the majority of MLLMs, it is challenging to obtain a unique and straightforward explanation for its emergence. In this review paper, we survey literature that investigates different factors contributing to the capacity of MLLMs to perform zero-shot cross-lingual transfer and subsequently outline and discuss these factors in detail. To enhance the structure of this review and to facilitate consolidation with future studies, we identify five categories of such factors. In addition to providing a summary of empirical evidence from past studies, we identify consensuses among studies with consistent findings and resolve conflicts among contradictory ones. Our work contextualizes and unifies existing research streams which aim at explaining the cross-lingual potential of MLLMs. This review provides, first, an aligned reference point for future research and, second, guidance for a better-informed and more efficient way of leveraging the cross-lingual capacity of MLLMs.
Hyperpolyglot LLMs: Cross-Lingual Interpretability in Token Embeddings
Cross-lingual transfer learning is an important property of multilingual large language models (LLMs). But how do LLMs represent relationships between languages? Every language model has an input layer that maps tokens to vectors. This ubiquitous layer of language models is often overlooked. We find that similarities between these input embeddings are highly interpretable and that the geometry of these embeddings differs between model families. In one case (XLM-RoBERTa), embeddings encode language: tokens in different writing systems can be linearly separated with an average of 99.2% accuracy. Another family (mT5) represents cross-lingual semantic similarity: the 50 nearest neighbors for any token represent an average of 7.61 writing systems, and are frequently translations. This result is surprising given that there is no explicit parallel cross-lingual training corpora and no explicit incentive for translations in pre-training objectives. Our research opens the door for investigations in 1) The effect of pre-training and model architectures on representations of languages and 2) The applications of cross-lingual representations embedded in language models.
An Empirical Study on Cross-X Transfer for Legal Judgment Prediction
Cross-lingual transfer learning has proven useful in a variety of Natural Language Processing (NLP) tasks, but it is understudied in the context of legal NLP, and not at all in Legal Judgment Prediction (LJP). We explore transfer learning techniques on LJP using the trilingual Swiss-Judgment-Prediction dataset, including cases written in three languages. We find that cross-lingual transfer improves the overall results across languages, especially when we use adapter-based fine-tuning. Finally, we further improve the model's performance by augmenting the training dataset with machine-translated versions of the original documents, using a 3x larger training corpus. Further on, we perform an analysis exploring the effect of cross-domain and cross-regional transfer, i.e., train a model across domains (legal areas), or regions. We find that in both settings (legal areas, origin regions), models trained across all groups perform overall better, while they also have improved results in the worst-case scenarios. Finally, we report improved results when we ambitiously apply cross-jurisdiction transfer, where we further augment our dataset with Indian legal cases.
Cross-lingual Back-Parsing: Utterance Synthesis from Meaning Representation for Zero-Resource Semantic Parsing
Recent efforts have aimed to utilize multilingual pretrained language models (mPLMs) to extend semantic parsing (SP) across multiple languages without requiring extensive annotations. However, achieving zero-shot cross-lingual transfer for SP remains challenging, leading to a performance gap between source and target languages. In this study, we propose Cross-Lingual Back-Parsing (CBP), a novel data augmentation methodology designed to enhance cross-lingual transfer for SP. Leveraging the representation geometry of the mPLMs, CBP synthesizes target language utterances from source meaning representations. Our methodology effectively performs cross-lingual data augmentation in challenging zero-resource settings, by utilizing only labeled data in the source language and monolingual corpora. Extensive experiments on two cross-language SP benchmarks (Mschema2QA and Xspider) demonstrate that CBP brings substantial gains in the target language. Further analysis of the synthesized utterances shows that our method successfully generates target language utterances with high slot value alignment rates while preserving semantic integrity. Our codes and data are publicly available at https://github.com/deokhk/CBP.
Cross-lingual Alignment Methods for Multilingual BERT: A Comparative Study
Multilingual BERT (mBERT) has shown reasonable capability for zero-shot cross-lingual transfer when fine-tuned on downstream tasks. Since mBERT is not pre-trained with explicit cross-lingual supervision, transfer performance can further be improved by aligning mBERT with cross-lingual signal. Prior work proposes several approaches to align contextualised embeddings. In this paper we analyse how different forms of cross-lingual supervision and various alignment methods influence the transfer capability of mBERT in zero-shot setting. Specifically, we compare parallel corpora vs. dictionary-based supervision and rotational vs. fine-tuning based alignment methods. We evaluate the performance of different alignment methodologies across eight languages on two tasks: Name Entity Recognition and Semantic Slot Filling. In addition, we propose a novel normalisation method which consistently improves the performance of rotation-based alignment including a notable 3% F1 improvement for distant and typologically dissimilar languages. Importantly we identify the biases of the alignment methods to the type of task and proximity to the transfer language. We also find that supervision from parallel corpus is generally superior to dictionary alignments.
Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!
Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at http://github.com/UKPLab/coling2018-xling_argument_mining.
Allophant: Cross-lingual Phoneme Recognition with Articulatory Attributes
This paper proposes Allophant, a multilingual phoneme recognizer. It requires only a phoneme inventory for cross-lingual transfer to a target language, allowing for low-resource recognition. The architecture combines a compositional phone embedding approach with individually supervised phonetic attribute classifiers in a multi-task architecture. We also introduce Allophoible, an extension of the PHOIBLE database. When combined with a distance based mapping approach for grapheme-to-phoneme outputs, it allows us to train on PHOIBLE inventories directly. By training and evaluating on 34 languages, we found that the addition of multi-task learning improves the model's capability of being applied to unseen phonemes and phoneme inventories. On supervised languages we achieve phoneme error rate improvements of 11 percentage points (pp.) compared to a baseline without multi-task learning. Evaluation of zero-shot transfer on 84 languages yielded a decrease in PER of 2.63 pp. over the baseline.
xGQA: Cross-Lingual Visual Question Answering
Recent advances in multimodal vision and language modeling have predominantly focused on the English language, mostly due to the lack of multilingual multimodal datasets to steer modeling efforts. In this work, we address this gap and provide xGQA, a new multilingual evaluation benchmark for the visual question answering task. We extend the established English GQA dataset to 7 typologically diverse languages, enabling us to detect and explore crucial challenges in cross-lingual visual question answering. We further propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual, and -- vice versa -- multilingual models to become multimodal. Our proposed methods outperform current state-of-the-art multilingual multimodal models (e.g., M3P) in zero-shot cross-lingual settings, but the accuracy remains low across the board; a performance drop of around 38 accuracy points in target languages showcases the difficulty of zero-shot cross-lingual transfer for this task. Our results suggest that simple cross-lingual transfer of multimodal models yields latent multilingual multimodal misalignment, calling for more sophisticated methods for vision and multilingual language modeling.
Constrained Decoding for Cross-lingual Label Projection
Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.
Promoting Generalized Cross-lingual Question Answering in Few-resource Scenarios via Self-knowledge Distillation
Despite substantial progress in multilingual extractive Question Answering (QA), models with high and uniformly distributed performance across languages remain challenging, especially for languages with limited resources. We study cross-lingual transfer mainly focusing on the Generalized Cross-Lingual Transfer (G-XLT) task, where the question language differs from the context language - a challenge that has received limited attention thus far. Our approach seeks to enhance cross-lingual QA transfer using a high-performing multilingual model trained on a large-scale dataset, complemented by a few thousand aligned QA examples across languages. Our proposed strategy combines cross-lingual sampling and advanced self-distillation training in generations to tackle the previous challenge. Notably, we introduce the novel mAP@k coefficients to fine-tune self-knowledge distillation loss, dynamically regulating the teacher's model knowledge to perform a balanced and effective knowledge transfer. We extensively evaluate our approach to assess XLT and G-XLT capabilities in extractive QA. Results reveal that our self-knowledge distillation approach outperforms standard cross-entropy fine-tuning by a significant margin. Importantly, when compared to a strong baseline that leverages a sizeable volume of machine-translated data, our approach shows competitive results despite the considerable challenge of operating within resource-constrained settings, even in zero-shot scenarios. Beyond performance improvements, we offer valuable insights through comprehensive analyses and an ablation study, further substantiating the benefits and constraints of our approach. In essence, we propose a practical solution to improve cross-lingual QA transfer by leveraging a few data resources in an efficient way.
Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation
In this paper, we explore the challenging problem of performing a generative task in a target language when labeled data is only available in English, using summarization as a case study. We assume a strict setting with no access to parallel data or machine translation and find that common transfer learning approaches struggle in this setting, as a generative multilingual model fine-tuned purely on English catastrophically forgets how to generate non-English. Given the recent rise of parameter-efficient adaptation techniques, we conduct the first investigation into how one such method, prompt tuning (Lester et al., 2021), can overcome catastrophic forgetting to enable zero-shot cross-lingual generation. Our experiments show that parameter-efficient prompt tuning provides gains over standard fine-tuning when transferring between less-related languages, e.g., from English to Thai. However, a significant gap still remains between these methods and fully-supervised baselines. To improve cross-lingual transfer further, we explore several approaches, including: (1) mixing in unlabeled multilingual data, and (2) explicitly factoring prompts into recombinable language and task components. Our approaches can provide further quality gains, suggesting that robust zero-shot cross-lingual generation is within reach.
Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition
Speech emotion recognition plays a crucial role in human-computer interactions. However, most speech emotion recognition research is biased toward English-speaking adults, which hinders its applicability to other demographic groups in different languages and age groups. In this work, we analyze the transferability of emotion recognition across three different languages--English, Mandarin Chinese, and Cantonese; and 2 different age groups--adults and the elderly. To conduct the experiment, we develop an English-Mandarin speech emotion benchmark for adults and the elderly, BiMotion, and a Cantonese speech emotion dataset, YueMotion. This study concludes that different language and age groups require specific speech features, thus making cross-lingual inference an unsuitable method. However, cross-group data augmentation is still beneficial to regularize the model, with linguistic distance being a significant influence on cross-lingual transferability. We release publicly release our code at https://github.com/HLTCHKUST/elderly_ser.
Cross-lingual Similarity of Multilingual Representations Revisited
Related works used indexes like CKA and variants of CCA to measure the similarity of cross-lingual representations in multilingual language models. In this paper, we argue that assumptions of CKA/CCA align poorly with one of the motivating goals of cross-lingual learning analysis, i.e., explaining zero-shot cross-lingual transfer. We highlight what valuable aspects of cross-lingual similarity these indexes fail to capture and provide a motivating case study demonstrating the problem empirically. Then, we introduce Average Neuron-Wise Correlation (ANC) as a straightforward alternative that is exempt from the difficulties of CKA/CCA and is good specifically in a cross-lingual context. Finally, we use ANC to construct evidence that the previously introduced ``first align, then predict'' pattern takes place not only in masked language models (MLMs) but also in multilingual models with causal language modeling objectives (CLMs). Moreover, we show that the pattern extends to the scaled versions of the MLMs and CLMs (up to 85x original mBERT).Our code is publicly available at \url{https://github.com/TartuNLP/xsim}
Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment
The cross-lingual language models are typically pretrained with masked language modeling on multilingual text or parallel sentences. In this paper, we introduce denoising word alignment as a new cross-lingual pre-training task. Specifically, the model first self-labels word alignments for parallel sentences. Then we randomly mask tokens in a bitext pair. Given a masked token, the model uses a pointer network to predict the aligned token in the other language. We alternately perform the above two steps in an expectation-maximization manner. Experimental results show that our method improves cross-lingual transferability on various datasets, especially on the token-level tasks, such as question answering, and structured prediction. Moreover, the model can serve as a pretrained word aligner, which achieves reasonably low error rates on the alignment benchmarks. The code and pretrained parameters are available at https://github.com/CZWin32768/XLM-Align.
The Model Arena for Cross-lingual Sentiment Analysis: A Comparative Study in the Era of Large Language Models
Sentiment analysis serves as a pivotal component in Natural Language Processing (NLP). Advancements in multilingual pre-trained models such as XLM-R and mT5 have contributed to the increasing interest in cross-lingual sentiment analysis. The recent emergence in Large Language Models (LLM) has significantly advanced general NLP tasks, however, the capability of such LLMs in cross-lingual sentiment analysis has not been fully studied. This work undertakes an empirical analysis to compare the cross-lingual transfer capability of public Small Multilingual Language Models (SMLM) like XLM-R, against English-centric LLMs such as Llama-3, in the context of sentiment analysis across English, Spanish, French and Chinese. Our findings reveal that among public models, SMLMs exhibit superior zero-shot cross-lingual performance relative to LLMs. However, in few-shot cross-lingual settings, public LLMs demonstrate an enhanced adaptive potential. In addition, we observe that proprietary GPT-3.5 and GPT-4 lead in zero-shot cross-lingual capability, but are outpaced by public models in few-shot scenarios.
A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings
This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings. Our method integrates multiple word embeddings created from complementary techniques, textual sources, knowledge bases and languages. Existing word vectors are projected to a common semantic space using linear transformations and averaging. With our method the resulting meta-embeddings maintain the dimensionality of the original embeddings without losing information while dealing with the out-of-vocabulary problem. An extensive empirical evaluation demonstrates the effectiveness of our technique with respect to previous work on various intrinsic and extrinsic multilingual evaluations, obtaining competitive results for Semantic Textual Similarity and state-of-the-art performance for word similarity and POS tagging (English and Spanish). The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities. In other words, we can leverage pre-trained source embeddings from a resource-rich language in order to improve the word representations for under-resourced languages.
Unsupervised Cross-lingual Representation Learning at Scale
This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6% average accuracy on XNLI, +13% average F1 score on MLQA, and +2.4% F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7% in XNLI accuracy for Swahili and 11.4% for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code, data and models publicly available.
A Three-Pronged Approach to Cross-Lingual Adaptation with Multilingual LLMs
Low-resource languages, by its very definition, tend to be under represented in the pre-training corpora of Large Language Models. In this work, we investigate three low-resource cross-lingual approaches that enable an LLM adapt to tasks in previously unseen languages. Llama-2 is an LLM where Indic languages, among many other language families, contribute to less than 0.005% of the total 2 trillion token pre-training corpora. In this work, we experiment with the English-dominated Llama-2 for cross-lingual transfer to three Indic languages, Bengali, Hindi, and Tamil as target languages. We study three approaches for cross-lingual transfer, under ICL and fine-tuning. One, we find that adding additional supervisory signals via a dominant language in the LLM, leads to improvements, both under in-context learning and fine-tuning. Two, adapting the target languages to word reordering may be beneficial under ICL, but its impact diminishes with fine tuning. Finally, continued pre-training in one low-resource language can improve model performance for other related low-resource languages.
Simple and Effective Zero-shot Cross-lingual Phoneme Recognition
Recent progress in self-training, self-supervised pretraining and unsupervised learning enabled well performing speech recognition systems without any labeled data. However, in many cases there is labeled data available for related languages which is not utilized by these methods. This paper extends previous work on zero-shot cross-lingual transfer learning by fine-tuning a multilingually pretrained wav2vec 2.0 model to transcribe unseen languages. This is done by mapping phonemes of the training languages to the target language using articulatory features. Experiments show that this simple method significantly outperforms prior work which introduced task-specific architectures and used only part of a monolingually pretrained model.
KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi
Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and KIRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus .
FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding
Large-scale cross-lingual language models (LM), such as mBERT, Unicoder and XLM, have achieved great success in cross-lingual representation learning. However, when applied to zero-shot cross-lingual transfer tasks, most existing methods use only single-language input for LM finetuning, without leveraging the intrinsic cross-lingual alignment between different languages that proves essential for multilingual tasks. In this paper, we propose FILTER, an enhanced fusion method that takes cross-lingual data as input for XLM finetuning. Specifically, FILTER first encodes text input in the source language and its translation in the target language independently in the shallow layers, then performs cross-language fusion to extract multilingual knowledge in the intermediate layers, and finally performs further language-specific encoding. During inference, the model makes predictions based on the text input in the target language and its translation in the source language. For simple tasks such as classification, translated text in the target language shares the same label as the source language. However, this shared label becomes less accurate or even unavailable for more complex tasks such as question answering, NER and POS tagging. To tackle this issue, we further propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language. Extensive experiments demonstrate that FILTER achieves new state of the art on two challenging multilingual multi-task benchmarks, XTREME and XGLUE.
Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer
Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.
Prompt-Tuning Can Be Much Better Than Fine-Tuning on Cross-lingual Understanding With Multilingual Language Models
Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-tuning and compare it with fine-tuning. The results show that prompt tuning achieves much better cross-lingual transfer than fine-tuning across datasets, with only 0.1% to 0.3% tuned parameters. Additionally, we demonstrate through the analysis that prompt tuning can have better cross-lingual transferability of representations on downstream tasks with better aligned decision boundaries.
Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval
State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers.
Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT
Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer.
Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages
LLMs have become a go-to solution not just for text generation, but also for natural language understanding (NLU) tasks. Acquiring extensive knowledge through language modeling on web-scale corpora, they excel on English NLU, yet struggle to extend their NLU capabilities to underrepresented languages. In contrast, machine translation models (MT) produce excellent multilingual representations, resulting in strong translation performance even for low-resource languages. MT encoders, however, lack the knowledge necessary for comprehensive NLU that LLMs obtain through language modeling training on immense corpora. In this work, we get the best both worlds by integrating MT encoders directly into LLM backbones via sample-efficient self-distillation. The resulting MT-LLMs preserve the inherent multilingual representational alignment from the MT encoder, allowing lower-resource languages to tap into the rich knowledge embedded in English-centric LLMs. Merging the MT encoder and LLM in a single model, we mitigate the propagation of translation errors and inference overhead of MT decoding inherent to discrete translation-based cross-lingual transfer (e.g., translate-test). Evaluation spanning three prominent NLU tasks and 127 predominantly low-resource languages renders MT-LLMs highly effective in cross-lingual transfer. MT-LLMs substantially and consistently outperform translate-test based on the same MT model, showing that we truly unlock multilingual language understanding for LLMs.
ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks.
MIND Your Language: A Multilingual Dataset for Cross-lingual News Recommendation
Digital news platforms use news recommenders as the main instrument to cater to the individual information needs of readers. Despite an increasingly language-diverse online community, in which many Internet users consume news in multiple languages, the majority of news recommendation focuses on major, resource-rich languages, and English in particular. Moreover, nearly all news recommendation efforts assume monolingual news consumption, whereas more and more users tend to consume information in at least two languages. Accordingly, the existing body of work on news recommendation suffers from a lack of publicly available multilingual benchmarks that would catalyze development of news recommenders effective in multilingual settings and for low-resource languages. Aiming to fill this gap, we introduce xMIND, an open, multilingual news recommendation dataset derived from the English MIND dataset using machine translation, covering a set of 14 linguistically and geographically diverse languages, with digital footprints of varying sizes. Using xMIND, we systematically benchmark several state-of-the-art content-based neural news recommenders (NNRs) in both zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer scenarios, considering both monolingual and bilingual news consumption patterns. Our findings reveal that (i) current NNRs, even when based on a multilingual language model, suffer from substantial performance losses under ZS-XLT and that (ii) inclusion of target-language data in FS-XLT training has limited benefits, particularly when combined with a bilingual news consumption. Our findings thus warrant a broader research effort in multilingual and cross-lingual news recommendation. The xMIND dataset is available at https://github.com/andreeaiana/xMIND.
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
We present a study on leveraging multilingual pre-trained generative language models for zero-shot cross-lingual event argument extraction (EAE). By formulating EAE as a language generation task, our method effectively encodes event structures and captures the dependencies between arguments. We design language-agnostic templates to represent the event argument structures, which are compatible with any language, hence facilitating the cross-lingual transfer. Our proposed model finetunes multilingual pre-trained generative language models to generate sentences that fill in the language-agnostic template with arguments extracted from the input passage. The model is trained on source languages and is then directly applied to target languages for event argument extraction. Experiments demonstrate that the proposed model outperforms the current state-of-the-art models on zero-shot cross-lingual EAE. Comprehensive studies and error analyses are presented to better understand the advantages and the current limitations of using generative language models for zero-shot cross-lingual transfer EAE.
XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction
Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}.
InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training
In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm.
Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
We explore Cross-lingual Backdoor ATtacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare tokens serving as specific effective triggers. Our findings expose a critical vulnerability in the fundamental architecture that enables cross-lingual transfer in these models. Our code and data are publicly available at https://github.com/himanshubeniwal/X-BAT.
News Without Borders: Domain Adaptation of Multilingual Sentence Embeddings for Cross-lingual News Recommendation
Rapidly growing numbers of multilingual news consumers pose an increasing challenge to news recommender systems in terms of providing customized recommendations. First, existing neural news recommenders, even when powered by multilingual language models (LMs), suffer substantial performance losses in zero-shot cross-lingual transfer (ZS-XLT). Second, the current paradigm of fine-tuning the backbone LM of a neural recommender on task-specific data is computationally expensive and infeasible in few-shot recommendation and cold-start setups, where data is scarce or completely unavailable. In this work, we propose a news-adapted sentence encoder (NaSE), domain-specialized from a pretrained massively multilingual sentence encoder (SE). To this end, we construct and leverage PolyNews and PolyNewsParallel, two multilingual news-specific corpora. With the news-adapted multilingual SE in place, we test the effectiveness of (i.e., question the need for) supervised fine-tuning for news recommendation, and propose a simple and strong baseline based on (i) frozen NaSE embeddings and (ii) late click-behavior fusion. We show that NaSE achieves state-of-the-art performance in ZS-XLT in true cold-start and few-shot news recommendation.
Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning
Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit.
Massively Multilingual Transfer for NER
In cross-lingual transfer, NLP models over one or more source languages are applied to a low-resource target language. While most prior work has used a single source model or a few carefully selected models, here we consider a `massive' setting with many such models. This setting raises the problem of poor transfer, particularly from distant languages. We propose two techniques for modulating the transfer, suitable for zero-shot or few-shot learning, respectively. Evaluating on named entity recognition, we show that our techniques are much more effective than strong baselines, including standard ensembling, and our unsupervised method rivals oracle selection of the single best individual model.
Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference
Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing.
XQA-DST: Multi-Domain and Multi-Lingual Dialogue State Tracking
Dialogue State Tracking (DST), a crucial component of task-oriented dialogue (ToD) systems, keeps track of all important information pertaining to dialogue history: filling slots with the most probable values throughout the conversation. Existing methods generally rely on a predefined set of values and struggle to generalise to previously unseen slots in new domains. To overcome these challenges, we propose a domain-agnostic extractive question answering (QA) approach with shared weights across domains. To disentangle the complex domain information in ToDs, we train our DST with a novel domain filtering strategy by excluding out-of-domain question samples. With an independent classifier that predicts the presence of multiple domains given the context, our model tackles DST by extracting spans in active domains. Empirical results demonstrate that our model can efficiently leverage domain-agnostic QA datasets by two-stage fine-tuning while being both domain-scalable and open-vocabulary in DST. It shows strong transferability by achieving zero-shot domain-adaptation results on MultiWOZ 2.1 with an average JGA of 36.7%. It further achieves cross-lingual transfer with state-of-the-art zero-shot results, 66.2% JGA from English to German and 75.7% JGA from English to Italian on WOZ 2.0.
Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese
Multilingual language models have pushed state-of-the-art in cross-lingual NLP transfer. The majority of zero-shot cross-lingual transfer, however, use one and the same massively multilingual transformer (e.g., mBERT or XLM-R) to transfer to all target languages, irrespective of their typological, etymological, and phylogenetic relations to other languages. In particular, readily available data and models of resource-rich sibling languages are often ignored. In this work, we empirically show, in a case study for Faroese -- a low-resource language from a high-resource language family -- that by leveraging the phylogenetic information and departing from the 'one-size-fits-all' paradigm, one can improve cross-lingual transfer to low-resource languages. In particular, we leverage abundant resources of other Scandinavian languages (i.e., Danish, Norwegian, Swedish, and Icelandic) for the benefit of Faroese. Our evaluation results show that we can substantially improve the transfer performance to Faroese by exploiting data and models of closely-related high-resource languages. Further, we release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS), and new language models trained on all Scandinavian languages.
Bailong: Bilingual Transfer Learning based on QLoRA and Zip-tie Embedding
Large language models (LLMs) have demonstrated exceptional performance in various NLP applications. However, the majority of existing open-source LLMs are pre-trained primarily on English data and little part of other languages. This deficiency in multilingual training data results in suboptimal performance when applied to languages with fewer available resources. Furthermore, enhancing the performance of LLMs on low-resource languages by full-parameter fine-tuning with additional data requires substantial computational resources, posing computational barriers for research organizations and individual researchers. Consequently, several techniques such as parameter-efficient tuning and advanced embedding initialization have been proposed to address these challenges. In this work, we combine them to facilitate cross-lingual transfer on English-dominated open-source LLM. To effectively enhance the model's proficiency in Traditional Chinese, we conduct secondary pre-training on Llama 2 7B with Traditional Chinese data by leveraging QLoRA and our proposed zip-tie embedding initialization. The resulting model called Bailong, which stands for Bilingual trAnsfer learnIng based on qLOra and zip-tie embeddiNG. We present Bailong-instruct 7B, a fine-tuned version of Bailong 7B optimized for multi-turn dialogue scenarios. Recognizing the inadequacy of benchmark datasets in Traditional Chinese, we further introduce Bailong-bench to assess the alignment of models with human preferences and the capability to follow instructions in both Traditional Chinese and English tasks. In our evaluation, Bailong-instruct 7B exhibits competitive performance on Bailong-bench and other benchmark datasets when compared to other open-source models of similar or even larger parameter sizes. Bailong-instruct 7B and Bailong-bench are publicly available with the aim of empowering the community to build upon our efforts.
Improving Portuguese Semantic Role Labeling with Transformers and Transfer Learning
The Natural Language Processing task of determining "Who did what to whom" is called Semantic Role Labeling. For English, recent methods based on Transformer models have allowed for major improvements in this task over the previous state of the art. However, for low resource languages, like Portuguese, currently available semantic role labeling models are hindered by scarce training data. In this paper, we explore a model architecture with only a pre-trained Transformer-based model, a linear layer, softmax and Viterbi decoding. We substantially improve the state-of-the-art performance in Portuguese by over 15 F1. Additionally, we improve semantic role labeling results in Portuguese corpora by exploiting cross-lingual transfer learning using multilingual pre-trained models, and transfer learning from dependency parsing in Portuguese, evaluating the various proposed approaches empirically.
MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition
African languages are spoken by over a billion people, but are underrepresented in NLP research and development. The challenges impeding progress include the limited availability of annotated datasets, as well as a lack of understanding of the settings where current methods are effective. In this paper, we make progress towards solutions for these challenges, focusing on the task of named entity recognition (NER). We create the largest human-annotated NER dataset for 20 African languages, and we study the behavior of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, demonstrating that the choice of source language significantly affects performance. We show that choosing the best transfer language improves zero-shot F1 scores by an average of 14 points across 20 languages compared to using English. Our results highlight the need for benchmark datasets and models that cover typologically-diverse African languages.
MELA: Multilingual Evaluation of Linguistic Acceptability
In this work, we present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability -- MELA, with 46K samples covering 10 languages from a diverse set of language families. We establish LLM baselines on this benchmark, and investigate cross-lingual transfer in acceptability judgements with XLM-R. In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R to explore the process of syntax capability acquisition. Our results show that GPT-4o exhibits a strong multilingual ability, outperforming fine-tuned XLM-R, while open-source multilingual models lag behind by a noticeable gap. Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial: 500 Icelandic fine-tuning examples lead to 23 MCC performance in a completely unrelated language -- Chinese. Results of our probing experiments indicate that training on MELA improves the performance of XLM-R on syntax-related tasks. Our data is available at https://github.com/sjtu-compling/MELA.
Multilingual Instruction Tuning With Just a Pinch of Multilinguality
As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. One promising approach is cross-lingual transfer, where a model acquires specific functionality on some language by finetuning on another language. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in several languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that increasing the number of languages in the instruction tuning set from 1 to only 2, 3, or 4 increases cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses.
RedWhale: An Adapted Korean LLM Through Efficient Continual Pretraining
The field of Natural Language Processing (NLP) has seen significant advancements with the development of Large Language Models (LLMs). However, much of this research remains focused on English, often overlooking low-resource languages like Korean. This oversight presents challenges due to the unique non-alphabetic token structure of Korean and the substantial memory and computational demands required for LLM training, which frequently lead to memory constraints and out-of-memory errors. To address these issues, we present RedWhale, a model specifically tailored for Korean language processing. RedWhale is developed using an efficient continual pretraining approach that includes a comprehensive Korean corpus preprocessing pipeline, a specialized tokenizer, an optimized model initialization technique, and a multistage pretraining strategy. These innovations collectively reduce training time and computational costs while maintaining high levels of accuracy and comprehension. By leveraging cross-lingual transfer learning, which exploits shared linguistic similarities across languages, RedWhale builds on English models to enhance Korean language processing. Experimental results demonstrate that RedWhale outperforms other leading models on Korean NLP benchmarks, including the Korean Balanced Evaluation of Significant Tasks (KoBEST), showing superior understanding and generation of Korean text. Furthermore, RedWhale showed no signs of convergence even after pretraining on 9.7 billion tokens, indicating the potential for further improvements with additional training. This work represents a significant advancement in bridging the linguistic divide, particularly in enhancing NLP capabilities for the Korean language.
MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages.
Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance
Despite Greece's pivotal role in the global economy, large language models (LLMs) remain underexplored for Greek financial context due to the linguistic complexity of Greek and the scarcity of domain-specific datasets. Previous efforts in multilingual financial natural language processing (NLP) have exposed considerable performance disparities, yet no dedicated Greek financial benchmarks or Greek-specific financial LLMs have been developed until now. To bridge this gap, we introduce Plutus-ben, the first Greek Financial Evaluation Benchmark, and Plutus-8B, the pioneering Greek Financial LLM, fine-tuned with Greek domain-specific data. Plutus-ben addresses five core financial NLP tasks in Greek: numeric and textual named entity recognition, question answering, abstractive summarization, and topic classification, thereby facilitating systematic and reproducible LLM assessments. To underpin these tasks, we present three novel, high-quality Greek financial datasets, thoroughly annotated by expert native Greek speakers, augmented by two existing resources. Our comprehensive evaluation of 22 LLMs on Plutus-ben reveals that Greek financial NLP remains challenging due to linguistic complexity, domain-specific terminology, and financial reasoning gaps. These findings underscore the limitations of cross-lingual transfer, the necessity for financial expertise in Greek-trained models, and the challenges of adapting financial LLMs to Greek text. We release Plutus-ben, Plutus-8B, and all associated datasets publicly to promote reproducible research and advance Greek financial NLP, fostering broader multilingual inclusivity in finance.
RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs
Preference optimization techniques have become a standard final stage for training state-of-art large language models (LLMs). However, despite widespread adoption, the vast majority of work to-date has focused on first-class citizen languages like English and Chinese. This captures a small fraction of the languages in the world, but also makes it unclear which aspects of current state-of-the-art research transfer to a multilingual setting. In this work, we perform an exhaustive study to achieve a new state-of-the-art in aligning multilingual LLMs. We introduce a novel, scalable method for generating high-quality multilingual feedback data to balance data coverage. We establish the benefits of cross-lingual transfer and increased dataset size in preference training. Our preference-trained model achieves a 54.4% win-rate against Aya 23 8B, the current state-of-the-art multilingual LLM in its parameter class, and a 69.5% win-rate or higher against widely used models like Gemma-1.1-7B-it, Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.3. As a result of our study, we expand the frontier of alignment techniques to 23 languages covering half of the world's population.
ScandEval: A Benchmark for Scandinavian Natural Language Processing
This paper introduces a Scandinavian benchmarking platform, ScandEval, which can benchmark any pretrained model on four different tasks in the Scandinavian languages. The datasets used in two of the tasks, linguistic acceptability and question answering, are new. We develop and release a Python package and command-line interface, scandeval, which can benchmark any model that has been uploaded to the Hugging Face Hub, with reproducible results. Using this package, we benchmark more than 100 Scandinavian or multilingual models and present the results of these in an interactive online leaderboard, as well as provide an analysis of the results. The analysis shows that there is substantial cross-lingual transfer among the Mainland Scandinavian languages (Danish, Swedish and Norwegian), with limited cross-lingual transfer between the group of Mainland Scandinavian languages and the group of Insular Scandinavian languages (Icelandic and Faroese). The benchmarking results also show that the investment in language technology in Norway, Sweden and Denmark has led to language models that outperform massively multilingual models such as XLM-RoBERTa and mDeBERTaV3. We release the source code for both the package and leaderboard.
Speaking Multiple Languages Affects the Moral Bias of Language Models
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Mandarin Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
Unsupervised Dense Information Retrieval with Contrastive Learning
Recently, information retrieval has seen the emergence of dense retrievers, using neural networks, as an alternative to classical sparse methods based on term-frequency. These models have obtained state-of-the-art results on datasets and tasks where large training sets are available. However, they do not transfer well to new applications with no training data, and are outperformed by unsupervised term-frequency methods such as BM25. In this work, we explore the limits of contrastive learning as a way to train unsupervised dense retrievers and show that it leads to strong performance in various retrieval settings. On the BEIR benchmark our unsupervised model outperforms BM25 on 11 out of 15 datasets for the Recall@100. When used as pre-training before fine-tuning, either on a few thousands in-domain examples or on the large MS~MARCO dataset, our contrastive model leads to improvements on the BEIR benchmark. Finally, we evaluate our approach for multi-lingual retrieval, where training data is even scarcer than for English, and show that our approach leads to strong unsupervised performance. Our model also exhibits strong cross-lingual transfer when fine-tuned on supervised English data only and evaluated on low resources language such as Swahili. We show that our unsupervised models can perform cross-lingual retrieval between different scripts, such as retrieving English documents from Arabic queries, which would not be possible with term matching methods.
The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
Toxicity Classification in Ukrainian
The task of toxicity detection is still a relevant task, especially in the context of safe and fair LMs development. Nevertheless, labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process. Ukrainian, in particular, is among the languages lacking such resources. To our knowledge, there has been no existing toxicity classification corpus in Ukrainian. In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i)~translating from an English corpus, (ii)~filtering toxic samples using keywords, and (iii)~annotating with crowdsourcing. We compare LLMs prompting and other cross-lingual transfer approaches with and without fine-tuning offering insights into the most robust and efficient baselines.
Pre-Trained Language-Meaning Models for Multilingual Parsing and Generation
Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included in the pre-training stage. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results.
AmericasNLI: Evaluating Zero-shot Natural Language Understanding of Pretrained Multilingual Models in Truly Low-resource Languages
Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, syntactic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-R's zero-shot performance is poor for all 10 languages, with an average performance of 38.62%. Continued pretraining offers improvements, with an average accuracy of 44.05%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 48.72%.
XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite (MultiCheckList) and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models. The leaderboard and code for XTREME-R will be made available at https://sites.research.google/xtreme and https://github.com/google-research/xtreme respectively.
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apur\'imac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.
The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants
We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems.
The Multilingual Amazon Reviews Corpus
We present the Multilingual Amazon Reviews Corpus (MARC), a large-scale collection of Amazon reviews for multilingual text classification. The corpus contains reviews in English, Japanese, German, French, Spanish, and Chinese, which were collected between 2015 and 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID, and the coarse-grained product category (e.g., 'books', 'appliances', etc.) The corpus is balanced across the 5 possible star ratings, so each rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000, and 5,000 reviews in the training, development, and test sets, respectively. We report baseline results for supervised text classification and zero-shot cross-lingual transfer learning by fine-tuning a multilingual BERT model on reviews data. We propose the use of mean absolute error (MAE) instead of classification accuracy for this task, since MAE accounts for the ordinal nature of the ratings.
Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment
Multilingual pre-trained models (mPLMs) have shown impressive performance on cross-lingual transfer tasks. However, the transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language, even though the two languages may be related or share parts of their vocabularies. Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method aiming to improve the cross-lingual alignment between languages using diverse scripts. We select two areal language groups, Mediterranean-Amharic-Farsi and South+East Asian Languages, wherein the languages are mutually influenced but use different scripts. We apply our method to these language groups and conduct extensive experiments on a spectrum of downstream tasks. The results show that after PPA, models consistently outperform the original model (up to 50% for some tasks) in English-centric transfer. In addition, when we use languages other than English as sources in transfer, our method obtains even larger improvements. We will make our code and models publicly available at https://github.com/cisnlp/Transliteration-PPA.
Revisiting non-English Text Simplification: A Unified Multilingual Benchmark
Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.
Word-Level Representation From Bytes For Language Modeling
Modern language models mostly take sub-words as input, a design that balances the trade-off between vocabulary size, number of parameters, and performance. However, sub-word tokenization still has disadvantages like not being robust to noise and difficult to generalize to new languages. Also, the current trend of scaling up models reveals that larger models require larger embeddings but that makes parallelization hard. Previous work on image classification proves splitting raw input into a sequence of chucks is a strong, model-agnostic inductive bias. Based on this observation, we rethink the existing character-aware method that takes character-level inputs but makes word-level sequence modeling and prediction. We overhaul this method by introducing a cross-attention network that builds word-level representation directly from bytes, and a sub-word level prediction based on word-level hidden states to avoid the time and space requirement of word-level prediction. With these two improvements combined, we have a token free model with slim input embeddings for downstream tasks. We name our method Byte2Word and perform evaluations on language modeling and text classification. Experiments show that Byte2Word is on par with the strong sub-word baseline BERT but only takes up 10\% of embedding size. We further test our method on synthetic noise and cross-lingual transfer and find it competitive to baseline methods on both settings.
Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese
Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.
Better Low-Resource Entity Recognition Through Translation and Annotation Fusion
Pre-trained multilingual language models have enabled significant advancements in cross-lingual transfer. However, these models often exhibit a performance disparity when transferring from high-resource languages to low-resource languages, especially for languages that are underrepresented or not in the pre-training data. Motivated by the superior performance of these models on high-resource languages compared to low-resource languages, we introduce a Translation-and-fusion framework, which translates low-resource language text into a high-resource language for annotation using fully supervised models before fusing the annotations back into the low-resource language. Based on this framework, we present TransFusion, a model trained to fuse predictions from a high-resource language to make robust predictions on low-resource languages. We evaluate our methods on two low-resource named entity recognition (NER) datasets, MasakhaNER2.0 and LORELEI NER, covering 25 languages, and show consistent improvement up to +16 F_1 over English fine-tuning systems, achieving state-of-the-art performance compared to Translate-train systems. Our analysis depicts the unique advantages of the TransFusion method which is robust to translation errors and source language prediction errors, and complimentary to adapted multilingual language models.
SpeechTaxi: On Multilingual Semantic Speech Classification
Recent advancements in multilingual speech encoding as well as transcription raise the question of the most effective approach to semantic speech classification. Concretely, can (1) end-to-end (E2E) classifiers obtained by fine-tuning state-of-the-art multilingual speech encoders (MSEs) match or surpass the performance of (2) cascading (CA), where speech is first transcribed into text and classification is delegated to a text-based classifier. To answer this, we first construct SpeechTaxi, an 80-hour multilingual dataset for semantic speech classification of Bible verses, covering 28 diverse languages. We then leverage SpeechTaxi to conduct a wide range of experiments comparing E2E and CA in monolingual semantic speech classification as well as in cross-lingual transfer. We find that E2E based on MSEs outperforms CA in monolingual setups, i.e., when trained on in-language data. However, MSEs seem to have poor cross-lingual transfer abilities, with E2E substantially lagging CA both in (1) zero-shot transfer to languages unseen in training and (2) multilingual training, i.e., joint training on multiple languages. Finally, we devise a novel CA approach based on transcription to Romanized text as a language-agnostic intermediate representation and show that it represents a robust solution for languages without native ASR support. Our SpeechTaxi dataset is publicly available at: https://huggingface.co/ datasets/LennartKeller/SpeechTaxi/.
From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
To date, toxicity mitigation in language models has almost entirely been focused on single-language settings. As language models embrace multilingual capabilities, it's crucial our safety measures keep pace. Recognizing this research gap, our approach expands the scope of conventional toxicity mitigation to address the complexities presented by multiple languages. In the absence of sufficient annotated datasets across languages, we employ translated data to evaluate and enhance our mitigation techniques. We also compare finetuning mitigation approaches against retrieval-augmented techniques under both static and continual toxicity mitigation scenarios. This allows us to examine the effects of translation quality and the cross-lingual transfer on toxicity mitigation. We also explore how model size and data quantity affect the success of these mitigation efforts. Covering nine languages, our study represents a broad array of linguistic families and levels of resource availability, ranging from high to mid-resource languages. Through comprehensive experiments, we provide insights into the complexities of multilingual toxicity mitigation, offering valuable insights and paving the way for future research in this increasingly important field. Code and data are available at https://github.com/for-ai/goodtriever.
ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment
We present a comprehensive evaluation of large language models for multilingual readability assessment. Existing evaluation resources lack domain and language diversity, limiting the ability for cross-domain and cross-lingual analyses. This paper introduces ReadMe++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian, collected from 112 different data sources. This benchmark will encourage research on developing robust multilingual readability assessment methods. Using ReadMe++, we benchmark multilingual and monolingual language models in the supervised, unsupervised, and few-shot prompting settings. The domain and language diversity in ReadMe++ enable us to test more effective few-shot prompting, and identify shortcomings in state-of-the-art unsupervised methods. Our experiments also reveal exciting results of superior domain generalization and enhanced cross-lingual transfer capabilities by models trained on ReadMe++. We will make our data publicly available and release a python package tool for multilingual sentence readability prediction using our trained models at: https://github.com/tareknaous/readme
A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained Models
Recent work on tokenizer-free multilingual pretrained models show promising results in improving cross-lingual transfer and reducing engineering overhead (Clark et al., 2022; Xue et al., 2022). However, these works mainly focus on reporting accuracy on a limited set of tasks and data settings, placing less emphasis on other important factors when tuning and deploying the models in practice, such as memory usage, inference speed, and fine-tuning data robustness. We attempt to fill this gap by performing a comprehensive empirical comparison of multilingual tokenizer-free and subword-based models considering these various dimensions. Surprisingly, we find that subword-based models might still be the most practical choice in many settings, achieving better performance for lower inference latency and memory usage. Based on these results, we encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
Compositional Generalization in Multilingual Semantic Parsing over Wikidata
Semantic parsing (SP) allows humans to leverage vast knowledge resources through natural interaction. However, parsers are mostly designed for and evaluated on English resources, such as CFQ (Keysers et al., 2020), the current standard benchmark based on English data generated from grammar rules and oriented towards Freebase, an outdated knowledge base. We propose a method for creating a multilingual, parallel dataset of question-query pairs, grounded in Wikidata. We introduce such a dataset, which we call Multilingual Compositional Wikidata Questions (MCWQ), and use it to analyze the compositional generalization of semantic parsers in Hebrew, Kannada, Chinese and English. While within-language generalization is comparable across languages, experiments on zero-shot cross-lingual transfer demonstrate that cross-lingual compositional generalization fails, even with state-of-the-art pretrained multilingual encoders. Furthermore, our methodology, dataset and results will facilitate future research on SP in more realistic and diverse settings than has been possible with existing resources.
UNKs Everywhere: Adapting Multilingual Language Models to New Scripts
Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model's embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT's and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.
T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
A General-Purpose Multilingual Document Encoder
Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders .
Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments
Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.
Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems.
Local Byte Fusion for Neural Machine Translation
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models.
What makes multilingual BERT multilingual?
Recently, multilingual BERT works remarkably well on cross-lingual transfer tasks, superior to static non-contextualized word embeddings. In this work, we provide an in-depth experimental study to supplement the existing literature of cross-lingual ability. We compare the cross-lingual ability of non-contextualized and contextualized representation model with the same data. We found that datasize and context window size are crucial factors to the transferability.
Efficiently Adapting Pretrained Language Models To New Languages
Recent large language models (LLM) exhibit sub-optimal performance on low-resource languages, as the training data of these models is usually dominated by English and other high-resource languages. Furthermore, it is challenging to train models for low-resource languages, especially from scratch, due to a lack of high quality training data. Adapting pretrained LLMs reduces the need for data in the new language while also providing cross lingual transfer capabilities. However, naively adapting to new languages leads to catastrophic forgetting and poor tokenizer efficiency. In this work, we study how to efficiently adapt any existing pretrained LLM to a new language without running into these issues. In particular, we improve the encoding efficiency of the tokenizer by adding new tokens from the target language and study the data mixing recipe to mitigate forgetting. Our experiments on adapting an English LLM to Hungarian and Thai show that our recipe can reach better performance than open source models on the target language, with minimal regressions on English.
Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed?
The vast majority of today's large language models are English-centric, having been pretrained predominantly on English text. Yet, in order to meet user expectations, models need to be able to respond appropriately in multiple languages once deployed in downstream applications. Given limited exposure to other languages during pretraining, cross-lingual transfer is important for achieving decent performance in non-English settings. In this work, we investigate just how much multilinguality is required during finetuning to elicit strong cross-lingual generalisation across a range of tasks and target languages. We find that, compared to English-only finetuning, multilingual instruction tuning with as few as three languages significantly improves a model's cross-lingual transfer abilities on generative tasks that assume input/output language agreement, while being of less importance for highly structured tasks. Our code and data is available at https://github.com/ZurichNLP/multilingual-instruction-tuning.
Parameter-Efficient Multilingual Summarisation: An Empirical Study
With the increasing prevalence of Large Language Models, traditional full fine-tuning approaches face growing challenges, especially in memory-intensive tasks. This paper investigates the potential of Parameter-Efficient Fine-Tuning, focusing on Low-Rank Adaptation (LoRA), for complex and under-explored multilingual summarisation tasks. We conduct an extensive study across different data availability scenarios, including full-data, low-data, and cross-lingual transfer, leveraging models of different sizes. Our findings reveal that LoRA lags behind full fine-tuning when trained with full data, however, it excels in low-data scenarios and cross-lingual transfer. Interestingly, as models scale up, the performance gap between LoRA and full fine-tuning diminishes. Additionally, we investigate effective strategies for few-shot cross-lingual transfer, finding that continued LoRA tuning achieves the best performance compared to both full fine-tuning and dynamic composition of language-specific LoRA modules.
TRAM: Bridging Trust Regions and Sharpness Aware Minimization
Sharpness-aware minimization (SAM) reports improving domain generalization by reducing the loss surface curvature in the parameter space. However, generalization during fine-tuning is often more dependent on the transferability of representations in the function space. Trust-region methods (TR) target this goal by regularizing representation curvature to reduce catastrophic forgetting of pre-trained task-agnostic information while adopting task-specific skills. We consider unifying these strategies for low curvature in both parameter space and function space to improve out-of-domain (OOD) generalization. We propose Trust Region Aware Minimization (TRAM), a SAM algorithm fine-tuning for low parameter sharpness and smooth, informative representations preserving pre-trained structure. TRAM uses a trust region bound to inform the SAM adversarial neighborhood, introducing an awareness of function curvature within optimization for flatter minima. We empirically validate TRAM in vision (cross-dataset adaptation) and text (OOD language modeling, zero-shot cross-lingual transfer) tasks where robust domain transfer and representation generality are critical. TRAM outperforms SAM- and TR-based optimization across all tasks, notably surpassing competing methods for hard transfer between anticorrelated domains. TRAM establishes a novel standard in fine-tuning for domain-generalizable models with minimal additional computation over previous sharpness-aware methods.
Towards Making the Most of Multilingual Pretraining for Zero-Shot Neural Machine Translation
This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.
UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset
Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks.
Language and Task Arithmetic with Parameter-Efficient Layers for Zero-Shot Summarization
Parameter-efficient fine-tuning (PEFT) using labeled task data can significantly improve the performance of large language models (LLMs) on the downstream task. However, there are 7000 languages in the world and many of these languages lack labeled data for real-world language generation tasks. In this paper, we propose to improve zero-shot cross-lingual transfer by composing language or task specialized parameters. Our method composes language and task PEFT modules via element-wise arithmetic operations to leverage unlabeled data and English labeled data. We extend our approach to cases where labeled data from more languages is available and propose to arithmetically compose PEFT modules trained on languages related to the target. Empirical results on summarization demonstrate that our method is an effective strategy that obtains consistent gains using minimal training of PEFT modules.
Aligning LLMs with Domain Invariant Reward Models
Aligning large language models (LLMs) to human preferences is challenging in domains where preference data is unavailable. We address the problem of learning reward models for such target domains by leveraging feedback collected from simpler source domains, where human preferences are easier to obtain. Our key insight is that, while domains may differ significantly, human preferences convey domain-agnostic concepts that can be effectively captured by a reward model. We propose \method, a framework that trains domain-invariant reward models by optimizing a dual loss: a domain loss that minimizes the divergence between source and target distribution, and a source loss that optimizes preferences on the source domain. We show \method is a general approach that we evaluate and analyze across 4 distinct settings: (1) Cross-lingual transfer (accuracy: 0.621 rightarrow 0.661), (2) Clean-to-noisy (accuracy: 0.671 rightarrow 0.703), (3) Few-shot-to-full transfer (accuracy: 0.845 rightarrow 0.920), and (4) Simple-to-complex tasks transfer (correlation: 0.508 rightarrow 0.556). Our code, models and data are available at https://github.com/portal-cornell/dial.
Neuron Specialization: Leveraging intrinsic task modularity for multilingual machine translation
Training a unified multilingual model promotes knowledge transfer but inevitably introduces negative interference. Language-specific modeling methods show promise in reducing interference. However, they often rely on heuristics to distribute capacity and struggle to foster cross-lingual transfer via isolated modules. In this paper, we explore intrinsic task modularity within multilingual networks and leverage these observations to circumvent interference under multilingual translation. We show that neurons in the feed-forward layers tend to be activated in a language-specific manner. Meanwhile, these specialized neurons exhibit structural overlaps that reflect language proximity, which progress across layers. Based on these findings, we propose Neuron Specialization, an approach that identifies specialized neurons to modularize feed-forward layers and then continuously updates them through sparse networks. Extensive experiments show that our approach achieves consistent performance gains over strong baselines with additional analyses demonstrating reduced interference and increased knowledge transfer.
MSVD-Indonesian: A Benchmark for Multimodal Video-Text Tasks in Indonesian
Multimodal learning on video and text data has been receiving growing attention from many researchers in various research tasks, including text-to-video retrieval, video-to-text retrieval, and video captioning. Although many algorithms have been proposed for those challenging tasks, most of them are developed on English language datasets. Despite Indonesian being one of the most spoken languages in the world, the research progress on the multimodal video-text with Indonesian sentences is still under-explored, likely due to the absence of the public benchmark dataset. To address this issue, we construct the first public Indonesian video-text dataset by translating English sentences from the MSVD dataset to Indonesian sentences. Using our dataset, we then train neural network models which were developed for the English video-text dataset on three tasks, i.e., text-to-video retrieval, video-to-text retrieval, and video captioning. The recent neural network-based approaches to video-text tasks often utilized a feature extractor that is primarily pretrained on an English vision-language dataset. Since the availability of the pretraining resources with Indonesian sentences is relatively limited, the applicability of those approaches to our dataset is still questionable. To overcome the lack of pretraining resources, we apply cross-lingual transfer learning by utilizing the feature extractors pretrained on the English dataset, and we then fine-tune the models on our Indonesian dataset. Our experimental results show that this approach can help to improve the performance for the three tasks on all metrics. Finally, we discuss potential future works using our dataset, inspiring further research in the Indonesian multimodal video-text tasks. We believe that our dataset and our experimental results could provide valuable contributions to the community. Our dataset is available on GitHub.
Romanization-based Large-scale Adaptation of Multilingual Language Models
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.
IndicXNLI: Evaluating Multilingual Inference for Indian Languages
While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce IndicXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of IndicXNLI. By finetuning different pre-trained LMs on this IndicXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.
Adapting Pre-trained Language Models to African Languages via Multilingual Adaptive Fine-Tuning
Multilingual pre-trained language models (PLMs) have demonstrated impressive performance on several downstream tasks for both high-resourced and low-resourced languages. However, there is still a large performance drop for languages unseen during pre-training, especially African languages. One of the most effective approaches to adapt to a new language is language adaptive fine-tuning (LAFT) -- fine-tuning a multilingual PLM on monolingual texts of a language using the pre-training objective. However, adapting to a target language individually takes a large disk space and limits the cross-lingual transfer abilities of the resulting models because they have been specialized for a single language. In this paper, we perform multilingual adaptive fine-tuning on 17 most-resourced African languages and three other high-resource languages widely spoken on the African continent to encourage cross-lingual transfer learning. To further specialize the multilingual PLM, we removed vocabulary tokens from the embedding layer that corresponds to non-African writing scripts before MAFT, thus reducing the model size by around 50%. Our evaluation on two multilingual PLMs (AfriBERTa and XLM-R) and three NLP tasks (NER, news topic classification, and sentiment classification) shows that our approach is competitive to applying LAFT on individual languages while requiring significantly less disk space. Additionally, we show that our adapted PLM also improves the zero-shot cross-lingual transfer abilities of parameter efficient fine-tuning methods.
Preference Tuning For Toxicity Mitigation Generalizes Across Languages
Detoxifying multilingual Large Language Models (LLMs) has become crucial due to their increasing global use. In this work, we explore zero-shot cross-lingual generalization of preference tuning in detoxifying LLMs. Unlike previous studies that show limited cross-lingual generalization for other safety tasks, we demonstrate that Direct Preference Optimization (DPO) training with only English data can significantly reduce toxicity in multilingual open-ended generations. For example, the probability of mGPT-1.3B generating toxic continuations drops from 46.8% to 3.9% across 17 different languages after training. Our results also extend to other multilingual LLMs, such as BLOOM, Llama3, and Aya-23. Using mechanistic interpretability tools like causal intervention and activation analysis, we identified the dual multilinguality property of MLP layers in LLMs, which explains the cross-lingual generalization of DPO. Finally, we show that bilingual sentence retrieval can predict the cross-lingual transferability of DPO preference tuning.
Pixel Sentence Representation Learning
Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist
On the Usability of Transformers-based models for a French Question-Answering task
For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings.
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
Word alignment over parallel corpora has a wide variety of applications, including learning translation lexicons, cross-lingual transfer of language processing tools, and automatic evaluation or analysis of translation outputs. The great majority of past work on word alignment has worked by performing unsupervised learning on parallel texts. Recently, however, other work has demonstrated that pre-trained contextualized word embeddings derived from multilingually trained language models (LMs) prove an attractive alternative, achieving competitive results on the word alignment task even in the absence of explicit training on parallel data. In this paper, we examine methods to marry the two approaches: leveraging pre-trained LMs but fine-tuning them on parallel text with objectives designed to improve alignment quality, and proposing methods to effectively extract alignments from these fine-tuned models. We perform experiments on five language pairs and demonstrate that our model can consistently outperform previous state-of-the-art models of all varieties. In addition, we demonstrate that we are able to train multilingual word aligners that can obtain robust performance on different language pairs. Our aligner, AWESOME (Aligning Word Embedding Spaces of Multilingual Encoders), with pre-trained models is available at https://github.com/neulab/awesome-align
ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval
State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community.
Table Question Answering for Low-resourced Indic Languages
TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).
Bilingual Adaptation of Monolingual Foundation Models
We present an efficient method for adapting a monolingual Large Language Model (LLM) to another language, addressing challenges of catastrophic forgetting and tokenizer limitations. We focus this study on adapting Llama 2 to Arabic. Our two-stage approach begins with expanding the vocabulary and training only the embeddings matrix, followed by full model continual pre-training on a bilingual corpus. By continually pre-training on a mix of Arabic and English corpora, the model retains its proficiency in English while acquiring capabilities in Arabic. Our approach results in significant improvements in Arabic and slight enhancements in English, demonstrating cost-effective cross-lingual transfer. We perform ablations on embedding initialization techniques, data mix ratios, and learning rates and release a detailed training recipe. To demonstrate generalizability of this approach we also adapted Llama 3 8B to Arabic and Llama 2 13B to Hindi.
EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models
In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks and PolyWrite, an open-ended generation benchmark developed in this study. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability.
Few-shot Learning with Multilingual Language Models
Large-scale generative language models such as GPT-3 are competitive few-shot learners. While these models are known to be able to jointly represent many different languages, their training data is dominated by English, potentially limiting their cross-lingual generalization. In this work, we train multilingual generative language models on a corpus covering a diverse set of languages, and study their few- and zero-shot learning capabilities in a wide range of tasks. Our largest model with 7.5 billion parameters sets new state of the art in few-shot learning in more than 20 representative languages, outperforming GPT-3 of comparable size in multilingual commonsense reasoning (with +7.4% absolute accuracy improvement in 0-shot settings and +9.4% in 4-shot settings) and natural language inference (+5.4% in each of 0-shot and 4-shot settings). On the FLORES-101 machine translation benchmark, our model outperforms GPT-3 on 171 out of 182 directions with 32 training examples, while surpassing the official supervised baseline in 45 directions. We conduct an in-depth analysis of different multilingual prompting approaches, showing in particular that strong few-shot learning performance across languages can be achieved via cross-lingual transfer through both templates and demonstration examples. Finally, we evaluate our models in social value tasks such as hate speech detection in five languages and find it has limitations similar to comparable sized GPT-3 models.
INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages
Slot-filling and intent detection are well-established tasks in Conversational AI. However, current large-scale benchmarks for these tasks often exclude evaluations of low-resource languages and rely on translations from English benchmarks, thereby predominantly reflecting Western-centric concepts. In this paper, we introduce Injongo -- a multicultural, open-source benchmark dataset for 16 African languages with utterances generated by native speakers across diverse domains, including banking, travel, home, and dining. Through extensive experiments, we benchmark the fine-tuning multilingual transformer models and the prompting large language models (LLMs), and show the advantage of leveraging African-cultural utterances over Western-centric utterances for improving cross-lingual transfer from the English language. Experimental results reveal that current LLMs struggle with the slot-filling task, with GPT-4o achieving an average performance of 26 F1-score. In contrast, intent detection performance is notably better, with an average accuracy of 70.6%, though it still falls behind the fine-tuning baselines. Compared to the English language, GPT-4o and fine-tuning baselines perform similarly on intent detection, achieving an accuracy of approximately 81%. Our findings suggest that the performance of LLMs is still behind for many low-resource African languages, and more work is needed to further improve their downstream performance.
Multi-Agent Collaboration for Multilingual Code Instruction Tuning
Recent advancement in code understanding and generation demonstrates that code LLMs fine-tuned on a high-quality instruction dataset can gain powerful capabilities to address wide-ranging code-related tasks. However, most previous existing methods mainly view each programming language in isolation and ignore the knowledge transfer among different programming languages. To bridge the gap among different programming languages, we introduce a novel multi-agent collaboration framework to enhance multilingual instruction tuning for code LLMs, where multiple language-specific intelligent agent components with generation memory work together to transfer knowledge from one language to another efficiently and effectively. Specifically, we first generate the language-specific instruction data from the code snippets and then provide the generated data as the seed data for language-specific agents. Multiple language-specific agents discuss and collaborate to formulate a new instruction and its corresponding solution (A new programming language or existing programming language), To further encourage the cross-lingual transfer, each agent stores its generation history as memory and then summarizes its merits and faults. Finally, the high-quality multilingual instruction data is used to encourage knowledge transfer among different programming languages to train Qwen2.5-xCoder. Experimental results on multilingual programming benchmarks demonstrate the superior performance of Qwen2.5-xCoder in sharing common knowledge, highlighting its potential to reduce the cross-lingual gap.
Multilingual Large Language Models: A Systematic Survey
This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.
SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects
Despite the progress we have recorded in the last few years in multilingual natural language processing, evaluation is typically limited to a small set of languages with available datasets which excludes a large number of low-resource languages. In this paper, we created SIB-200 -- a large-scale open-sourced benchmark dataset for topic classification in 200 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 203 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, under-represented language families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset will encourage a more inclusive evaluation of multilingual language models on a more diverse set of languages. https://github.com/dadelani/sib-200
mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models
Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke.
Similarity of Sentence Representations in Multilingual LMs: Resolving Conflicting Literature and Case Study of Baltic Languages
Low-resource languages, such as Baltic languages, benefit from Large Multilingual Models (LMs) that possess remarkable cross-lingual transfer performance capabilities. This work is an interpretation and analysis study into cross-lingual representations of Multilingual LMs. Previous works hypothesized that these LMs internally project representations of different languages into a shared cross-lingual space. However, the literature produced contradictory results. In this paper, we revisit the prior work claiming that "BERT is not an Interlingua" and show that different languages do converge to a shared space in such language models with another choice of pooling strategy or similarity index. Then, we perform cross-lingual representational analysis for the two most popular multilingual LMs employing 378 pairwise language comparisons. We discover that while most languages share joint cross-lingual space, some do not. However, we observe that Baltic languages do belong to that shared space. The code is available at https://github.com/TartuNLP/xsim.
JamPatoisNLI: A Jamaican Patois Natural Language Inference Dataset
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the effectiveness of transfer from large monolingual or multilingual pretrained models. While our work, along with previous work, shows that transfer from these models to low-resource languages that are unrelated to languages in their training set is not very effective, we would expect stronger results from transfer to creoles. Indeed, our experiments show considerably better results from few-shot learning of JamPatoisNLI than for such unrelated languages, and help us begin to understand how the unique relationship between creoles and their high-resource base languages affect cross-lingual transfer. JamPatoisNLI, which consists of naturally-occurring premises and expert-written hypotheses, is a step towards steering research into a traditionally underserved language and a useful benchmark for understanding cross-lingual NLP.
MonoByte: A Pool of Monolingual Byte-level Language Models
The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models.
Zero-shot Cross-lingual Voice Transfer for TTS
In this paper, we introduce a zero-shot Voice Transfer (VT) module that can be seamlessly integrated into a multi-lingual Text-to-speech (TTS) system to transfer an individual's voice across languages. Our proposed VT module comprises a speaker-encoder that processes reference speech, a bottleneck layer, and residual adapters, connected to preexisting TTS layers. We compare the performance of various configurations of these components and report Mean Opinion Score (MOS) and Speaker Similarity across languages. Using a single English reference speech per speaker, we achieve an average voice transfer similarity score of 73% across nine target languages. Vocal characteristics contribute significantly to the construction and perception of individual identity. The loss of one's voice, due to physical or neurological conditions, can lead to a profound sense of loss, impacting one's core identity. As a case study, we demonstrate that our approach can not only transfer typical speech but also restore the voices of individuals with dysarthria, even when only atypical speech samples are available - a valuable utility for those who have never had typical speech or banked their voice. Cross-lingual typical audio samples, plus videos demonstrating voice restoration for dysarthric speakers are available here (google.github.io/tacotron/publications/zero_shot_voice_transfer).
Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP
The development of monolingual language models for low and mid-resource languages continues to be hindered by the difficulty in sourcing high-quality training data. In this study, we present a novel cross-lingual vocabulary transfer strategy, trans-tokenization, designed to tackle this challenge and enable more efficient language adaptation. Our approach focuses on adapting a high-resource monolingual LLM to an unseen target language by initializing the token embeddings of the target language using a weighted average of semantically similar token embeddings from the source language. For this, we leverage a translation resource covering both the source and target languages. We validate our method with the Tweeties, a series of trans-tokenized LLMs, and demonstrate their competitive performance on various downstream tasks across a small but diverse set of languages. Additionally, we introduce Hydra LLMs, models with multiple swappable language modeling heads and embedding tables, which further extend the capabilities of our trans-tokenization strategy. By designing a Hydra LLM based on the multilingual model TowerInstruct, we developed a state-of-the-art machine translation model for Tatar, in a zero-shot manner, completely bypassing the need for high-quality parallel data. This breakthrough is particularly significant for low-resource languages like Tatar, where high-quality parallel data is hard to come by. By lowering the data and time requirements for training high-quality models, our trans-tokenization strategy allows for the development of LLMs for a wider range of languages, especially those with limited resources. We hope that our work will inspire further research and collaboration in the field of cross-lingual vocabulary transfer and contribute to the empowerment of languages on a global scale.
MultiSlav: Using Cross-Lingual Knowledge Transfer to Combat the Curse of Multilinguality
Does multilingual Neural Machine Translation (NMT) lead to The Curse of the Multlinguality or provides the Cross-lingual Knowledge Transfer within a language family? In this study, we explore multiple approaches for extending the available data-regime in NMT and we prove cross-lingual benefits even in 0-shot translation regime for low-resource languages. With this paper, we provide state-of-the-art open-source NMT models for translating between selected Slavic languages. We released our models on the HuggingFace Hub (https://hf.co/collections/allegro/multislav-6793d6b6419e5963e759a683) under the CC BY 4.0 license. Slavic language family comprises morphologically rich Central and Eastern European languages. Although counting hundreds of millions of native speakers, Slavic Neural Machine Translation is under-studied in our opinion. Recently, most NMT research focuses either on: high-resource languages like English, Spanish, and German - in WMT23 General Translation Task 7 out of 8 task directions are from or to English; massively multilingual models covering multiple language groups; or evaluation techniques.
Teaching Llama a New Language Through Cross-Lingual Knowledge Transfer
This paper explores cost-efficient methods to adapt pretrained Large Language Models (LLMs) to new lower-resource languages, with a specific focus on Estonian. Leveraging the Llama 2 model, we investigate the impact of combining cross-lingual instruction-tuning with additional monolingual pretraining. Our results demonstrate that even a relatively small amount of additional monolingual pretraining followed by cross-lingual instruction-tuning significantly enhances results on Estonian. Furthermore, we showcase cross-lingual knowledge transfer from high-quality English instructions to Estonian, resulting in improvements in commonsense reasoning and multi-turn conversation capabilities. Our best model, named Llammas, represents the first open-source instruction-following LLM for Estonian. Additionally, we publish Alpaca-est, the first general task instruction dataset for Estonia. These contributions mark the initial progress in the direction of developing open-source LLMs for Estonian.
ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer
To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in.
TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control
Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.
mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans
It is very challenging to curate a dataset for language-specific knowledge and common sense in order to evaluate natural language understanding capabilities of language models. Due to the limitation in the availability of annotators, most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects. Therefore, we propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction, e.g., by asking LM to generate questions/answers, refine answers and verify QAs followed by reduced human efforts for verification. Constructed dataset is a benchmark for cross-lingual language-transfer capabilities of multilingual LMs, and experimental results showed high language-transfer capabilities for questions that LMs could easily solve, but lower transfer capabilities for questions requiring deep knowledge or commonsense. This highlights the necessity of language-specific datasets for evaluation and training. Finally, our method demonstrated that multilingual LMs could create QA including language-specific knowledge, significantly reducing the dataset creation cost compared to manual creation. The datasets are available at https://huggingface.co/datasets/yusuke1997/mCSQA.
How does a Multilingual LM Handle Multiple Languages?
Multilingual language models have significantly advanced due to rapid progress in natural language processing. Models like BLOOM 1.7B, trained on diverse multilingual datasets, aim to bridge linguistic gaps. However, their effectiveness in capturing linguistic knowledge, particularly for low-resource languages, remains an open question. This study critically examines MLMs capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer. While these models perform well for high-resource languages, they struggle with less-represented ones. Additionally, traditional evaluation methods often overlook their internal syntactic and semantic encoding. This research addresses key limitations through three objectives. First, it assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity. Second, it examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures. Third, it explores cross-lingual knowledge transfer by evaluating generalization from high-resource to low-resource languages in sentiment analysis and text classification. By leveraging linguistic probing, performance metrics, and visualizations, this study provides insights into the strengths and limitations of MLMs. The findings aim to enhance multilingual NLP models, ensuring better support for both high- and low-resource languages, thereby promoting inclusivity in language technologies.
Do Multilingual Language Models Capture Differing Moral Norms?
Massively multilingual sentence representations are trained on large corpora of uncurated data, with a very imbalanced proportion of languages included in the training. This may cause the models to grasp cultural values including moral judgments from the high-resource languages and impose them on the low-resource languages. The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs. Both these issues can negatively influence zero-shot cross-lingual model transfer and potentially lead to harmful outcomes. Therefore, we aim to (1) detect and quantify these issues by comparing different models in different languages, (2) develop methods for improving undesirable properties of the models. Our initial experiments using the multilingual model XLM-R show that indeed multilingual LMs capture moral norms, even with potentially higher human-agreement than monolingual ones. However, it is not yet clear to what extent these moral norms differ between languages.
TartuNLP at EvaLatin 2024: Emotion Polarity Detection
This paper presents the TartuNLP team submission to EvaLatin 2024 shared task of the emotion polarity detection for historical Latin texts. Our system relies on two distinct approaches to annotating training data for supervised learning: 1) creating heuristics-based labels by adopting the polarity lexicon provided by the organizers and 2) generating labels with GPT4. We employed parameter efficient fine-tuning using the adapters framework and experimented with both monolingual and cross-lingual knowledge transfer for training language and task adapters. Our submission with the LLM-generated labels achieved the overall first place in the emotion polarity detection task. Our results show that LLM-based annotations show promising results on texts in Latin.
How multilingual is Multilingual BERT?
In this paper, we show that Multilingual BERT (M-BERT), released by Devlin et al. (2018) as a single language model pre-trained from monolingual corpora in 104 languages, is surprisingly good at zero-shot cross-lingual model transfer, in which task-specific annotations in one language are used to fine-tune the model for evaluation in another language. To understand why, we present a large number of probing experiments, showing that transfer is possible even to languages in different scripts, that transfer works best between typologically similar languages, that monolingual corpora can train models for code-switching, and that the model can find translation pairs. From these results, we can conclude that M-BERT does create multilingual representations, but that these representations exhibit systematic deficiencies affecting certain language pairs.
Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages
While large language models (LLMs) have been pre-trained on multilingual corpora, their performance still lags behind in most languages compared to a few resource-rich languages. One common approach to mitigate this issue is to translate training data from resource-rich languages into other languages and then continue training. However, using the data obtained solely relying on translation while ignoring the original capabilities of LLMs across languages is not always effective, which we show will limit the performance of cross-lingual knowledge transfer. In this work, we propose SDRRL, a method based on Self-Distillation from Resource-Rich Languages that effectively improve multilingual performance by leveraging the internal capabilities of LLMs on resource-rich languages. We evaluate on different LLMs (LLaMA-2 and SeaLLM) and source languages across various comprehension and generation tasks, experimental results demonstrate that SDRRL can significantly enhance multilingual capabilities while minimizing the impact on original performance in resource-rich languages.
Exploring Cross-lingual Textual Style Transfer with Large Multilingual Language Models
Detoxification is a task of generating text in polite style while preserving meaning and fluency of the original toxic text. Existing detoxification methods are designed to work in one exact language. This work investigates multilingual and cross-lingual detoxification and the behavior of large multilingual models like in this setting. Unlike previous works we aim to make large language models able to perform detoxification without direct fine-tuning in given language. Experiments show that multilingual models are capable of performing multilingual style transfer. However, models are not able to perform cross-lingual detoxification and direct fine-tuning on exact language is inevitable.
Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.
IndoToD: A Multi-Domain Indonesian Benchmark For End-to-End Task-Oriented Dialogue Systems
Task-oriented dialogue (ToD) systems have been mostly created for high-resource languages, such as English and Chinese. However, there is a need to develop ToD systems for other regional or local languages to broaden their ability to comprehend the dialogue contexts in various languages. This paper introduces IndoToD, an end-to-end multi domain ToD benchmark in Indonesian. We extend two English ToD datasets to Indonesian, comprising four different domains by delexicalization to efficiently reduce the size of annotations. To ensure a high-quality data collection, we hire native speakers to manually translate the dialogues. Along with the original English datasets, these new Indonesian datasets serve as an effective benchmark for evaluating Indonesian and English ToD systems as well as exploring the potential benefits of cross-lingual and bilingual transfer learning approaches.
Language Models' Factuality Depends on the Language of Inquiry
Multilingual language models (LMs) are expected to recall factual knowledge consistently across languages, yet they often fail to transfer knowledge between languages even when they possess the correct information in one of the languages. For example, we find that an LM may correctly identify Rashed Al Shashai as being from Saudi Arabia when asked in Arabic, but consistently fails to do so when asked in English or Swahili. To systematically investigate this limitation, we introduce a benchmark of 10,000 country-related facts across 13 languages and propose three novel metrics: Factual Recall Score, Knowledge Transferability Score, and Cross-Lingual Factual Knowledge Transferability Score-to quantify factual recall and knowledge transferability in LMs across different languages. Our results reveal fundamental weaknesses in today's state-of-the-art LMs, particularly in cross-lingual generalization where models fail to transfer knowledge effectively across different languages, leading to inconsistent performance sensitive to the language used. Our findings emphasize the need for LMs to recognize language-specific factual reliability and leverage the most trustworthy information across languages. We release our benchmark and evaluation framework to drive future research in multilingual knowledge transfer.
Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment
Aligning language models (LMs) based on human-annotated preference data is a crucial step in obtaining practical and performant LM-based systems. However, multilingual human preference data are difficult to obtain at scale, making it challenging to extend this framework to diverse languages. In this work, we evaluate a simple approach for zero-shot cross-lingual alignment, where a reward model is trained on preference data in one source language and directly applied to other target languages. On summarization and open-ended dialog generation, we show that this method is consistently successful under comprehensive evaluation settings, including human evaluation: cross-lingually aligned models are preferred by humans over unaligned models on up to >70% of evaluation instances. We moreover find that a different-language reward model sometimes yields better aligned models than a same-language reward model. We also identify best practices when there is no language-specific data for even supervised finetuning, another component in alignment.
xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning
Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.
Zero Resource Cross-Lingual Part Of Speech Tagging
Part of speech tagging in zero-resource settings can be an effective approach for low-resource languages when no labeled training data is available. Existing systems use two main techniques for POS tagging i.e. pretrained multilingual large language models(LLM) or project the source language labels into the zero resource target language and train a sequence labeling model on it. We explore the latter approach using the off-the-shelf alignment module and train a hidden Markov model(HMM) to predict the POS tags. We evaluate transfer learning setup with English as a source language and French, German, and Spanish as target languages for part-of-speech tagging. Our conclusion is that projected alignment data in zero-resource language can be beneficial to predict POS tags.
CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual Labeled Sequence Translation
Named entity recognition (NER) suffers from the scarcity of annotated training data, especially for low-resource languages without labeled data. Cross-lingual NER has been proposed to alleviate this issue by transferring knowledge from high-resource languages to low-resource languages via aligned cross-lingual representations or machine translation results. However, the performance of cross-lingual NER methods is severely affected by the unsatisfactory quality of translation or label projection. To address these problems, we propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER with the help of a multilingual labeled sequence translation model. Specifically, the target sequence is first translated into the source language and then tagged by a source NER model. We further adopt a labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence. Ultimately, the whole pipeline is integrated into an end-to-end model by the way of self-training. Experimental results on two benchmarks demonstrate that our method substantially outperforms the previous strong baseline by a large margin of +3~7 F1 scores and achieves state-of-the-art performance.
MLQA: Evaluating Cross-lingual Extractive Question Answering
Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance.
Maximizing Data Efficiency for Cross-Lingual TTS Adaptation by Self-Supervised Representation Mixing and Embedding Initialization
This paper presents an effective transfer learning framework for language adaptation in text-to-speech systems, with a focus on achieving language adaptation using minimal labeled and unlabeled data. While many works focus on reducing the usage of labeled data, very few consider minimizing the usage of unlabeled data. By utilizing self-supervised features in the pretraining stage, replacing the noisy portion of pseudo labels with these features during fine-tuning, and incorporating an embedding initialization trick, our method leverages more information from unlabeled data compared to conventional approaches. Experimental results show that our framework is able to synthesize intelligible speech in unseen languages with only 4 utterances of labeled data and 15 minutes of unlabeled data. Our methodology continues to surpass conventional techniques, even when a greater volume of data is accessible. These findings highlight the potential of our data-efficient language adaptation framework.
Cross-Lingual Consistency of Factual Knowledge in Multilingual Language Models
Multilingual large-scale Pretrained Language Models (PLMs) have been shown to store considerable amounts of factual knowledge, but large variations are observed across languages. With the ultimate goal of ensuring that users with different language backgrounds obtain consistent feedback from the same model, we study the cross-lingual consistency (CLC) of factual knowledge in various multilingual PLMs. To this end, we propose a Ranking-based Consistency (RankC) metric to evaluate knowledge consistency across languages independently from accuracy. Using this metric, we conduct an in-depth analysis of the determining factors for CLC, both at model level and at language-pair level. Among other results, we find that increasing model size leads to higher factual probing accuracy in most languages, but does not improve cross-lingual consistency. Finally, we conduct a case study on CLC when new factual associations are inserted in the PLMs via model editing. Results on a small sample of facts inserted in English reveal a clear pattern whereby the new piece of knowledge transfers only to languages with which English has a high RankC score.
BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models
Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.
Czech Dataset for Cross-lingual Subjectivity Classification
In this paper, we introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions. Our prime motivation is to provide a reliable dataset that can be used with the existing English dataset as a benchmark to test the ability of pre-trained multilingual models to transfer knowledge between Czech and English and vice versa. Two annotators annotated the dataset reaching 0.83 of the Cohen's appa inter-annotator agreement. To the best of our knowledge, this is the first subjectivity dataset for the Czech language. We also created an additional dataset that consists of 200k automatically labeled sentences. Both datasets are freely available for research purposes. Furthermore, we fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy. We fine-tune models on the existing English dataset for which we obtained results that are on par with the current state-of-the-art results. Finally, we perform zero-shot cross-lingual subjectivity classification between Czech and English to verify the usability of our dataset as the cross-lingual benchmark. We compare and discuss the cross-lingual and monolingual results and the ability of multilingual models to transfer knowledge between languages.
PersianMind: A Cross-Lingual Persian-English Large Language Model
Large language models demonstrate remarkable proficiency in various linguistic tasks and have extensive knowledge across various domains. Although they perform best in English, their ability in other languages is notable too. In contrast, open-source models, such as LLaMa, are primarily trained on English datasets, resulting in poor performance in non-English languages. In this paper, we introduce PersianMind, an open-source bilingual large language model which demonstrates comparable performance to closed-source GPT-3.5-turbo in the Persian language. By expanding LLaMa2's vocabulary with 10,000 Persian tokens and training it on a dataset comprising nearly 2 billion Persian tokens, we show that our approach preserves the model's English knowledge and employs transfer learning to excel at transferring task knowledge from one language to another.
Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention
In this work, we study whether multilingual language models (MultiLMs) can transfer logical reasoning abilities to other languages when they are fine-tuned for reasoning in a different language. We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i.e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning). On two logical reasoning datasets, RuleTaker and LeapOfThought, we demonstrate that although MultiLMs can transfer reasoning ability across languages in a monolingual setting, they struggle to transfer reasoning abilities in a code-switched setting. Following this observation, we propose a novel attention mechanism that uses a dedicated set of parameters to encourage cross-lingual attention in code-switched sequences, which improves the reasoning performance by up to 14% and 4% on the RuleTaker and LeapOfThought datasets, respectively.
Towards Unifying Multi-Lingual and Cross-Lingual Summarization
To adapt text summarization to the multilingual world, previous work proposes multi-lingual summarization (MLS) and cross-lingual summarization (CLS). However, these two tasks have been studied separately due to the different definitions, which limits the compatible and systematic research on both of them. In this paper, we aim to unify MLS and CLS into a more general setting, i.e., many-to-many summarization (M2MS), where a single model could process documents in any language and generate their summaries also in any language. As the first step towards M2MS, we conduct preliminary studies to show that M2MS can better transfer task knowledge across different languages than MLS and CLS. Furthermore, we propose Pisces, a pre-trained M2MS model that learns language modeling, cross-lingual ability and summarization ability via three-stage pre-training. Experimental results indicate that our Pisces significantly outperforms the state-of-the-art baselines, especially in the zero-shot directions, where there is no training data from the source-language documents to the target-language summaries.
XNLIeu: a dataset for cross-lingual NLI in Basque
XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.
Constructing Code-mixed Universal Dependency Forest for Unbiased Cross-lingual Relation Extraction
Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we investigate an unbiased UD-based XRE transfer by constructing a type of code-mixed UD forest. We first translate the sentence of the source language to the parallel target-side language, for both of which we parse the UD tree respectively. Then, we merge the source-/target-side UD structures as a unified code-mixed UD forest. With such forest features, the gaps of UD-based XRE between the training and predicting phases can be effectively closed. We conduct experiments on the ACE XRE benchmark datasets, where the results demonstrate that the proposed code-mixed UD forests help unbiased UD-based XRE transfer, with which we achieve significant XRE performance gains.
XNLI: Evaluating Cross-lingual Sentence Representations
State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 15 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.