new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

Multimodal AI predicts clinical outcomes of drug combinations from preclinical data

Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations. Current models rely on structural or target-based features to identify high-efficacy, low-toxicity drug combinations. However, these approaches fail to incorporate the multimodal data necessary for accurate, clinically-relevant predictions. Here, we introduce MADRIGAL, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug combination effects across 953 clinical outcomes and 21842 compounds, including combinations of approved drugs and novel compounds in development. MADRIGAL uses a transformer bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference--a major challenge in multimodal learning. It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions. MADRIGAL performs virtual screening of anticancer drug combinations and supports polypharmacy management for type II diabetes and metabolic dysfunction-associated steatohepatitis (MASH). It identifies transporter-mediated drug interactions. MADRIGAL predicts resmetirom, the first and only FDA-approved drug for MASH, among therapies with the most favorable safety profile. It supports personalized cancer therapy by integrating genomic profiles from cancer patients. Using primary acute myeloid leukemia samples and patient-derived xenograft models, it predicts the efficacy of personalized drug combinations. Integrating MADRIGAL with a large language model allows users to describe clinical outcomes in natural language, improving safety assessment by identifying potential adverse interactions and toxicity risks. MADRIGAL provides a multimodal approach for designing combination therapies with improved predictive accuracy and clinical relevance.

Generating Drug Repurposing Hypotheses through the Combination of Disease-Specific Hypergraphs

The drug development pipeline for a new compound can last 10-20 years and cost over 10 billion. Drug repurposing offers a more time- and cost-effective alternative. Computational approaches based on biomedical knowledge graph representations have recently yielded new drug repurposing hypotheses. In this study, we present a novel, disease-specific hypergraph representation learning technique to derive contextual embeddings of biological pathways of various lengths but that all start at any given drug and all end at the disease of interest. Further, we extend this method to multi-disease hypergraphs. To determine the repurposing potential of each of the 1,522 drugs, we derive drug-specific distributions of cosine similarity values and ultimately consider the median for ranking. Cosine similarity values are computed between (1) all biological pathways starting at the considered drug and ending at the disease of interest and (2) all biological pathways starting at drugs currently prescribed against that disease and ending at the disease of interest. We illustrate our approach with Alzheimer's disease (AD) and two of its risk factors: hypertension (HTN) and type 2 diabetes (T2D). We compare each drug's rank across four hypergraph settings (single- or multi-disease): AD only, AD + HTN, AD + T2D, and AD + HTN + T2D. Notably, our framework led to the identification of two promising drugs whose repurposing potential was significantly higher in hypergraphs combining two diseases: dapagliflozin (antidiabetic; moved up, from top 32% to top 7%, across all considered drugs) and debrisoquine (antihypertensive; moved up, from top 76% to top 23%). Our approach serves as a hypothesis generation tool, to be paired with a validation pipeline relying on laboratory experiments and semi-automated parsing of the biomedical literature.

MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language

Drug discovery typically consists of multiple steps, including identifying a target protein key to a disease's etiology, validating that interacting with this target could prevent symptoms or cure the disease, discovering a small molecule or biologic therapeutic to interact with it, and optimizing the candidate molecule through a complex landscape of required properties. Drug discovery related tasks often involve prediction and generation while considering multiple entities that potentially interact, which poses a challenge for typical AI models. For this purpose we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a method that we applied to create a versatile multi-task foundation model ibm/biomed.omics.bl.sm.ma-ted-458m that learns from large-scale biological datasets (2 billion samples) across diverse modalities, including proteins, small molecules, and genes. We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks. It allows combining different modalities and entity types as inputs and/or outputs. Our model handles combinations of tokens and scalars and enables the generation of small molecules and proteins, property prediction, and transcriptomic lab test predictions. We evaluated the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline, where it reaches new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This performance is achieved while using a unified architecture serving all tasks, in contrast to the original SOTA performance achieved using tailored architectures. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.

Mixed Effects Deep Learning for the interpretable analysis of single cell RNA sequencing data by quantifying and visualizing batch effects

Single-cell RNA sequencing (scRNA-seq) data are often confounded by technical or biological batch effects. Existing deep learning models mitigate these effects but often discard batch-specific information, potentially losing valuable biological insights. We propose a Mixed Effects Deep Learning (MEDL) autoencoder framework that separately models batch-invariant (fixed effects) and batch-specific (random effects) components. By decoupling batch-invariant biological states from batch variations, our framework integrates both into predictive models. Our approach also generates 2D visualizations of how the same cell appears across batches, enhancing interpretability. Retaining both fixed and random effect latent spaces improves classification accuracy. We applied our framework to three datasets spanning the cardiovascular system (Healthy Heart), Autism Spectrum Disorder (ASD), and Acute Myeloid Leukemia (AML). With 147 batches in the Healthy Heart dataset, far exceeding typical numbers, we tested our framework's ability to handle many batches. In the ASD dataset, our approach captured donor heterogeneity between autistic and healthy individuals. In the AML dataset, it distinguished donor heterogeneity despite missing cell types and diseased donors exhibiting both healthy and malignant cells. These results highlight our framework's ability to characterize fixed and random effects, enhance batch effect visualization, and improve prediction accuracy across diverse datasets.

Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations

Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Therefore, screening of microbe-drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe-drug associations. In this paper, we proposed a novel method, Graph2MDA, to predict microbe-drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences, and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe-drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaningness of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75\%-95\% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method.\