- Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations Building socialbots that can have deep, engaging open-domain conversations with humans is one of the grand challenges of artificial intelligence (AI). To this end, bots need to be able to leverage world knowledge spanning several domains effectively when conversing with humans who have their own world knowledge. Existing knowledge-grounded conversation datasets are primarily stylized with explicit roles for conversation partners. These datasets also do not explore depth or breadth of topical coverage with transitions in conversations. We introduce Topical-Chat, a knowledge-grounded human-human conversation dataset where the underlying knowledge spans 8 broad topics and conversation partners don't have explicitly defined roles, to help further research in open-domain conversational AI. We also train several state-of-the-art encoder-decoder conversational models on Topical-Chat and perform automated and human evaluation for benchmarking. 8 authors · Aug 23, 2023
- Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems In recent years, several high-performance conversational systems have been proposed based on the Transformer encoder-decoder model. Although previous studies analyzed the effects of the model parameters and the decoding method on subjective dialogue evaluations with overall metrics, they did not analyze how the differences of fine-tuning datasets affect on user's detailed impression. In addition, the Transformer-based approach has only been verified for English, not for such languages with large inter-language distances as Japanese. In this study, we develop large-scale Transformer-based Japanese dialogue models and Japanese chit-chat datasets to examine the effectiveness of the Transformer-based approach for building chit-chat dialogue systems. We evaluated and analyzed the impressions of human dialogues in different fine-tuning datasets, model parameters, and the use of additional information. 7 authors · Sep 11, 2021
- Fine-grained Conversational Decoding via Isotropic and Proximal Search General-purpose text decoding approaches are usually adopted for dialogue response generation. Although the quality of the generated responses can be improved with dialogue-specific encoding methods, conversational decoding methods are still under-explored. Inspired by wu2023learning that a good dialogue feature space should follow the rules of locality and isotropy, we present a fine-grained conversational decoding method, termed isotropic and proximal search (IPS). Our method is designed to generate the semantic-concentrated response, while still maintaining informativeness and discrimination against the context. Experiments show that our approach outperforms existing decoding strategies in the dialogue field across both automatic and human evaluation metrics. More in-depth analyses further confirm the effectiveness of our approach. 4 authors · Oct 12, 2023
- InterviewBot: Real-Time End-to-End Dialogue System to Interview Students for College Admission We present the InterviewBot that dynamically integrates conversation history and customized topics into a coherent embedding space to conduct 10 mins hybrid-domain (open and closed) conversations with foreign students applying to U.S. colleges for assessing their academic and cultural readiness. To build a neural-based end-to-end dialogue model, 7,361 audio recordings of human-to-human interviews are automatically transcribed, where 440 are manually corrected for finetuning and evaluation. To overcome the input/output size limit of a transformer-based encoder-decoder model, two new methods are proposed, context attention and topic storing, allowing the model to make relevant and consistent interactions. Our final model is tested both statistically by comparing its responses to the interview data and dynamically by inviting professional interviewers and various students to interact with it in real-time, finding it highly satisfactory in fluency and context awareness. 4 authors · Mar 27, 2023
4 A Repository of Conversational Datasets Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using '1-of-100 accuracy'. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set. 11 authors · Apr 12, 2019
- SSP: Self-Supervised Post-training for Conversational Search Conversational search has been regarded as the next-generation search paradigm. Constrained by data scarcity, most existing methods distill the well-trained ad-hoc retriever to the conversational retriever. However, these methods, which usually initialize parameters by query reformulation to discover contextualized dependency, have trouble in understanding the dialogue structure information and struggle with contextual semantic vanishing. In this paper, we propose \fullmodel (\model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model to enhance the dialogue structure and contextual semantic understanding. Furthermore, the \model can be plugged into most of the existing conversational models to boost their performance. To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by \model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20. Extensive experiments that our \model can boost the performance of several existing conversational search methods. Our source code is available at https://github.com/morecry/SSP. 6 authors · Jul 2, 2023
2 Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries Few-shot dialogue state tracking (DST) with Large Language Models (LLM) relies on an effective and efficient conversation retriever to find similar in-context examples for prompt learning. Previous works use raw dialogue context as search keys and queries, and a retriever is fine-tuned with annotated dialogues to achieve superior performance. However, the approach is less suited for scaling to new domains or new annotation languages, where fine-tuning data is unavailable. To address this problem, we handle the task of conversation retrieval based on text summaries of the conversations. A LLM-based conversation summarizer is adopted for query and key generation, which enables effective maximum inner product search. To avoid the extra inference cost brought by LLM-based conversation summarization, we further distill a light-weight conversation encoder which produces query embeddings without decoding summaries for test conversations. We validate our retrieval approach on MultiWOZ datasets with GPT-Neo-2.7B and LLaMA-7B/30B. The experimental results show a significant improvement over relevant baselines in real few-shot DST settings. 5 authors · Feb 20, 2024
3 DecoderLens: Layerwise Interpretation of Encoder-Decoder Transformers In recent years, many interpretability methods have been proposed to help interpret the internal states of Transformer-models, at different levels of precision and complexity. Here, to analyze encoder-decoder Transformers, we propose a simple, new method: DecoderLens. Inspired by the LogitLens (for decoder-only Transformers), this method involves allowing the decoder to cross-attend representations of intermediate encoder layers instead of using the final encoder output, as is normally done in encoder-decoder models. The method thus maps previously uninterpretable vector representations to human-interpretable sequences of words or symbols. We report results from the DecoderLens applied to models trained on question answering, logical reasoning, speech recognition and machine translation. The DecoderLens reveals several specific subtasks that are solved at low or intermediate layers, shedding new light on the information flow inside the encoder component of this important class of models. 5 authors · Oct 5, 2023
- Retrieval Augmentation Reduces Hallucination in Conversation Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots. 5 authors · Apr 15, 2021
2 A Neural Conversational Model Conversational modeling is an important task in natural language understanding and machine intelligence. Although previous approaches exist, they are often restricted to specific domains (e.g., booking an airline ticket) and require hand-crafted rules. In this paper, we present a simple approach for this task which uses the recently proposed sequence to sequence framework. Our model converses by predicting the next sentence given the previous sentence or sentences in a conversation. The strength of our model is that it can be trained end-to-end and thus requires much fewer hand-crafted rules. We find that this straightforward model can generate simple conversations given a large conversational training dataset. Our preliminary results suggest that, despite optimizing the wrong objective function, the model is able to converse well. It is able extract knowledge from both a domain specific dataset, and from a large, noisy, and general domain dataset of movie subtitles. On a domain-specific IT helpdesk dataset, the model can find a solution to a technical problem via conversations. On a noisy open-domain movie transcript dataset, the model can perform simple forms of common sense reasoning. As expected, we also find that the lack of consistency is a common failure mode of our model. 2 authors · Jun 18, 2015
3 EmbedLLM: Learning Compact Representations of Large Language Models With hundreds of thousands of language models available on Huggingface today, efficiently evaluating and utilizing these models across various downstream, tasks has become increasingly critical. Many existing methods repeatedly learn task-specific representations of Large Language Models (LLMs), which leads to inefficiencies in both time and computational resources. To address this, we propose EmbedLLM, a framework designed to learn compact vector representations, of LLMs that facilitate downstream applications involving many models, such as model routing. We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness. Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency. Additionally, we demonstrate that our method can forecast a model's performance on multiple benchmarks, without incurring additional inference cost. Extensive probing experiments validate that the learned embeddings capture key model characteristics, e.g. whether the model is specialized for coding tasks, even without being explicitly trained on them. We open source our dataset, code and embedder to facilitate further research and application. 6 authors · Oct 3, 2024
- Efficient Purely Convolutional Text Encoding In this work, we focus on a lightweight convolutional architecture that creates fixed-size vector embeddings of sentences. Such representations are useful for building NLP systems, including conversational agents. Our work derives from a recently proposed recursive convolutional architecture for auto-encoding text paragraphs at byte level. We propose alternations that significantly reduce training time, the number of parameters, and improve auto-encoding accuracy. Finally, we evaluate the representations created by our model on tasks from SentEval benchmark suite, and show that it can serve as a better, yet fairly low-resource alternative to popular bag-of-words embeddings. 3 authors · Aug 3, 2018
- Towards Deep Conversational Recommendations There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior. 6 authors · Dec 18, 2018
- A Large-Scale Corpus for Conversation Disentanglement Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 80% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research. 9 authors · Oct 25, 2018
- A Pre-training Based Personalized Dialogue Generation Model with Persona-sparse Data Endowing dialogue systems with personas is essential to deliver more human-like conversations. However, this problem is still far from well explored due to the difficulties of both embodying personalities in natural languages and the persona sparsity issue observed in most dialogue corpora. This paper proposes a pre-training based personalized dialogue model that can generate coherent responses using persona-sparse dialogue data. In this method, a pre-trained language model is used to initialize an encoder and decoder, and personal attribute embeddings are devised to model richer dialogue contexts by encoding speakers' personas together with dialogue histories. Further, to incorporate the target persona in the decoding process and to balance its contribution, an attention routing structure is devised in the decoder to merge features extracted from the target persona and dialogue contexts using dynamically predicted weights. Our model can utilize persona-sparse dialogues in a unified manner during the training process, and can also control the amount of persona-related features to exhibit during the inference process. Both automatic and manual evaluation demonstrates that the proposed model outperforms state-of-the-art methods for generating more coherent and persona consistent responses with persona-sparse data. 4 authors · Nov 12, 2019
1 Efficient Intent Detection with Dual Sentence Encoders Building conversational systems in new domains and with added functionality requires resource-efficient models that work under low-data regimes (i.e., in few-shot setups). Motivated by these requirements, we introduce intent detection methods backed by pretrained dual sentence encoders such as USE and ConveRT. We demonstrate the usefulness and wide applicability of the proposed intent detectors, showing that: 1) they outperform intent detectors based on fine-tuning the full BERT-Large model or using BERT as a fixed black-box encoder on three diverse intent detection data sets; 2) the gains are especially pronounced in few-shot setups (i.e., with only 10 or 30 annotated examples per intent); 3) our intent detectors can be trained in a matter of minutes on a single CPU; and 4) they are stable across different hyperparameter settings. In hope of facilitating and democratizing research focused on intention detection, we release our code, as well as a new challenging single-domain intent detection dataset comprising 13,083 annotated examples over 77 intents. 5 authors · Mar 10, 2020
- Discovering Useful Sentence Representations from Large Pretrained Language Models Despite the extensive success of pretrained language models as encoders for building NLP systems, they haven't seen prominence as decoders for sequence generation tasks. We explore the question of whether these models can be adapted to be used as universal decoders. To be considered "universal," a decoder must have an implicit representation for any target sentence s, such that it can recover that sentence exactly when conditioned on its representation. For large transformer-based language models trained on vast amounts of English text, we investigate whether such representations can be easily discovered using standard optimization methods. We present and compare three representation injection techniques for transformer-based models and three accompanying methods which map sentences to and from this representation space. Experiments show that not only do representations exist for sentences from a variety of genres. More importantly, without needing complex optimization algorithms, our methods recover these sentences almost perfectly without fine-tuning the underlying language model at all. 2 authors · Aug 20, 2020
- A Three-Stage Learning Framework for Low-Resource Knowledge-Grounded Dialogue Generation Neural conversation models have shown great potentials towards generating fluent and informative responses by introducing external background knowledge. Nevertheless, it is laborious to construct such knowledge-grounded dialogues, and existing models usually perform poorly when transfer to new domains with limited training samples. Therefore, building a knowledge-grounded dialogue system under the low-resource setting is a still crucial issue. In this paper, we propose a novel three-stage learning framework based on weakly supervised learning which benefits from large scale ungrounded dialogues and unstructured knowledge base. To better cooperate with this framework, we devise a variant of Transformer with decoupled decoder which facilitates the disentangled learning of response generation and knowledge incorporation. Evaluation results on two benchmarks indicate that our approach can outperform other state-of-the-art methods with less training data, and even in zero-resource scenario, our approach still performs well. 6 authors · Sep 9, 2021
1 Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area. 7 authors · Feb 18, 2024
- Factorising Meaning and Form for Intent-Preserving Paraphrasing We propose a method for generating paraphrases of English questions that retain the original intent but use a different surface form. Our model combines a careful choice of training objective with a principled information bottleneck, to induce a latent encoding space that disentangles meaning and form. We train an encoder-decoder model to reconstruct a question from a paraphrase with the same meaning and an exemplar with the same surface form, leading to separated encoding spaces. We use a Vector-Quantized Variational Autoencoder to represent the surface form as a set of discrete latent variables, allowing us to use a classifier to select a different surface form at test time. Crucially, our method does not require access to an external source of target exemplars. Extensive experiments and a human evaluation show that we are able to generate paraphrases with a better tradeoff between semantic preservation and syntactic novelty compared to previous methods. 2 authors · May 31, 2021
- Can Unconditional Language Models Recover Arbitrary Sentences? Neural network-based generative language models like ELMo and BERT can work effectively as general purpose sentence encoders in text classification without further fine-tuning. Is it possible to adapt them in a similar way for use as general-purpose decoders? For this to be possible, it would need to be the case that for any target sentence of interest, there is some continuous representation that can be passed to the language model to cause it to reproduce that sentence. We set aside the difficult problem of designing an encoder that can produce such representations and, instead, ask directly whether such representations exist at all. To do this, we introduce a pair of effective, complementary methods for feeding representations into pretrained unconditional language models and a corresponding set of methods to map sentences into and out of this representation space, the reparametrized sentence space. We then investigate the conditions under which a language model can be made to generate a sentence through the identification of a point in such a space and find that it is possible to recover arbitrary sentences nearly perfectly with language models and representations of moderate size without modifying any model parameters. 3 authors · Jul 10, 2019
63 Yi: Open Foundation Models by 01.AI We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models. 31 authors · Mar 7, 2024 3
- CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data Generation Conversational search provides a natural interface for information retrieval (IR). Recent approaches have demonstrated promising results in applying dense retrieval to conversational IR. However, training dense retrievers requires large amounts of in-domain paired data. This hinders the development of conversational dense retrievers, as abundant in-domain conversations are expensive to collect. In this paper, we propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues. Specifically, we utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus. Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models, demonstrating the effectiveness of our proposed framework in few-shot conversational dense retrieval. All source code and generated datasets are available at https://github.com/MiuLab/CONVERSER 5 authors · Sep 13, 2023
2 Triple-Encoders: Representations That Fire Together, Wire Together Search-based dialog models typically re-encode the dialog history at every turn, incurring high cost. Curved Contrastive Learning, a representation learning method that encodes relative distances between utterances into the embedding space via a bi-encoder, has recently shown promising results for dialog modeling at far superior efficiency. While high efficiency is achieved through independently encoding utterances, this ignores the importance of contextualization. To overcome this issue, this study introduces triple-encoders, which efficiently compute distributed utterance mixtures from these independently encoded utterances through a novel hebbian inspired co-occurrence learning objective without using any weights. Empirically, we find that triple-encoders lead to a substantial improvement over bi-encoders, and even to better zero-shot generalization than single-vector representation models without requiring re-encoding. Our code/model is publicly available. 5 authors · Feb 19, 2024
- Distilling Knowledge for Fast Retrieval-based Chat-bots Response retrieval is a subset of neural ranking in which a model selects a suitable response from a set of candidates given a conversation history. Retrieval-based chat-bots are typically employed in information seeking conversational systems such as customer support agents. In order to make pairwise comparisons between a conversation history and a candidate response, two approaches are common: cross-encoders performing full self-attention over the pair and bi-encoders encoding the pair separately. The former gives better prediction quality but is too slow for practical use. In this paper, we propose a new cross-encoder architecture and transfer knowledge from this model to a bi-encoder model using distillation. This effectively boosts bi-encoder performance at no cost during inference time. We perform a detailed analysis of this approach on three response retrieval datasets. 3 authors · Apr 23, 2020
1 Stateful Memory-Augmented Transformers for Dialogue Modeling Transformer encoder-decoder models have shown impressive performance in dialogue modeling. However, as Transformers are inefficient in processing long sequences, dialogue history length often needs to be truncated. To address this problem, we propose a new memory-augmented Transformer that is compatible with existing pre-trained encoder-decoder models and enables efficient preservation of history information. It incorporates a separate memory module alongside the pre-trained Transformer to effectively interchange information between the memory states and the current input context. We evaluate our model on three dialogue datasets and two language modeling datasets. Experimental results show that our method has achieved superior efficiency and performance compared to other pre-trained Transformer baselines. 2 authors · Sep 15, 2022 2
- Neural Approaches to Conversational AI The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. 3 authors · Sep 21, 2018
- Improving Conversational Recommendation Systems' Quality with Context-Aware Item Meta Information Conversational recommendation systems (CRS) engage with users by inferring user preferences from dialog history, providing accurate recommendations, and generating appropriate responses. Previous CRSs use knowledge graph (KG) based recommendation modules and integrate KG with language models for response generation. Although KG-based approaches prove effective, two issues remain to be solved. First, KG-based approaches ignore the information in the conversational context but only rely on entity relations and bag of words to recommend items. Second, it requires substantial engineering efforts to maintain KGs that model domain-specific relations, thus leading to less flexibility. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder. The encoder learns to map item metadata to embeddings that can reflect the semantic information in the dialog context. The PLM then consumes the semantic-aligned item embeddings together with dialog context to generate high-quality recommendations and responses. Instead of modeling entity relations with KGs, our model reduces engineering complexity by directly converting each item to an embedding. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks. 5 authors · Dec 15, 2021
- DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization Dialogue is an essential part of human communication and cooperation. Existing research mainly focuses on short dialogue scenarios in a one-on-one fashion. However, multi-person interactions in the real world, such as meetings or interviews, are frequently over a few thousand words. There is still a lack of corresponding research and powerful tools to understand and process such long dialogues. Therefore, in this work, we present a pre-training framework for long dialogue understanding and summarization. Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training. For a dialogue, it corrupts a window of text with dialogue-inspired noise, and guides the model to reconstruct this window based on the content of the remaining conversation. Furthermore, to process longer input, we augment the model with sparse attention which is combined with conventional attention in a hybrid manner. We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation. Experimentally, we show that our pre-trained model DialogLM significantly surpasses the state-of-the-art models across datasets and tasks. Source code and all the pre-trained models are available on our GitHub repository (https://github.com/microsoft/DialogLM). 5 authors · Sep 6, 2021
- Adapting Document-Grounded Dialog Systems to Spoken Conversations using Data Augmentation and a Noisy Channel Model This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge. 4 authors · Dec 16, 2021
- Visual Dialog We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the agent has to ground the question in image, infer context from history, and answer the question accurately. Visual Dialog is disentangled enough from a specific downstream task so as to serve as a general test of machine intelligence, while being grounded in vision enough to allow objective evaluation of individual responses and benchmark progress. We develop a novel two-person chat data-collection protocol to curate a large-scale Visual Dialog dataset (VisDial). VisDial v0.9 has been released and contains 1 dialog with 10 question-answer pairs on ~120k images from COCO, with a total of ~1.2M dialog question-answer pairs. We introduce a family of neural encoder-decoder models for Visual Dialog with 3 encoders -- Late Fusion, Hierarchical Recurrent Encoder and Memory Network -- and 2 decoders (generative and discriminative), which outperform a number of sophisticated baselines. We propose a retrieval-based evaluation protocol for Visual Dialog where the AI agent is asked to sort a set of candidate answers and evaluated on metrics such as mean-reciprocal-rank of human response. We quantify gap between machine and human performance on the Visual Dialog task via human studies. Putting it all together, we demonstrate the first 'visual chatbot'! Our dataset, code, trained models and visual chatbot are available on https://visualdialog.org 8 authors · Nov 26, 2016
- Attention with Intention for a Neural Network Conversation Model In a conversation or a dialogue process, attention and intention play intrinsic roles. This paper proposes a neural network based approach that models the attention and intention processes. It essentially consists of three recurrent networks. The encoder network is a word-level model representing source side sentences. The intention network is a recurrent network that models the dynamics of the intention process. The decoder network is a recurrent network produces responses to the input from the source side. It is a language model that is dependent on the intention and has an attention mechanism to attend to particular source side words, when predicting a symbol in the response. The model is trained end-to-end without labeling data. Experiments show that this model generates natural responses to user inputs. 3 authors · Oct 29, 2015
- Parameter-Efficient Conversational Recommender System as a Language Processing Task Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs. 5 authors · Jan 25, 2024
- Neural Question Generation from Text: A Preliminary Study Automatic question generation aims to generate questions from a text passage where the generated questions can be answered by certain sub-spans of the given passage. Traditional methods mainly use rigid heuristic rules to transform a sentence into related questions. In this work, we propose to apply the neural encoder-decoder model to generate meaningful and diverse questions from natural language sentences. The encoder reads the input text and the answer position, to produce an answer-aware input representation, which is fed to the decoder to generate an answer focused question. We conduct a preliminary study on neural question generation from text with the SQuAD dataset, and the experiment results show that our method can produce fluent and diverse questions. 6 authors · Apr 6, 2017
- Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don't particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks -- (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model's understanding of two semantic concepts paramount in real-world conversational systems -- negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics. 7 authors · Mar 7, 2024
14 Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released. 9 authors · Jun 21, 2024 2
- Encoder vs Decoder: Comparative Analysis of Encoder and Decoder Language Models on Multilingual NLU Tasks This paper explores the performance of encoder and decoder language models on multilingual Natural Language Understanding (NLU) tasks, with a broad focus on Germanic languages. Building upon the ScandEval benchmark, which initially was restricted to evaluating encoder models, we extend the evaluation framework to include decoder models. We introduce a method for evaluating decoder models on NLU tasks and apply it to the languages Danish, Swedish, Norwegian, Icelandic, Faroese, German, Dutch, and English. Through a series of experiments and analyses, we address key research questions regarding the comparative performance of encoder and decoder models, the impact of NLU task types, and the variation across language resources. Our findings reveal that decoder models can achieve significantly better NLU performance than encoder models, with nuances observed across different tasks and languages. Additionally, we investigate the correlation between decoders and task performance via a UMAP analysis, shedding light on the unique capabilities of decoder and encoder models. This study contributes to a deeper understanding of language model paradigms in NLU tasks and provides valuable insights for model selection and evaluation in multilingual settings. 3 authors · Jun 19, 2024
- Hierarchical Pre-training for Sequence Labelling in Spoken Dialog Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning. 5 authors · Sep 23, 2020
1 CHAMPAGNE: Learning Real-world Conversation from Large-Scale Web Videos Visual information is central to conversation: body gestures and physical behaviour, for example, contribute to meaning that transcends words alone. To date, however, most neural conversational models are limited to just text. We introduce CHAMPAGNE, a generative model of conversations that can account for visual contexts. To train CHAMPAGNE, we collect and release YTD-18M, a large-scale corpus of 18M video-based dialogues. YTD-18M is constructed from web videos: crucial to our data collection pipeline is a pretrained language model that converts error-prone automatic transcripts to a cleaner dialogue format while maintaining meaning. Human evaluation reveals that YTD-18M is more sensible and specific than prior resources (MMDialog, 1M dialogues), while maintaining visual-groundedness. Experiments demonstrate that 1) CHAMPAGNE learns to conduct conversation from YTD-18M; and 2) when fine-tuned, it achieves state-of-the-art results on four vision-language tasks focused on real-world conversations. We release data, models, and code. 5 authors · Mar 16, 2023
1 Task Oriented Dialogue as a Catalyst for Self-Supervised Automatic Speech Recognition While word error rates of automatic speech recognition (ASR) systems have consistently fallen, natural language understanding (NLU) applications built on top of ASR systems still attribute significant numbers of failures to low-quality speech recognition results. Existing assistant systems collect large numbers of these unsuccessful interactions, but these systems usually fail to learn from these interactions, even in an offline fashion. In this work, we introduce CLC: Contrastive Learning for Conversations, a family of methods for contrastive fine-tuning of models in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful conversations with assistants. We demonstrate that our CLC family of approaches can improve the performance of ASR models on OD3, a new public large-scale semi-synthetic meta-dataset of audio task-oriented dialogues, by up to 19.2%. These gains transfer to real-world systems as well, where we show that CLC can help to improve performance by up to 6.7% over baselines. We make OD3 publicly available at https://github.com/amazon-science/amazon-od3 . 5 authors · Jan 4, 2024
- Regularizing Dialogue Generation by Imitating Implicit Scenarios Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge. 6 authors · Oct 5, 2020
- Local Knowledge Powered Conversational Agents State-of-the-art conversational agents have advanced significantly in conjunction with the use of large transformer-based language models. However, even with these advancements, conversational agents still lack the ability to produce responses that are informative and coherent with the local context. In this work, we propose a dialog framework that incorporates both local knowledge as well as users' past dialogues to generate high quality conversations. We introduce an approach to build a dataset based on Reddit conversations, where outbound URL links are widely available in the conversations and the hyperlinked documents can be naturally included as local external knowledge. Using our framework and dataset, we demonstrate that incorporating local knowledge can largely improve informativeness, coherency and realisticness measures using human evaluations. In particular, our approach consistently outperforms the state-of-the-art conversational model on the Reddit dataset across all three measures. We also find that scaling the size of our models from 117M to 8.3B parameters yields consistent improvement of validation perplexity as well as human evaluated metrics. Our model with 8.3B parameters can generate human-like responses as rated by various human evaluations in a single-turn dialog setting. 6 authors · Oct 20, 2020
- ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval Conversational search requires accurate interpretation of user intent from complex multi-turn contexts. This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent complex conversational sessions for dense retrieval. To achieve this, we propose a simple and effective dual-learning approach that adapts LLM for retrieval via contrastive learning while enhancing the complex session understanding through masked instruction tuning on high-quality conversational instruction tuning data. Extensive experiments on five conversational search benchmarks demonstrate that ChatRetriever substantially outperforms existing conversational dense retrievers, achieving state-of-the-art performance on par with LLM-based rewriting approaches. Furthermore, ChatRetriever exhibits superior robustness in handling diverse conversational contexts. Our work highlights the potential of adapting LLMs for retrieval with complex inputs like conversational search sessions and proposes an effective approach to advance this research direction. 7 authors · Apr 21, 2024
- Language Model Decoding as Direct Metrics Optimization Despite the remarkable advances in language modeling, current mainstream decoding methods still struggle to generate texts that align with human texts across different aspects. In particular, sampling-based methods produce less-repetitive texts which are often disjunctive in discourse, while search-based methods maintain topic coherence at the cost of increased repetition. Overall, these methods fall short in achieving holistic alignment across a broad range of aspects. In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts measured by multiple metrics of desired aspects simultaneously. The resulting decoding distribution enjoys an analytical solution that scales the input language model distribution via a sequence-level energy function defined by these metrics. And most importantly, we prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts. To facilitate tractable sampling from this globally normalized distribution, we adopt the Sampling-Importance-Resampling technique. Experiments on various domains and model scales demonstrate the superiority of our method in metrics alignment with human texts and human evaluation over strong baselines. 4 authors · Oct 2, 2023
- Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at https://michelleramanovich.github.io/spectron/spectron 9 authors · May 24, 2023
2 Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model This paper explores the potential of constructing an AI spoken dialogue system that "thinks how to respond" and "thinks how to speak" simultaneously, which more closely aligns with the human speech production process compared to the current cascade pipeline of independent chatbot and Text-to-Speech (TTS) modules. We hypothesize that Large Language Models (LLMs) with billions of parameters possess significant speech understanding capabilities and can jointly model dialogue responses and linguistic features. We conduct two sets of experiments: 1) Prosodic structure prediction, a typical front-end task in TTS, demonstrating the speech understanding ability of LLMs, and 2) Further integrating dialogue response and a wide array of linguistic features using a unified encoding format. Our results indicate that the LLM-based approach is a promising direction for building unified spoken dialogue systems. 3 authors · Sep 19, 2023
1 A Thorough Examination of Decoding Methods in the Era of LLMs Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers. Prior research on decoding methods, primarily focusing on task-specific models, may not extend to the current era of general-purpose large language models (LLMs). Moreover, the recent influx of decoding strategies has further complicated this landscape. This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of LLMs, evaluating their performance, robustness to hyperparameter changes, and decoding speeds across a wide range of tasks, models, and deployment environments. Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization. Intriguingly, sensitivity analysis exposes that certain methods achieve superior performance at the cost of extensive hyperparameter tuning, highlighting the trade-off between attaining optimal results and the practicality of implementation in varying contexts. 7 authors · Feb 10, 2024
- Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey Dialogue systems are a popular natural language processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present for deep learning based dialogue systems, extensively covering the popular techniques. We speculate that this work is a good starting point for academics who are new to the dialogue systems or those who want to quickly grasp up-to-date techniques in this area. 5 authors · May 10, 2021
- Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference. 3 authors · Nov 14, 2022
1 AutoConv: Automatically Generating Information-seeking Conversations with Large Language Models Information-seeking conversation, which aims to help users gather information through conversation, has achieved great progress in recent years. However, the research is still stymied by the scarcity of training data. To alleviate this problem, we propose AutoConv for synthetic conversation generation, which takes advantage of the few-shot learning ability and generation capacity of large language models (LLM). Specifically, we formulate the conversation generation problem as a language modeling task, then finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process and use it for generating synthetic conversations with high quality. Experimental results on two frequently-used datasets verify that AutoConv has substantial improvements over strong baselines and alleviates the dependence on human annotation. In addition, we also provide several analysis studies to promote future research. 9 authors · Aug 12, 2023
- Transformer-based language modeling and decoding for conversational speech recognition We propose a way to use a transformer-based language model in conversational speech recognition. Specifically, we focus on decoding efficiently in a weighted finite-state transducer framework. We showcase an approach to lattice re-scoring that allows for longer range history captured by a transfomer-based language model and takes advantage of a transformer's ability to avoid computing sequentially. 1 authors · Jan 4, 2020
- A Diversity-Promoting Objective Function for Neural Conversation Models Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., "I don't know") regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using Maximum Mutual Information (MMI) as the objective function in neural models. Experimental results demonstrate that the proposed MMI models produce more diverse, interesting, and appropriate responses, yielding substantive gains in BLEU scores on two conversational datasets and in human evaluations. 5 authors · Oct 11, 2015
- Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations Prior work on pretrained sentence embeddings and benchmarks focus on the capabilities of stand-alone sentences. We propose DiscoEval, a test suite of tasks to evaluate whether sentence representations include broader context information. We also propose a variety of training objectives that makes use of natural annotations from Wikipedia to build sentence encoders capable of modeling discourse. We benchmark sentence encoders pretrained with our proposed training objectives, as well as other popular pretrained sentence encoders on DiscoEval and other sentence evaluation tasks. Empirically, we show that these training objectives help to encode different aspects of information in document structures. Moreover, BERT and ELMo demonstrate strong performances over DiscoEval with individual hidden layers showing different characteristics. 3 authors · Aug 31, 2019
1 SS-MPC: A Sequence-Structured Multi-Party Conversation System Recent Multi-Party Conversation (MPC) models typically rely on graph-based approaches to capture dialogue structures. However, these methods have limitations, such as information loss during the projection of utterances into structural embeddings and constraints in leveraging pre-trained language models directly. In this paper, we propose SS-MPC, a response generation model for MPC that eliminates the need for explicit graph structures. Unlike existing models that depend on graphs to analyze conversation structures, SS-MPC internally encodes the dialogue structure as a sequential input, enabling direct utilization of pre-trained language models. Experimental results show that SS-MPC achieves 15.60\% BLEU-1 and 12.44\% ROUGE-L score, outperforming the current state-of-the-art MPC response generation model by 3.91\%p in BLEU-1 and 0.62\%p in ROUGE-L. Additionally, human evaluation confirms that SS-MPC generates more fluent and accurate responses compared to existing MPC models. 3 authors · Feb 24
1 Quick Starting Dialog Systems with Paraphrase Generation Acquiring training data to improve the robustness of dialog systems can be a painstakingly long process. In this work, we propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples, using paraphrase generation. Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users. We experimented with two neural paraphrasing approaches, namely Neural Machine Translation and a Transformer-based seq2seq model. We present the results obtained with two datasets in English and in French:~a crowd-sourced public intent classification dataset and our own corporate dialog system dataset. We show that our proposed approach increased the generalization capabilities of the intent classification model on both datasets, reducing the effort required to initialize a new dialog system and helping to deploy this technology at scale within an organization. 6 authors · Apr 5, 2022
- Efficient Retrieval Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog This paper summarizes our work on the first track of the ninth Dialog System Technology Challenge (DSTC 9), "Beyond Domain APIs: Task-oriented Conversational Modeling with Unstructured Knowledge Access". The goal of the task is to generate responses to user turns in a task-oriented dialog that require knowledge from unstructured documents. The task is divided into three subtasks: detection, selection and generation. In order to be compute efficient, we formulate the selection problem in terms of hierarchical classification steps. We achieve our best results with this model. Alternatively, we employ siamese sequence embedding models, referred to as Dense Knowledge Retrieval, to retrieve relevant documents. This method further reduces the computation time by a factor of more than 100x at the cost of degradation in R@1 of 5-6% compared to the first model. Then for either approach, we use Retrieval Augmented Generation to generate responses based on multiple selected snippets and we show how the method can be used to fine-tune trained embeddings. 4 authors · Feb 8, 2021
- Towards Efficiently Diversifying Dialogue Generation via Embedding Augmentation Dialogue generation models face the challenge of producing generic and repetitive responses. Unlike previous augmentation methods that mostly focus on token manipulation and ignore the essential variety within a single sample using hard labels, we propose to promote the generation diversity of the neural dialogue models via soft embedding augmentation along with soft labels in this paper. Particularly, we select some key input tokens and fuse their embeddings together with embeddings from their semantic-neighbor tokens. The new embeddings serve as the input of the model to replace the original one. Besides, soft labels are used in loss calculation, resulting in multi-target supervision for a given input. Our experimental results on two datasets illustrate that our proposed method is capable of generating more diverse responses than raw models while remains a similar n-gram accuracy that ensures the quality of generated responses. 4 authors · Mar 2, 2021
- Evaluating Open-Domain Dialogues in Latent Space with Next Sentence Prediction and Mutual Information The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the golden reference responses in semantics. 6 authors · May 26, 2023
- NatCS: Eliciting Natural Customer Support Dialogues Despite growing interest in applications based on natural customer support conversations, there exist remarkably few publicly available datasets that reflect the expected characteristics of conversations in these settings. Existing task-oriented dialogue datasets, which were collected to benchmark dialogue systems mainly in written human-to-bot settings, are not representative of real customer support conversations and do not provide realistic benchmarks for systems that are applied to natural data. To address this gap, we introduce NatCS, a multi-domain collection of spoken customer service conversations. We describe our process for collecting synthetic conversations between customers and agents based on natural language phenomena observed in real conversations. Compared to previous dialogue datasets, the conversations collected with our approach are more representative of real human-to-human conversations along multiple metrics. Finally, we demonstrate potential uses of NatCS, including dialogue act classification and intent induction from conversations as potential applications, showing that dialogue act annotations in NatCS provide more effective training data for modeling real conversations compared to existing synthetic written datasets. We publicly release NatCS to facilitate research in natural dialog systems 6 authors · May 4, 2023
- Once is Enough: A Light-Weight Cross-Attention for Fast Sentence Pair Modeling Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational costs. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm MixEncoder for efficient sentence pair modeling. MixEncoder involves a light-weight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our MixEncoder can speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models. 6 authors · Oct 11, 2022
- Towards Exploiting Background Knowledge for Building Conversation Systems Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge. 4 authors · Sep 21, 2018
- Vocabulary Expansion of Chat Models with Unlabeled Target Language Data Chat models (i.e. language models trained to follow instructions through conversation with humans) outperform base models (i.e. trained solely on unlabeled data) in both conversation and general task-solving abilities. These models are generally English-centric and require further adaptation for languages that are underrepresented in or absent from their training data. A common technique for adapting base models is to extend the model's vocabulary with target language tokens, i.e. vocabulary expansion (VE), and then continually pre-train it on language-specific data. Using chat data is ideal for chat model adaptation, but often, either this does not exist or is costly to construct. Alternatively, adapting chat models with unlabeled data is a possible solution, but it could result in catastrophic forgetting. In this paper, we investigate the impact of using unlabeled target language data for VE on chat models for the first time. We first show that off-the-shelf VE generally performs well across target language tasks and models in 71% of cases, though it underperforms in scenarios where source chat models are already strong. To further improve adapted models, we propose post-hoc techniques that inject information from the source model without requiring any further training. Experiments reveal the effectiveness of our methods, helping the adapted models to achieve performance improvements in 87% of cases. 4 authors · Dec 16, 2024
- Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue System Developing an efficient retriever to retrieve knowledge from a large-scale knowledge base (KB) is critical for task-oriented dialogue systems to effectively handle localized and specialized tasks. However, widely used generative models such as T5 and ChatGPT often struggle to differentiate subtle differences among the retrieved KB records when generating responses, resulting in suboptimal quality of generated responses. In this paper, we propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision. In addition, our approach goes beyond considering solely retrieved entities and incorporates various meta knowledge to guide the generator, thus improving the utilization of knowledge. We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models. The results demonstrate that when combined with meta knowledge, the response generator can effectively leverage high-quality knowledge records from the retriever and enhance the quality of generated responses. The codes and models of this paper are available at https://github.com/shenwzh3/MK-TOD. 6 authors · Oct 13, 2023
- Zero-Shot Learning for Joint Intent and Slot Labeling It is expensive and difficult to obtain the large number of sentence-level intent and token-level slot label annotations required to train neural network (NN)-based Natural Language Understanding (NLU) components of task-oriented dialog systems, especially for the many real world tasks that have a large and growing number of intents and slot types. While zero shot learning approaches that require no labeled examples -- only features and auxiliary information -- have been proposed only for slot labeling, we show that one can profitably perform joint zero-shot intent classification and slot labeling. We demonstrate the value of capturing dependencies between intents and slots, and between different slots in an utterance in the zero shot setting. We describe NN architectures that translate between word and sentence embedding spaces, and demonstrate that these modifications are required to enable zero shot learning for this task. We show a substantial improvement over strong baselines and explain the intuition behind each architectural modification through visualizations and ablation studies. 2 authors · Nov 28, 2022
- The JDDC Corpus: A Large-Scale Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task 8 authors · Nov 22, 2019
- Large Language Models as Zero-Shot Conversational Recommenders In this paper, we present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting with three primary contributions. (1) Data: To gain insights into model behavior in "in-the-wild" conversational recommendation scenarios, we construct a new dataset of recommendation-related conversations by scraping a popular discussion website. This is the largest public real-world conversational recommendation dataset to date. (2) Evaluation: On the new dataset and two existing conversational recommendation datasets, we observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models. (3) Analysis: We propose various probing tasks to investigate the mechanisms behind the remarkable performance of large language models in conversational recommendation. We analyze both the large language models' behaviors and the characteristics of the datasets, providing a holistic understanding of the models' effectiveness, limitations and suggesting directions for the design of future conversational recommenders 9 authors · Aug 19, 2023
- The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter. We also describe two neural learning architectures suitable for analyzing this dataset, and provide benchmark performance on the task of selecting the best next response. 4 authors · Jun 29, 2015
- ChatGPT for Zero-shot Dialogue State Tracking: A Solution or an Opportunity? Recent research on dialogue state tracking (DST) focuses on methods that allow few- and zero-shot transfer to new domains or schemas. However, performance gains heavily depend on aggressive data augmentation and fine-tuning of ever larger language model based architectures. In contrast, general purpose language models, trained on large amounts of diverse data, hold the promise of solving any kind of task without task-specific training. We present preliminary experimental results on the ChatGPT research preview, showing that ChatGPT achieves state-of-the-art performance in zero-shot DST. Despite our findings, we argue that properties inherent to general purpose models limit their ability to replace specialized systems. We further theorize that the in-context learning capabilities of such models will likely become powerful tools to support the development of dedicated and dynamic dialogue state trackers. 9 authors · Jun 2, 2023
- Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks. 5 authors · Jan 20
- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases. 7 authors · Jun 3, 2014
- Deep contextualized word representations We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals. 7 authors · Feb 14, 2018
1 Using In-Context Learning to Improve Dialogue Safety While large neural-based conversational models have become increasingly proficient dialogue agents, recent work has highlighted safety issues with these systems. For example, these systems can be goaded into generating toxic content, which often perpetuates social biases or stereotypes. We investigate a retrieval-based method for reducing bias and toxicity in responses from chatbots. It uses in-context learning to steer a model towards safer generations. Concretely, to generate a response to an unsafe dialogue context, we retrieve demonstrations of safe responses to similar dialogue contexts. We find our method performs competitively with strong baselines without requiring training. For instance, using automatic evaluation, we find our best fine-tuned baseline only generates safe responses to unsafe dialogue contexts from DiaSafety 4.04% more than our approach. Finally, we also propose a re-ranking procedure which can further improve response safeness. 8 authors · Feb 1, 2023
- Keyword-Guided Neural Conversational Model We study the problem of imposing conversational goals/keywords on open-domain conversational agents, where the agent is required to lead the conversation to a target keyword smoothly and fast. Solving this problem enables the application of conversational agents in many real-world scenarios, e.g., recommendation and psychotherapy. The dominant paradigm for tackling this problem is to 1) train a next-turn keyword classifier, and 2) train a keyword-augmented response retrieval model. However, existing approaches in this paradigm have two limitations: 1) the training and evaluation datasets for next-turn keyword classification are directly extracted from conversations without human annotations, thus, they are noisy and have low correlation with human judgements, and 2) during keyword transition, the agents solely rely on the similarities between word embeddings to move closer to the target keyword, which may not reflect how humans converse. In this paper, we assume that human conversations are grounded on commonsense and propose a keyword-guided neural conversational model that can leverage external commonsense knowledge graphs (CKG) for both keyword transition and response retrieval. Automatic evaluations suggest that commonsense improves the performance of both next-turn keyword prediction and keyword-augmented response retrieval. In addition, both self-play and human evaluations show that our model produces responses with smoother keyword transition and reaches the target keyword faster than competitive baselines. 4 authors · Dec 15, 2020
- Opportunities and Challenges in Neural Dialog Tutoring Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models (LLMs) and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work. 7 authors · Jan 24, 2023
- Question rewriting? Assessing its importance for conversational question answering In conversational question answering, systems must correctly interpret the interconnected interactions and generate knowledgeable answers, which may require the retrieval of relevant information from a background repository. Recent approaches to this problem leverage neural language models, although different alternatives can be considered in terms of modules for (a) representing user questions in context, (b) retrieving the relevant background information, and (c) generating the answer. This work presents a conversational question answering system designed specifically for the Search-Oriented Conversational AI (SCAI) shared task, and reports on a detailed analysis of its question rewriting module. In particular, we considered different variations of the question rewriting module to evaluate the influence on the subsequent components, and performed a careful analysis of the results obtained with the best system configuration. Our system achieved the best performance in the shared task and our analysis emphasizes the importance of the conversation context representation for the overall system performance. 4 authors · Jan 22, 2022
5 Leveraging Implicit Feedback from Deployment Data in Dialogue We study improving social conversational agents by learning from natural dialogue between users and a deployed model, without extra annotations. To implicitly measure the quality of a machine-generated utterance, we leverage signals like user response length, sentiment and reaction of the future human utterances in the collected dialogue episodes. Our experiments use the publicly released deployment data from BlenderBot (Xu et al., 2023). Human evaluation indicates improvements in our new models over baseline responses; however, we find that some proxy signals can lead to more generations with undesirable properties as well. For example, optimizing for conversation length can lead to more controversial or unfriendly generations compared to the baseline, whereas optimizing for positive sentiment or reaction can decrease these behaviors. 5 authors · Jul 26, 2023
4 LaMDA: Language Models for Dialog Applications We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency. 60 authors · Jan 20, 2022 2
- Learning Neural Templates for Recommender Dialogue System Though recent end-to-end neural models have shown promising progress on Conversational Recommender System (CRS), two key challenges still remain. First, the recommended items cannot be always incorporated into the generated replies precisely and appropriately. Second, only the items mentioned in the training corpus have a chance to be recommended in the conversation. To tackle these challenges, we introduce a novel framework called NTRD for recommender dialogue system that decouples the dialogue generation from the item recommendation. NTRD has two key components, i.e., response template generator and item selector. The former adopts an encoder-decoder model to generate a response template with slot locations tied to target items, while the latter fills in slot locations with the proper items using a sufficient attention mechanism. Our approach combines the strengths of both classical slot filling approaches (that are generally controllable) and modern neural NLG approaches (that are generally more natural and accurate). Extensive experiments on the benchmark ReDial show our NTRD significantly outperforms the previous state-of-the-art methods. Besides, our approach has the unique advantage to produce novel items that do not appear in the training set of dialogue corpus. The code is available at https://github.com/jokieleung/NTRD. 9 authors · Sep 25, 2021
- Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR. 4 authors · Jan 12, 2023
- Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expansions Existing persona-grounded dialog models often fail to capture simple implications of given persona descriptions, something which humans are able to do seamlessly. For example, state-of-the-art models cannot infer that interest in hiking might imply love for nature or longing for a break. In this paper, we propose to expand available persona sentences using existing commonsense knowledge bases and paraphrasing resources to imbue dialog models with access to an expanded and richer set of persona descriptions. Additionally, we introduce fine-grained grounding on personas by encouraging the model to make a discrete choice among persona sentences while synthesizing a dialog response. Since such a choice is not observed in the data, we model it using a discrete latent random variable and use variational learning to sample from hundreds of persona expansions. Our model outperforms competitive baselines on the PersonaChat dataset in terms of dialog quality and diversity while achieving persona-consistent and controllable dialog generation. 4 authors · Oct 7, 2020
2 Internet-Augmented Dialogue Generation The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020). 3 authors · Jul 15, 2021
5 Return of the Encoder: Maximizing Parameter Efficiency for SLMs The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount. 3 authors · Jan 27 2
- Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance. 5 authors · Jan 3, 2024
- AfriWOZ: Corpus for Exploiting Cross-Lingual Transferability for Generation of Dialogues in Low-Resource, African Languages Dialogue generation is an important NLP task fraught with many challenges. The challenges become more daunting for low-resource African languages. To enable the creation of dialogue agents for African languages, we contribute the first high-quality dialogue datasets for 6 African languages: Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda & Yor\`ub\'a. These datasets consist of 1,500 turns each, which we translate from a portion of the English multi-domain MultiWOZ dataset. Subsequently, we investigate & analyze the effectiveness of modelling through transfer learning by utilziing state-of-the-art (SoTA) deep monolingual models: DialoGPT and BlenderBot. We compare the models with a simple seq2seq baseline using perplexity. Besides this, we conduct human evaluation of single-turn conversations by using majority votes and measure inter-annotator agreement (IAA). We find that the hypothesis that deep monolingual models learn some abstractions that generalize across languages holds. We observe human-like conversations, to different degrees, in 5 out of the 6 languages. The language with the most transferable properties is the Nigerian Pidgin English, with a human-likeness score of 78.1%, of which 34.4% are unanimous. We freely provide the datasets and host the model checkpoints/demos on the HuggingFace hub for public access. 20 authors · Apr 17, 2022
- CTRAN: CNN-Transformer-based Network for Natural Language Understanding Intent-detection and slot-filling are the two main tasks in natural language understanding. In this study, we propose CTRAN, a novel encoder-decoder CNN-Transformer-based architecture for intent-detection and slot-filling. In the encoder, we use BERT, followed by several convolutional layers, and rearrange the output using window feature sequence. We use stacked Transformer encoders after the window feature sequence. For the intent-detection decoder, we utilize self-attention followed by a linear layer. In the slot-filling decoder, we introduce the aligned Transformer decoder, which utilizes a zero diagonal mask, aligning output tags with input tokens. We apply our network on ATIS and SNIPS, and surpass the current state-of-the-art in slot-filling on both datasets. Furthermore, we incorporate the language model as word embeddings, and show that this strategy yields a better result when compared to the language model as an encoder. 2 authors · Mar 19, 2023
- On the Way to LLM Personalization: Learning to Remember User Conversations Large Language Models (LLMs) have quickly become an invaluable assistant for a variety of tasks. However, their effectiveness is constrained by their ability to tailor responses to human preferences and behaviors via personalization. Prior work in LLM personalization has largely focused on style transfer or incorporating small factoids about the user, as knowledge injection remains an open challenge. In this paper, we explore injecting knowledge of prior conversations into LLMs to enable future work on less redundant, personalized conversations. We identify two real-world constraints: (1) conversations are sequential in time and must be treated as such during training, and (2) per-user personalization is only viable in parameter-efficient settings. To this aim, we propose PLUM, a pipeline performing data augmentation for up-sampling conversations as question-answer pairs, that are then used to finetune a low-rank adaptation adapter with a weighted cross entropy loss. Even in this first exploration of the problem, we perform competitively with baselines such as RAG, attaining an accuracy of 81.5% across 100 conversations. 4 authors · Nov 20, 2024
1 Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot. 8 authors · Oct 11, 2023
7 On decoder-only architecture for speech-to-text and large language model integration Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion. 11 authors · Jul 8, 2023
- Leveraging LLMs for Dialogue Quality Measurement In task-oriented conversational AI evaluation, unsupervised methods poorly correlate with human judgments, and supervised approaches lack generalization. Recent advances in large language models (LLMs) show robust zeroshot and few-shot capabilities across NLP tasks. This paper explores using LLMs for automated dialogue quality evaluation, experimenting with various configurations on public and proprietary datasets. Manipulating factors such as model size, in-context examples, and selection techniques, we examine "chain-of-thought" (CoT) reasoning and label extraction procedures. Our results show that (1) larger models yield more accurate dialogue labels; (2) algorithmic selection of in-context examples outperforms random selection; (3) CoT reasoning where an LLM is asked to provide justifications before outputting final labels improves performance; and (4) fine-tuned LLMs outperform out-of-the-box ones. Our results indicate that LLMs that are suitably fine-tuned and have sufficient reasoning capabilities can be leveraged for automated dialogue evaluation. 8 authors · Jun 25, 2024
- KoDialogBench: Evaluating Conversational Understanding of Language Models with Korean Dialogue Benchmark As language models are often deployed as chatbot assistants, it becomes a virtue for models to engage in conversations in a user's first language. While these models are trained on a wide range of languages, a comprehensive evaluation of their proficiency in low-resource languages such as Korean has been lacking. In this work, we introduce KoDialogBench, a benchmark designed to assess language models' conversational capabilities in Korean. To this end, we collect native Korean dialogues on daily topics from public sources, or translate dialogues from other languages. We then structure these conversations into diverse test datasets, spanning from dialogue comprehension to response selection tasks. Leveraging the proposed benchmark, we conduct extensive evaluations and analyses of various language models to measure a foundational understanding of Korean dialogues. Experimental results indicate that there exists significant room for improvement in models' conversation skills. Furthermore, our in-depth comparisons across different language models highlight the effectiveness of recent training techniques in enhancing conversational proficiency. We anticipate that KoDialogBench will promote the progress towards conversation-aware Korean language models. 3 authors · Feb 27, 2024
- Building the Intent Landscape of Real-World Conversational Corpora with Extractive Question-Answering Transformers For companies with customer service, mapping intents inside their conversational data is crucial in building applications based on natural language understanding (NLU). Nevertheless, there is no established automated technique to gather the intents from noisy online chats or voice transcripts. Simple clustering approaches are not suited to intent-sparse dialogues. To solve this intent-landscape task, we propose an unsupervised pipeline that extracts the intents and the taxonomy of intents from real-world dialogues. Our pipeline mines intent-span candidates with an extractive Question-Answering Electra model and leverages sentence embeddings to apply a low-level density clustering followed by a top-level hierarchical clustering. Our results demonstrate the generalization ability of an ELECTRA large model fine-tuned on the SQuAD2 dataset to understand dialogues. With the right prompting question, this model achieves a rate of linguistic validation on intent spans beyond 85%. We furthermore reconstructed the intent schemes of five domains from the MultiDoGo dataset with an average recall of 94.3%. 3 authors · Aug 26, 2022
2 The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users. 3 authors · Apr 3, 2023 1
- Learning an Unreferenced Metric for Online Dialogue Evaluation Evaluating the quality of a dialogue interaction between two agents is a difficult task, especially in open-domain chit-chat style dialogue. There have been recent efforts to develop automatic dialogue evaluation metrics, but most of them do not generalize to unseen datasets and/or need a human-generated reference response during inference, making it infeasible for online evaluation. Here, we propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances, and leverages the temporal transitions that exist between them. We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference. 6 authors · May 1, 2020
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D's efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks. 6 authors · Mar 9, 2024
- ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs. 8 authors · Jan 23
- PCoQA: Persian Conversational Question Answering Dataset Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page. 6 authors · Dec 7, 2023
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction compared to text-based large language models (LLMs). Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data, which are significantly less abundant than text pre-training data, thereby limiting their scalability as LLMs. We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora, eliminating the need for parallel speech-text datasets. Our method efficiently constructs speech-text interleaved data by sampling text spans from existing text corpora and synthesizing corresponding speech spans using a text-to-token model, bypassing the need to generate actual speech. We also employ a supervised speech tokenizer derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. This supervised training approach results in discrete speech tokens with strong semantic preservation even at lower sampling rates (e.g. 12.5Hz), while still maintaining speech reconstruction quality. Starting from a pre-trained language model and scaling our pre-training to 1 trillion tokens (with 600B synthetic interleaved speech-text data), we achieve state-of-the-art performance in speech language modeling and spoken question answering, improving performance on spoken questions tasks from the previous SOTA of 13% (Moshi) to 31%. We further demonstrate that by fine-tuning the pre-trained model with speech dialogue data, we can develop an end-to-end spoken chatbot that achieves competitive performance comparable to existing baselines in both conversational abilities and speech quality, even operating exclusively in the speech domain. 7 authors · Nov 26, 2024
- KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn Knowledge-driven Conversation The research of knowledge-driven conversational systems is largely limited due to the lack of dialog data which consist of multi-turn conversations on multiple topics and with knowledge annotations. In this paper, we propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs. Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics. To facilitate the following research on this corpus, we provide several benchmark models. Comparative results show that the models can be enhanced by introducing background knowledge, yet there is still a large space for leveraging knowledge to model multi-turn conversations for further research. Results also show that there are obvious performance differences between different domains, indicating that it is worth to further explore transfer learning and domain adaptation. The corpus and benchmark models are publicly available. 5 authors · Apr 8, 2020
- Nugget: Neural Agglomerative Embeddings of Text Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content. 2 authors · Oct 2, 2023
- Hierarchical Transformers for Long Document Classification BERT, which stands for Bidirectional Encoder Representations from Transformers, is a recently introduced language representation model based upon the transfer learning paradigm. We extend its fine-tuning procedure to address one of its major limitations - applicability to inputs longer than a few hundred words, such as transcripts of human call conversations. Our method is conceptually simple. We segment the input into smaller chunks and feed each of them into the base model. Then, we propagate each output through a single recurrent layer, or another transformer, followed by a softmax activation. We obtain the final classification decision after the last segment has been consumed. We show that both BERT extensions are quick to fine-tune and converge after as little as 1 epoch of training on a small, domain-specific data set. We successfully apply them in three different tasks involving customer call satisfaction prediction and topic classification, and obtain a significant improvement over the baseline models in two of them. 5 authors · Oct 23, 2019
19 Large Language Models as Zero-shot Dialogue State Tracker through Function Calling Large language models (LLMs) are increasingly prevalent in conversational systems due to their advanced understanding and generative capabilities in general contexts. However, their effectiveness in task-oriented dialogues (TOD), which requires not only response generation but also effective dialogue state tracking (DST) within specific tasks and domains, remains less satisfying. In this work, we propose a novel approach FnCTOD for solving DST with LLMs through function calling. This method improves zero-shot DST, allowing adaptation to diverse domains without extensive data collection or model tuning. Our experimental results demonstrate that our approach achieves exceptional performance with both modestly sized open-source and also proprietary LLMs: with in-context prompting it enables various 7B or 13B parameter models to surpass the previous state-of-the-art (SOTA) achieved by ChatGPT, and improves ChatGPT's performance beating the SOTA by 5.6% Avg. JGA. Individual model results for GPT-3.5 and GPT-4 are boosted by 4.8% and 14%, respectively. We also show that by fine-tuning on a small collection of diverse task-oriented dialogues, we can equip modestly sized models, specifically a 13B parameter LLaMA2-Chat model, with function-calling capabilities and DST performance comparable to ChatGPT while maintaining their chat capabilities. We plan to open-source experimental code and model. 10 authors · Feb 16, 2024 3
3 TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents We introduce a new approach to generative data-driven dialogue systems (e.g. chatbots) called TransferTransfo which is a combination of a Transfer learning based training scheme and a high-capacity Transformer model. Fine-tuning is performed by using a multi-task objective which combines several unsupervised prediction tasks. The resulting fine-tuned model shows strong improvements over the current state-of-the-art end-to-end conversational models like memory augmented seq2seq and information-retrieval models. On the privately held PERSONA-CHAT dataset of the Conversational Intelligence Challenge 2, this approach obtains a new state-of-the-art, with respective perplexity, Hits@1 and F1 metrics of 16.28 (45 % absolute improvement), 80.7 (46 % absolute improvement) and 19.5 (20 % absolute improvement). 4 authors · Jan 23, 2019
- "I'd rather just go to bed": Understanding Indirect Answers We revisit a pragmatic inference problem in dialog: understanding indirect responses to questions. Humans can interpret 'I'm starving.' in response to 'Hungry?', even without direct cue words such as 'yes' and 'no'. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today's systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus 'Circa' with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes. 3 authors · Oct 7, 2020
- SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks. For reproducibility, we release the code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/space-2. 9 authors · Sep 14, 2022
26 CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues Recent advancements in instruction-tuning datasets have predominantly focused on specific tasks like mathematical or logical reasoning. There has been a notable gap in data designed for aligning language models to maintain topic relevance in conversations - a critical aspect for deploying chatbots to production. We introduce the CantTalkAboutThis dataset to help language models remain focused on the subject at hand during task-oriented interactions. It consists of synthetic dialogues on a wide range of conversation topics from different domains. These dialogues are interspersed with distractor turns that intentionally divert the chatbot from the predefined topic. Fine-tuning language models on this dataset helps make them resilient to deviating from the role assigned and improves their ability to maintain topical coherence compared to general-purpose instruction-tuned LLMs like GPT-4-turbo and Mixtral-Instruct. Additionally, preliminary observations suggest that training models on this dataset also enhance their performance on fine-grained instruction following tasks. 4 authors · Apr 4, 2024 5
- Towards Building Large Scale Multimodal Domain-Aware Conversation Systems While multimodal conversation agents are gaining importance in several domains such as retail, travel etc., deep learning research in this area has been limited primarily due to the lack of availability of large-scale, open chatlogs. To overcome this bottleneck, in this paper we introduce the task of multimodal, domain-aware conversations, and propose the MMD benchmark dataset. This dataset was gathered by working in close coordination with large number of domain experts in the retail domain. These experts suggested various conversations flows and dialog states which are typically seen in multimodal conversations in the fashion domain. Keeping these flows and states in mind, we created a dataset consisting of over 150K conversation sessions between shoppers and sales agents, with the help of in-house annotators using a semi-automated manually intense iterative process. With this dataset, we propose 5 new sub-tasks for multimodal conversations along with their evaluation methodology. We also propose two multimodal neural models in the encode-attend-decode paradigm and demonstrate their performance on two of the sub-tasks, namely text response generation and best image response selection. These experiments serve to establish baseline performance and open new research directions for each of these sub-tasks. Further, for each of the sub-tasks, we present a `per-state evaluation' of 9 most significant dialog states, which would enable more focused research into understanding the challenges and complexities involved in each of these states. 3 authors · Apr 1, 2017
- An Evaluation Protocol for Generative Conversational Systems There is a multitude of novel generative models for open-domain conversational systems; however, there is no systematic evaluation of different systems. Systematic comparisons require consistency in experimental design, evaluation sets, conversational systems and their outputs, and statistical analysis. We lay out a protocol for the evaluation of conversational models using head-to-head pairwise comparison. We analyze ten recent models that claim state-of-the-art performance using a paired head-to-head performance (win-loss-tie) on five evaluation datasets. Our findings show that DialoGPT and Blender are superior systems using Bradley-Terry model and TrueSkill ranking methods. These findings demonstrate the feasibility of our protocol to evaluate conversational agents and evaluation sets. Finally, we make all code and evaluations publicly available for researchers to compare their model to other state-of-the-art dialog models. 3 authors · Oct 23, 2020
- Recipes for building an open-domain chatbot Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models. 12 authors · Apr 28, 2020
- Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems Sample-and-rank is a key decoding strategy for modern generation-based dialogue systems. It helps achieve diverse and high-quality responses by selecting an answer from a small pool of generated candidates. The current state-of-the-art ranking methods mainly use an encoding paradigm called Cross-Encoder, which separately encodes each context-candidate pair and ranks the candidates according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each candidate, resulting in high computational costs. Poly-Encoder addresses the above problems by reducing the interaction between context and candidates, but with a price of performance drop. In this work, we develop a new paradigm called Uni-Encoder, that keeps the full attention over each pair as in Cross-Encoder while only encoding the context once, as in Poly-Encoder. Uni-Encoder encodes all the candidates with the context in one forward pass. We use the same positional embedding for all candidates to ensure they are treated equally and design a new attention mechanism to avoid confusion. Our Uni-Encoder can simulate other ranking paradigms using different attention and response concatenation methods. Extensive experiments show that our proposed paradigm achieves new state-of-the-art results on four benchmark datasets with high computational efficiency. For instance, it improves R10@1 by 2.9% with an approximately 4X faster inference speed on the Ubuntu V2 dataset. 6 authors · Jun 2, 2021
- Neural Conversational QA: Learning to Reason v.s. Exploiting Patterns Neural Conversational QA tasks like ShARC require systems to answer questions based on the contents of a given passage. On studying recent state-of-the-art models on the ShARCQA task, we found indications that the models learn spurious clues/patterns in the dataset. Furthermore, we show that a heuristic-based program designed to exploit these patterns can have performance comparable to that of the neural models. In this paper we share our findings about four types of patterns found in the ShARC corpus and describe how neural models exploit them. Motivated by the aforementioned findings, we create and share a modified dataset that has fewer spurious patterns, consequently allowing models to learn better. 6 authors · Sep 9, 2019
- News Reporter: A Multi-lingual LLM Framework for Broadcast T.V News Large Language Models (LLMs) have fast become an essential tools to many conversational chatbots due to their ability to provide coherent answers for varied queries. Datasets used to train these LLMs are often a mix of generic and synthetic samples, thus lacking the verification needed to provide correct and verifiable answers for T.V. News. We collect and share a large collection of QA pairs extracted from transcripts of news recordings from various news-channels across the United States. Resultant QA pairs are then used to fine-tune an off-the-shelf LLM model. Our model surpasses base models of similar size on several open LLM benchmarks. We further integrate and propose a RAG method to improve contextualization of our answers and also point it to a verifiable news recording. 4 authors · Oct 9, 2024
- Task Conditioned BERT for Joint Intent Detection and Slot-filling Dialogue systems need to deal with the unpredictability of user intents to track dialogue state and the heterogeneity of slots to understand user preferences. In this paper we investigate the hypothesis that solving these challenges as one unified model will allow the transfer of parameter support data across the different tasks. The proposed principled model is based on a Transformer encoder, trained on multiple tasks, and leveraged by a rich input that conditions the model on the target inferences. Conditioning the Transformer encoder on multiple target inferences over the same corpus, i.e., intent and multiple slot types, allows learning richer language interactions than a single-task model would be able to. In fact, experimental results demonstrate that conditioning the model on an increasing number of dialogue inference tasks leads to improved results: on the MultiWOZ dataset, the joint intent and slot detection can be improved by 3.2\% by conditioning on intent, 10.8\% by conditioning on slot and 14.4\% by conditioning on both intent and slots. Moreover, on real conversations with Farfetch costumers, the proposed conditioned BERT can achieve high joint-goal and intent detection performance throughout a dialogue. 5 authors · Aug 11, 2023
2 LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models We propose LLM-Eval, a unified multi-dimensional automatic evaluation method for open-domain conversations with large language models (LLMs). Existing evaluation methods often rely on human annotations, ground-truth responses, or multiple LLM prompts, which can be expensive and time-consuming. To address these issues, we design a single prompt-based evaluation method that leverages a unified evaluation schema to cover multiple dimensions of conversation quality in a single model call. We extensively evaluate the performance of LLM-Eval on various benchmark datasets, demonstrating its effectiveness, efficiency, and adaptability compared to state-of-the-art evaluation methods. Our analysis also highlights the importance of choosing suitable LLMs and decoding strategies for accurate evaluation results. LLM-Eval offers a versatile and robust solution for evaluating open-domain conversation systems, streamlining the evaluation process and providing consistent performance across diverse scenarios. 2 authors · May 23, 2023
- Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance Representation Dialogue Topic Segmentation (DTS) plays an essential role in a variety of dialogue modeling tasks. Previous DTS methods either focus on semantic similarity or dialogue coherence to assess topic similarity for unsupervised dialogue segmentation. However, the topic similarity cannot be fully identified via semantic similarity or dialogue coherence. In addition, the unlabeled dialogue data, which contains useful clues of utterance relationships, remains underexploited. In this paper, we propose a novel unsupervised DTS framework, which learns topic-aware utterance representations from unlabeled dialogue data through neighboring utterance matching and pseudo-segmentation. Extensive experiments on two benchmark datasets (i.e., DialSeg711 and Doc2Dial) demonstrate that our method significantly outperforms the strong baseline methods. For reproducibility, we provide our code and data at:https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dial-start. 7 authors · May 4, 2023
- Schema-Guided Dialogue State Tracking Task at DSTC8 This paper gives an overview of the Schema-Guided Dialogue State Tracking task of the 8th Dialogue System Technology Challenge. The goal of this task is to develop dialogue state tracking models suitable for large-scale virtual assistants, with a focus on data-efficient joint modeling across domains and zero-shot generalization to new APIs. This task provided a new dataset consisting of over 16000 dialogues in the training set spanning 16 domains to highlight these challenges, and a baseline model capable of zero-shot generalization to new APIs. Twenty-five teams participated, developing a range of neural network models, exceeding the performance of the baseline model by a very high margin. The submissions incorporated a variety of pre-trained encoders and data augmentation techniques. This paper describes the task definition, dataset and evaluation methodology. We also summarize the approach and results of the submitted systems to highlight the overall trends in the state-of-the-art. 5 authors · Feb 2, 2020
1 OrchestraLLM: Efficient Orchestration of Language Models for Dialogue State Tracking Large language models (LLMs) have revolutionized the landscape of Natural Language Processing systems, but are computationally expensive. To reduce the cost without sacrificing performance, previous studies have explored various approaches to harness the potential of Small Language Models (SLMs) as cost-effective alternatives to their larger counterparts. Driven by findings that SLMs and LLMs exhibit complementary strengths in a structured knowledge extraction task, this work presents a novel SLM/LLM routing framework designed to improve computational efficiency and enhance task performance. First, exemplar pools are created to represent the types of contexts where each LM provides a more reliable answer, leveraging a sentence embedding fine-tuned so that context similarity is close to dialogue state similarity. Then, during inference, the k-nearest exemplars to the testing instance are retrieved, and the instance is routed according to majority vote. In dialogue state tracking tasks, the proposed routing framework enhances performance substantially compared to relying solely on LLMs, while reducing the computational costs by over 50%. 3 authors · Nov 16, 2023
1 In-Context Learning for Few-Shot Dialogue State Tracking Collecting and annotating task-oriented dialogues is time-consuming and costly; thus, zero and few shot learning could greatly benefit dialogue state tracking (DST). In this work, we propose an in-context learning (ICL) framework for zero-shot and few-shot learning DST, where a large pre-trained language model (LM) takes a test instance and a few exemplars as input, and directly decodes the dialogue state without any parameter updates. To better leverage a tabular domain description in the LM prompt, we reformulate DST into a text-to-SQL problem. We also propose a novel approach to retrieve annotated dialogues as exemplars. Empirical results on MultiWOZ show that our method IC-DST substantially outperforms previous fine-tuned state-of-the-art models in few-shot settings. In addition, we test IC-DST in zero-shot settings, in which the model only takes a fixed task instruction as input, finding that it outperforms previous zero-shot methods by a large margin. 6 authors · Mar 16, 2022
- Dialogue Act Classification with Context-Aware Self-Attention Recent work in Dialogue Act classification has treated the task as a sequence labeling problem using hierarchical deep neural networks. We build on this prior work by leveraging the effectiveness of a context-aware self-attention mechanism coupled with a hierarchical recurrent neural network. We conduct extensive evaluations on standard Dialogue Act classification datasets and show significant improvement over state-of-the-art results on the Switchboard Dialogue Act (SwDA) Corpus. We also investigate the impact of different utterance-level representation learning methods and show that our method is effective at capturing utterance-level semantic text representations while maintaining high accuracy. 2 authors · Apr 4, 2019
- EVA2.0: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems. However, previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model, ignoring the discussion of some key factors towards a powerful human-like chatbot, especially in Chinese scenarios. In this paper, we conduct extensive experiments to investigate these under-explored factors, including data quality control, model architecture designs, training approaches, and decoding strategies. We propose EVA2.0, a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters, and make our models and code publicly available. To our knowledge, EVA2.0 is the largest open-source Chinese dialogue model. Automatic and human evaluations show that our model significantly outperforms other open-source counterparts. We also discuss the limitations of this work by presenting some failure cases and pose some future directions. 11 authors · Mar 17, 2022
2 Hash Layers For Large Sparse Models We investigate the training of sparse layers that use different parameters for different inputs based on hashing in large Transformer models. Specifically, we modify the feedforward layer to hash to different sets of weights depending on the current token, over all tokens in the sequence. We show that this procedure either outperforms or is competitive with learning-to-route mixture-of-expert methods such as Switch Transformers and BASE Layers, while requiring no routing parameters or extra terms in the objective function such as a load balancing loss, and no sophisticated assignment algorithm. We study the performance of different hashing techniques, hash sizes and input features, and show that balanced and random hashes focused on the most local features work best, compared to either learning clusters or using longer-range context. We show our approach works well both on large language modeling and dialogue tasks, and on downstream fine-tuning tasks. 4 authors · Jun 8, 2021
- Generative Spoken Language Modeling from Raw Audio We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo-text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder-dependent way, and that some combinations approach text-based systems. 11 authors · Feb 1, 2021
- Benchmarking Large Language Models with Augmented Instructions for Fine-grained Information Extraction Information Extraction (IE) is an essential task in Natural Language Processing. Traditional methods have relied on coarse-grained extraction with simple instructions. However, with the emergence of Large Language Models (LLMs), there is a need to adapt IE techniques to leverage the capabilities of these models. This paper introduces a fine-grained IE benchmark dataset tailored for LLMs, employing augmented instructions for each information type, which includes task descriptions, extraction rules, output formats, and examples. Through extensive evaluations, we observe that encoder-decoder models, particularly T5 and FLAN-T5, perform well in generalizing to unseen information types, while ChatGPT exhibits greater adaptability to new task forms. Our results also indicate that performance is not solely dictated by model scale, and highlight the significance of architecture, data diversity, and learning techniques. This work paves the way for a more refined and versatile utilization of LLMs in Information Extraction. 6 authors · Oct 8, 2023 1
- Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance. 1 authors · Aug 28, 2024
- Modeling Multi-turn Conversation with Deep Utterance Aggregation Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus. 5 authors · Jun 24, 2018
1 Nugget 2D: Dynamic Contextual Compression for Scaling Decoder-only Language Models Standard Transformer-based language models (LMs) scale poorly to long contexts. We propose a solution based on dynamic contextual compression, which extends the Nugget approach of Qin & Van Durme (2023) from BERT-like frameworks to decoder-only LMs. Our method models history as compressed "nuggets" which are trained to allow for reconstruction, and it can be initialized with off-the-shelf models such as LLaMA. We demonstrate through experiments in language modeling, question answering, and summarization that Nugget2D retains capabilities in these tasks, while drastically reducing the overhead during decoding in terms of time and space. For example, in the experiments of autoencoding, Nugget2D can shrink context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding. 5 authors · Oct 3, 2023
- Generating Synthetic Documents for Cross-Encoder Re-Rankers: A Comparative Study of ChatGPT and Human Experts We investigate the usefulness of generative Large Language Models (LLMs) in generating training data for cross-encoder re-rankers in a novel direction: generating synthetic documents instead of synthetic queries. We introduce a new dataset, ChatGPT-RetrievalQA, and compare the effectiveness of models fine-tuned on LLM-generated and human-generated data. Data generated with generative LLMs can be used to augment training data, especially in domains with smaller amounts of labeled data. We build ChatGPT-RetrievalQA based on an existing dataset, human ChatGPT Comparison Corpus (HC3), consisting of public question collections with human responses and answers from ChatGPT. We fine-tune a range of cross-encoder re-rankers on either human-generated or ChatGPT-generated data. Our evaluation on MS MARCO DEV, TREC DL'19, and TREC DL'20 demonstrates that cross-encoder re-ranking models trained on ChatGPT responses are statistically significantly more effective zero-shot re-rankers than those trained on human responses. In a supervised setting, the human-trained re-rankers outperform the LLM-trained re-rankers. Our novel findings suggest that generative LLMs have high potential in generating training data for neural retrieval models. Further work is needed to determine the effect of factually wrong information in the generated responses and test our findings' generalizability with open-source LLMs. We release our data, code, and cross-encoders checkpoints for future work. 4 authors · May 3, 2023
1 LatentQA: Teaching LLMs to Decode Activations Into Natural Language Interpretability methods seek to understand language model representations, yet the outputs of most such methods -- circuits, vectors, scalars -- are not immediately human-interpretable. In response, we introduce LatentQA, the task of answering open-ended questions about model activations in natural language. Towards solving LatentQA, we propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs, similar to how visual instruction tuning trains on question-answer pairs associated with images. We use the decoder for diverse reading applications, such as extracting relational knowledge from representations or uncovering system prompts governing model behavior. Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations. Finally, we extend LatentQA to reveal harmful model capabilities, such as generating recipes for bioweapons and code for hacking. 3 authors · Dec 11, 2024
20 User-LLM: Efficient LLM Contextualization with User Embeddings Large language models (LLMs) have revolutionized natural language processing. However, effectively incorporating complex and potentially noisy user interaction data remains a challenge. To address this, we propose User-LLM, a novel framework that leverages user embeddings to contextualize LLMs. These embeddings, distilled from diverse user interactions using self-supervised pretraining, capture latent user preferences and their evolution over time. We integrate these user embeddings with LLMs through cross-attention and soft-prompting, enabling LLMs to dynamically adapt to user context. Our comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate significant performance gains across various tasks. Notably, our approach outperforms text-prompt-based contextualization on long sequence tasks and tasks that require deep user understanding while being computationally efficient. We further incorporate Perceiver layers to streamline the integration between user encoders and LLMs, reducing computational demands. 9 authors · Feb 21, 2024 1
- Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue Large Language Models (LLMs) have demonstrated superior abilities in tasks such as chatting, reasoning, and question-answering. However, standard LLMs may ignore crucial paralinguistic information, such as sentiment, emotion, and speaking style, which are essential for achieving natural, human-like spoken conversation, especially when such information is conveyed by acoustic cues. We therefore propose Paralinguistics-enhanced Generative Pretrained Transformer (ParalinGPT), an LLM that utilizes text and speech modalities to better model the linguistic content and paralinguistic attributes of spoken dialogue. The model takes the conversational context of text, speech embeddings, and paralinguistic attributes as input prompts within a serialized multitasking multimodal framework. Specifically, our framework serializes tasks in the order of current paralinguistic attribute prediction, response paralinguistic attribute prediction, and response text generation with autoregressive conditioning. We utilize the Switchboard-1 corpus, including its sentiment labels as the paralinguistic attribute, as our spoken dialogue dataset. Experimental results indicate the proposed serialized multitasking method outperforms typical sequence classification techniques on current and response sentiment classification. Furthermore, leveraging conversational context and speech embeddings significantly improves both response text generation and sentiment prediction. Our proposed framework achieves relative improvements of 6.7%, 12.0%, and 3.5% in current sentiment accuracy, response sentiment accuracy, and response text BLEU score, respectively. 9 authors · Dec 23, 2023
7 Generating Images with Multimodal Language Models We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence. 3 authors · May 26, 2023 2
18 RAVEN: In-Context Learning with Retrieval Augmented Encoder-Decoder Language Models In this paper, we investigate the in-context learning ability of retrieval-augmented encoder-decoder language models. We first conduct a comprehensive analysis of the state-of-the-art ATLAS model and identify its limitations in in-context learning, primarily due to a mismatch between pretraining and testing, as well as a restricted context length. To address these issues, we propose RAVEN, a model that combines retrieval-augmented masked language modeling and prefix language modeling. We further introduce Fusion-in-Context Learning to enhance the few-shot performance by enabling the model to leverage more in-context examples without requiring additional training or model modifications. Through extensive experiments, we demonstrate that RAVEN significantly outperforms ATLAS and achieves results comparable to the most advanced language models in certain scenarios, despite having substantially fewer parameters. Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning and encourages further research in this direction. 6 authors · Aug 15, 2023 1
- Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model. 5 authors · Apr 8, 2024
- ASR Benchmarking: Need for a More Representative Conversational Dataset Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks. 4 authors · Sep 18, 2024
- A Framework for Synthetic Audio Conversations Generation using Large Language Models In this paper, we introduce ConversaSynth, a framework designed to generate synthetic conversation audio using large language models (LLMs) with multiple persona settings. The framework first creates diverse and coherent text-based dialogues across various topics, which are then converted into audio using text-to-speech (TTS) systems. Our experiments demonstrate that ConversaSynth effectively generates highquality synthetic audio datasets, which can significantly enhance the training and evaluation of models for audio tagging, audio classification, and multi-speaker speech recognition. The results indicate that the synthetic datasets generated by ConversaSynth exhibit substantial diversity and realism, making them suitable for developing robust, adaptable audio-based AI systems. 2 authors · Sep 2, 2024
- LLMs are Also Effective Embedding Models: An In-depth Overview Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models. 7 authors · Dec 17, 2024
- Fostering Natural Conversation in Large Language Models with NICO: a Natural Interactive COnversation dataset Benefiting from diverse instruction datasets, contemporary Large Language Models (LLMs) perform effectively as AI assistants in collaborating with humans. However, LLMs still struggle to generate natural and colloquial responses in real-world applications such as chatbots and psychological counseling that require more human-like interactions. To address these limitations, we introduce NICO, a Natural Interactive COnversation dataset in Chinese. We first use GPT-4-turbo to generate dialogue drafts and make them cover 20 daily-life topics and 5 types of social interactions. Then, we hire workers to revise these dialogues to ensure that they are free of grammatical errors and unnatural utterances. We define two dialogue-level natural conversation tasks and two sentence-level tasks for identifying and rewriting unnatural sentences. Multiple open-source and closed-source LLMs are tested and analyzed in detail. The experimental results highlight the challenge of the tasks and demonstrate how NICO can help foster the natural dialogue capabilities of LLMs. The dataset will be released. 6 authors · Aug 17, 2024
5 SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. We release our code and model at https://github.com/microsoft/SpeechT5. 14 authors · Oct 14, 2021 5
- An Attribution Method for Siamese Encoders Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The solution takes the form of feature-pair attributions, and can be reduced to a token-token matrix for STs. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model's full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in an ST few token-pairs can often explain large fractions of predictions, and it focuses on nouns and verbs. For accurate predictions, it however needs to attend to the majority of tokens and parts of speech. 3 authors · Oct 9, 2023
1 SONAR: Sentence-Level Multimodal and Language-Agnostic Representations We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper. 3 authors · Aug 22, 2023
1 Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems. 8 authors · Sep 30, 2024
3 Leveraging Large Language Models in Conversational Recommender Systems A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations. 13 authors · May 13, 2023
12 DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI Despite advancements in conversational AI, language models encounter challenges to handle diverse conversational tasks, and existing dialogue dataset collections often lack diversity and comprehensiveness. To tackle these issues, we introduce DialogStudio: the largest and most diverse collection of dialogue datasets, unified under a consistent format while preserving their original information. Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues, making it an incredibly rich and diverse resource for dialogue research and model training. To further enhance the utility of DialogStudio, we identify the licenses for each dataset and design domain-aware prompts for selected dialogues to facilitate instruction-aware fine-tuning. Furthermore, we develop conversational AI models using the dataset collection, and our experiments in both zero-shot and few-shot learning scenarios demonstrate the superiority of DialogStudio. To improve transparency and support dataset and task-based research, as well as language model pre-training, all datasets, licenses, codes, and models associated with DialogStudio are made publicly accessible at https://github.com/salesforce/DialogStudio 10 authors · Jul 19, 2023
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding The integration of pre-trained text-based large language models (LLM) with speech input has enabled instruction-following capabilities for diverse speech tasks. This integration requires the use of a speech encoder, a speech adapter, and an LLM, trained on diverse tasks. We propose the use of discrete speech units (DSU), rather than continuous-valued speech encoder outputs, that are converted to the LLM token embedding space using the speech adapter. We generate DSU using a self-supervised speech encoder followed by k-means clustering. The proposed model shows robust performance on speech inputs from seen/unseen domains and instruction-following capability in spoken question answering. We also explore various types of DSU extracted from different layers of the self-supervised speech encoder, as well as Mel frequency Cepstral Coefficients (MFCC). Our findings suggest that the ASR task and datasets are not crucial in instruction-tuning for spoken question answering tasks. 6 authors · Jun 13, 2024
- DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems. 9 authors · Nov 1, 2019
- Deep Model Compression Also Helps Models Capture Ambiguity Natural language understanding (NLU) tasks face a non-trivial amount of ambiguous samples where veracity of their labels is debatable among annotators. NLU models should thus account for such ambiguity, but they approximate the human opinion distributions quite poorly and tend to produce over-confident predictions. To address this problem, we must consider how to exactly capture the degree of relationship between each sample and its candidate classes. In this work, we propose a novel method with deep model compression and show how such relationship can be accounted for. We see that more reasonably represented relationships can be discovered in the lower layers and that validation accuracies are converging at these layers, which naturally leads to layer pruning. We also see that distilling the relationship knowledge from a lower layer helps models produce better distribution. Experimental results demonstrate that our method makes substantial improvement on quantifying ambiguity without gold distribution labels. As positive side-effects, our method is found to reduce the model size significantly and improve latency, both attractive aspects of NLU products. 2 authors · Jun 12, 2023
1 Talking Heads: Understanding Inter-layer Communication in Transformer Language Models Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. By analyzing particular mechanism LMs use to accomplish this, we find that it is also used to recall items from a list, and show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by specific later layers, forming low-rank communication channels between layers. By decomposing attention head weight matrices with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors. 3 authors · Jun 13, 2024
- Universal Sentence Encoder We present models for encoding sentences into embedding vectors that specifically target transfer learning to other NLP tasks. The models are efficient and result in accurate performance on diverse transfer tasks. Two variants of the encoding models allow for trade-offs between accuracy and compute resources. For both variants, we investigate and report the relationship between model complexity, resource consumption, the availability of transfer task training data, and task performance. Comparisons are made with baselines that use word level transfer learning via pretrained word embeddings as well as baselines do not use any transfer learning. We find that transfer learning using sentence embeddings tends to outperform word level transfer. With transfer learning via sentence embeddings, we observe surprisingly good performance with minimal amounts of supervised training data for a transfer task. We obtain encouraging results on Word Embedding Association Tests (WEAT) targeted at detecting model bias. Our pre-trained sentence encoding models are made freely available for download and on TF Hub. 13 authors · Mar 29, 2018
1 NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation In this paper, we propose a Chinese multi-turn topic-driven conversation dataset, NaturalConv, which allows the participants to chat anything they want as long as any element from the topic is mentioned and the topic shift is smooth. Our corpus contains 19.9K conversations from six domains, and 400K utterances with an average turn number of 20.1. These conversations contain in-depth discussions on related topics or widely natural transition between multiple topics. We believe either way is normal for human conversation. To facilitate the research on this corpus, we provide results of several benchmark models. Comparative results show that for this dataset, our current models are not able to provide significant improvement by introducing background knowledge/topic. Therefore, the proposed dataset should be a good benchmark for further research to evaluate the validity and naturalness of multi-turn conversation systems. Our dataset is available at https://ai.tencent.com/ailab/nlp/dialogue/#datasets. 4 authors · Mar 3, 2021
- Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/. 9 authors · Feb 18, 2021
- Learning Spoken Language Representations with Neural Lattice Language Modeling Pre-trained language models have achieved huge improvement on many NLP tasks. However, these methods are usually designed for written text, so they do not consider the properties of spoken language. Therefore, this paper aims at generalizing the idea of language model pre-training to lattices generated by recognition systems. We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks. The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency. Experiments on intent detection and dialogue act recognition datasets demonstrate that our proposed method consistently outperforms strong baselines when evaluated on spoken inputs. The code is available at https://github.com/MiuLab/Lattice-ELMo. 2 authors · Jul 6, 2020
- A Benchmark for Understanding and Generating Dialogue between Characters in Stories Many classical fairy tales, fiction, and screenplays leverage dialogue to advance story plots and establish characters. We present the first study to explore whether machines can understand and generate dialogue in stories, which requires capturing traits of different characters and the relationships between them. To this end, we propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition, i.e., generating missing dialogue turns and predicting speakers for specified dialogue turns, respectively. We build a new dataset DialStory, which consists of 105k Chinese stories with a large amount of dialogue weaved into the plots to support the evaluation. We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory. Furthermore, we propose to learn explicit character representations to improve performance on these tasks. Extensive experiments and case studies show that our approach can generate more coherent and informative dialogue, and achieve higher speaker recognition accuracy than strong baselines. 4 authors · Sep 18, 2022
1 Masking as an Efficient Alternative to Finetuning for Pretrained Language Models We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT and RoBERTa on a series of NLP tasks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred simultaneously. Through intrinsic evaluations, we show that representations computed by masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning. 5 authors · Apr 26, 2020
10 A Primer on the Inner Workings of Transformer-based Language Models The rapid progress of research aimed at interpreting the inner workings of advanced language models has highlighted a need for contextualizing the insights gained from years of work in this area. This primer provides a concise technical introduction to the current techniques used to interpret the inner workings of Transformer-based language models, focusing on the generative decoder-only architecture. We conclude by presenting a comprehensive overview of the known internal mechanisms implemented by these models, uncovering connections across popular approaches and active research directions in this area. 4 authors · Apr 30, 2024
1 Expressing Visual Relationships via Language Describing images with text is a fundamental problem in vision-language research. Current studies in this domain mostly focus on single image captioning. However, in various real applications (e.g., image editing, difference interpretation, and retrieval), generating relational captions for two images, can also be very useful. This important problem has not been explored mostly due to lack of datasets and effective models. To push forward the research in this direction, we first introduce a new language-guided image editing dataset that contains a large number of real image pairs with corresponding editing instructions. We then propose a new relational speaker model based on an encoder-decoder architecture with static relational attention and sequential multi-head attention. We also extend the model with dynamic relational attention, which calculates visual alignment while decoding. Our models are evaluated on our newly collected and two public datasets consisting of image pairs annotated with relationship sentences. Experimental results, based on both automatic and human evaluation, demonstrate that our model outperforms all baselines and existing methods on all the datasets. 5 authors · Jun 18, 2019
- TLDR: Token Loss Dynamic Reweighting for Reducing Repetitive Utterance Generation Natural Language Generation (NLG) models are prone to generating repetitive utterances. In this work, we study the repetition problem for encoder-decoder models, using both recurrent neural network (RNN) and transformer architectures. To this end, we consider the chit-chat task, where the problem is more prominent than in other tasks that need encoder-decoder architectures. We first study the influence of model architectures. By using pre-attention and highway connections for RNNs, we manage to achieve lower repetition rates. However, this method does not generalize to other models such as transformers. We hypothesize that the deeper reason is that in the training corpora, there are hard tokens that are more difficult for a generative model to learn than others and, once learning has finished, hard tokens are still under-learned, so that repetitive generations are more likely to happen. Based on this hypothesis, we propose token loss dynamic reweighting (TLDR) that applies differentiable weights to individual token losses. By using higher weights for hard tokens and lower weights for easy tokens, NLG models are able to learn individual tokens at different paces. Experiments on chit-chat benchmark datasets show that TLDR is more effective in repetition reduction for both RNN and transformer architectures than baselines using different weighting functions. 4 authors · Mar 26, 2020
- Supervised Learning of Universal Sentence Representations from Natural Language Inference Data Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available. 5 authors · May 5, 2017
- Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text The emergence of Large Language Models (LLMs) as chat assistants capable of generating human-like conversations has amplified the need for robust evaluation methods, particularly for open-ended tasks. Conventional metrics like BLEU and ROUGE, while useful, are increasingly inadequate for capturing the subtle semantics and contextual richness of such generative outputs. We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges. Through experiments on three open-ended question-answering tasks, we demonstrate that combining multiple LLMs-as-judges significantly improves the reliability and accuracy of evaluations, particularly in complex tasks where a single model might struggle. Our findings reveal a strong correlation with human evaluations, establishing our method as a viable and effective alternative to traditional metrics and human judgments, particularly in the context of LLM-based chat assistants where the complexity and diversity of responses challenge existing benchmarks. 2 authors · Aug 17, 2024
- TikTalk: A Video-Based Dialogue Dataset for Multi-Modal Chitchat in Real World To facilitate the research on intelligent and human-like chatbots with multi-modal context, we introduce a new video-based multi-modal dialogue dataset, called TikTalk. We collect 38K videos from a popular video-sharing platform, along with 367K conversations posted by users beneath them. Users engage in spontaneous conversations based on their multi-modal experiences from watching videos, which helps recreate real-world chitchat context. Compared to previous multi-modal dialogue datasets, the richer context types in TikTalk lead to more diverse conversations, but also increase the difficulty in capturing human interests from intricate multi-modal information to generate personalized responses. Moreover, external knowledge is more frequently evoked in our dataset. These facts reveal new challenges for multi-modal dialogue models. We quantitatively demonstrate the characteristics of TikTalk, propose a video-based multi-modal chitchat task, and evaluate several dialogue baselines. Experimental results indicate that the models incorporating large language models (LLM) can generate more diverse responses, while the model utilizing knowledge graphs to introduce external knowledge performs the best overall. Furthermore, no existing model can solve all the above challenges well. There is still a large room for future improvements, even for LLM with visual extensions. Our dataset is available at https://ruc-aimind.github.io/projects/TikTalk/. 11 authors · Jan 14, 2023
1 FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities. 7 authors · Jun 17, 2023
1 Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems. 7 authors · Aug 7, 2015
21 DiaSynth -- Synthetic Dialogue Generation Framework The scarcity of domain specific dialogue datasets across various domains, from academic topics to everyday conversations, limits the development of dialogue systems for various applications. Existing research is often constrained either by dialogue datasets that are too general or by niche domain dialogue datasets whose scale does not match the required scale for training dialogue systems. To address this gap, we introduce DiaSynth - a synthetic dialogue generation framework capable of generating high quality, contextually rich dialogues across a wide range of domains. Our approach differs from existing frameworks by dynamically generating dialogues that incorporate simulated personas, subtopics, and diverse conversational characteristics, using a Large Language Model (LLM) with Chain of Thought (CoT) reasoning to create contextually rich, domain-specific dialogues that closely mimic natural human interactions. DiaSynth produces tailored dialogues that emulate realistic conversations. We perform our experiments by generating synthetic data using different LLMs and few-shot examples from DialogSum and SAMSum. The pretrained language models fine-tuned on the synthetic data outperform the base models by 16.47%, while the comparison between models fine-tuned on in-domain data and synthetic data shows that the synthetic data is able to capture 90.48% of the distribution of the in-domain data. The quality of the data generated also scales with the size of LLMs. These results validate DiaSynth's potential as a robust alternative to traditional data collection methods. 4 authors · Sep 25, 2024 3
1 WavChat: A Survey of Spoken Dialogue Models Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat. 19 authors · Nov 14, 2024
- Adaptive Contrastive Decoding in Retrieval-Augmented Generation for Handling Noisy Contexts When using large language models (LLMs) in knowledge-intensive tasks, such as open-domain question answering, external context can bridge the gap between external knowledge and the LLMs' parametric knowledge. Recent research has been developed to amplify contextual knowledge over the parametric knowledge of LLMs with contrastive decoding approaches. While these approaches could yield truthful responses when relevant context is provided, they are prone to vulnerabilities when faced with noisy contexts. We extend the scope of previous studies to encompass noisy contexts and propose adaptive contrastive decoding (ACD) to leverage contextual influence effectively. ACD demonstrates improvements in open-domain question answering tasks compared to baselines, especially in robustness by remaining undistracted by noisy contexts in retrieval-augmented generation. 9 authors · Aug 2, 2024
- Compressed Context Memory For Online Language Model Interaction This paper presents a novel context compression method for Transformer language models in online scenarios such as ChatGPT, where the context continually expands. As the context lengthens, the attention process requires more memory and computational resources, which in turn reduces the throughput of the language model. To this end, we propose a compressed context memory system that continually compresses the growing context into a compact memory space. The compression process simply involves integrating a lightweight conditional LoRA into the language model's forward pass during inference. Based on the compressed context memory, the language model can perform inference with reduced memory and attention operations. Through evaluations on conversation, personalization, and multi-task learning, we demonstrate that our approach achieves the performance level of a full context model with 5times smaller context memory space. Codes are available at https://github.com/snu-mllab/context-memory. 4 authors · Dec 6, 2023
9 Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding Multi-modal multi-party conversation (MMC) is a less studied yet important topic of research due to that it well fits real-world scenarios and thus potentially has more widely-used applications. Compared with the traditional multi-modal conversations, MMC requires stronger character-centered understanding abilities as there are many interlocutors appearing in both the visual and textual context. To facilitate the study of this problem, we present Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique utterances paired with video context. To explore the character-centered understanding of the dialogue, we also annotate the speaker of each utterance, the names and bounding bboxes of faces that appear in the video. Based on this Friends-MMC dataset, we further study two fundamental MMC tasks: conversation speaker identification and conversation response prediction, both of which have the multi-party nature with the video or image as visual context. For conversation speaker identification, we demonstrate the inefficiencies of existing methods such as pre-trained models, and propose a simple yet effective baseline method that leverages an optimization solver to utilize the context of two modalities to achieve better performance. For conversation response prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze the benefits of speaker information. The code and dataset is publicly available at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more attention on modeling speaker information when understanding conversations. 6 authors · Dec 23, 2024 2
- UniMC: A Unified Framework for Long-Term Memory Conversation via Relevance Representation Learning Open-domain long-term memory conversation can establish long-term intimacy with humans, and the key is the ability to understand and memorize long-term dialogue history information. Existing works integrate multiple models for modelling through a pipeline, which ignores the coupling between different stages. In this paper, we propose a Unified framework for Long-term Memory Conversations (UniMC), which increases the connection between different stages by learning relevance representation. Specifically, we decompose the main task into three subtasks based on probability graphs: 1) conversation summarization, 2) memory retrieval, 3) memory-augmented generation. Each subtask involves learning a representation for calculating the relevance between the query and memory, which is modelled by inserting a special token at the beginning of the decoder input. The relevance representation learning strengthens the connection across subtasks through parameter sharing and joint training. Extensive experimental results show that the proposed method consistently improves over strong baselines and yields better dialogue consistency and engagingness. 7 authors · Jun 18, 2023
1 Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems. 5 authors · Apr 9, 2022
- Tiny Neural Models for Seq2Seq Semantic parsing models with applications in task oriented dialog systems require efficient sequence to sequence (seq2seq) architectures to be run on-device. To this end, we propose a projection based encoder-decoder model referred to as pQRNN-MAtt. Studies based on projection methods were restricted to encoder-only models, and we believe this is the first study extending it to seq2seq architectures. The resulting quantized models are less than 3.5MB in size and are well suited for on-device latency critical applications. We show that on MTOP, a challenging multilingual semantic parsing dataset, the average model performance surpasses LSTM based seq2seq model that uses pre-trained embeddings despite being 85x smaller. Furthermore, the model can be an effective student for distilling large pre-trained models such as T5/BERT. 1 authors · Aug 6, 2021
- MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large Language Models Large language models (LLMs) are increasingly relied upon for complex multi-turn conversations across diverse real-world applications. However, existing benchmarks predominantly focus on single-turn evaluations, overlooking the models' capabilities in multi-turn interactions. To address this gap, we introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities. By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up. We construct multi-turn queries for each category either by augmenting existing datasets or by creating new examples with GPT-4 to avoid data leakage. To study the factors impacting multi-turn abilities, we create single-turn versions of the 1170 multi-turn queries and compare performance. Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks. We observe significant performance degradation in multi-turn settings compared to single-turn settings in most models, which is not correlated with the models' fundamental capabilities. Moreover, we identify the distance to relevant content and susceptibility to error propagation as the key factors influencing multi-turn performance. MT-Eval is released publicly to encourage future research towards more robust conversational models. 9 authors · Jan 29, 2024 2
1 Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs: dialog response generation and user simulation, where our model outperforms previous strong baselines. 6 authors · Jan 23, 2020
- Codebook Features: Sparse and Discrete Interpretability for Neural Networks Understanding neural networks is challenging in part because of the dense, continuous nature of their hidden states. We explore whether we can train neural networks to have hidden states that are sparse, discrete, and more interpretable by quantizing their continuous features into what we call codebook features. Codebook features are produced by finetuning neural networks with vector quantization bottlenecks at each layer, producing a network whose hidden features are the sum of a small number of discrete vector codes chosen from a larger codebook. Surprisingly, we find that neural networks can operate under this extreme bottleneck with only modest degradation in performance. This sparse, discrete bottleneck also provides an intuitive way of controlling neural network behavior: first, find codes that activate when the desired behavior is present, then activate those same codes during generation to elicit that behavior. We validate our approach by training codebook Transformers on several different datasets. First, we explore a finite state machine dataset with far more hidden states than neurons. In this setting, our approach overcomes the superposition problem by assigning states to distinct codes, and we find that we can make the neural network behave as if it is in a different state by activating the code for that state. Second, we train Transformer language models with up to 410M parameters on two natural language datasets. We identify codes in these models representing diverse, disentangled concepts (ranging from negative emotions to months of the year) and find that we can guide the model to generate different topics by activating the appropriate codes during inference. Overall, codebook features appear to be a promising unit of analysis and control for neural networks and interpretability. Our codebase and models are open-sourced at https://github.com/taufeeque9/codebook-features. 3 authors · Oct 26, 2023
- Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation. 4 authors · Mar 5
- Few-Shot Spoken Language Understanding via Joint Speech-Text Models Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations by encoding speech and text in a shared space. In this paper, we leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks. By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data. With as little as 1 hour of labeled speech data, our proposed approach achieves comparable performance on spoken language understanding tasks (specifically, sentiment analysis and named entity recognition) when compared to previous methods using speech-only pre-trained models fine-tuned on 10 times more data. Beyond the proof-of-concept study, we also analyze the latent representations. We find that the bottom layers of speech-text models are largely task-agnostic and align speech and text representations into a shared space, while the top layers are more task-specific. 4 authors · Oct 9, 2023
1 CONFLATOR: Incorporating Switching Point based Rotatory Positional Encodings for Code-Mixed Language Modeling The mixing of two or more languages is called Code-Mixing (CM). CM is a social norm in multilingual societies. Neural Language Models (NLMs) like transformers have been effective on many NLP tasks. However, NLM for CM is an under-explored area. Though transformers are capable and powerful, they cannot always encode positional information since they are non-recurrent. Therefore, to enrich word information and incorporate positional information, positional encoding is defined. We hypothesize that Switching Points (SPs), i.e., junctions in the text where the language switches (L1 -> L2 or L2 -> L1), pose a challenge for CM Language Models (LMs), and hence give special emphasis to SPs in the modeling process. We experiment with several positional encoding mechanisms and show that rotatory positional encodings along with switching point information yield the best results. We introduce CONFLATOR: a neural language modeling approach for code-mixed languages. CONFLATOR tries to learn to emphasize switching points using smarter positional encoding, both at unigram and bigram levels. CONFLATOR outperforms the state-of-the-art on two tasks based on code-mixed Hindi and English (Hinglish): (i) sentiment analysis and (ii) machine translation. 8 authors · Sep 11, 2023
1 DialogCC: Large-Scale Multi-Modal Dialogue Dataset As sharing images in an instant message is a crucial factor, there has been active research on learning a image-text multi-modal dialogue model. However, training a well-generalized multi-modal dialogue model is challenging because existing multi-modal dialogue datasets contain a small number of data, limited topics, and a restricted variety of images per dialogue. In this paper, we present a multi-modal dialogue dataset creation pipeline that involves matching large-scale images to dialogues based on CLIP similarity. Using this automatic pipeline, we propose a large-scale multi-modal dialogue dataset, DialogCC, which covers diverse real-world topics and various images per dialogue. With extensive experiments, we demonstrate that training a multi-modal dialogue model with our dataset can improve generalization performance. Additionally, existing models trained with our dataset achieve state-of-the-art performance on image and text retrieval tasks. The source code and the dataset will be released after publication. 4 authors · Dec 8, 2022
- How transformers learn structured data: insights from hierarchical filtering We introduce a hierarchical filtering procedure for generative models of sequences on trees, enabling control over the range of positional correlations in the data. Leveraging this controlled setting, we provide evidence that vanilla encoder-only transformer architectures can implement the optimal Belief Propagation algorithm on both root classification and masked language modeling tasks. Correlations at larger distances corresponding to increasing layers of the hierarchy are sequentially included as the network is trained. We analyze how the transformer layers succeed by focusing on attention maps from models trained with varying degrees of filtering. These attention maps show clear evidence for iterative hierarchical reconstruction of correlations, and we can relate these observations to a plausible implementation of the exact inference algorithm for the network sizes considered. 4 authors · Aug 27, 2024
1 E2E Spoken Entity Extraction for Virtual Agents In human-computer conversations, extracting entities such as names, street addresses and email addresses from speech is a challenging task. In this paper, we study the impact of fine-tuning pre-trained speech encoders on extracting spoken entities in human-readable form directly from speech without the need for text transcription. We illustrate that such a direct approach optimizes the encoder to transcribe only the entity relevant portions of speech ignoring the superfluous portions such as carrier phrases, or spell name entities. In the context of dialog from an enterprise virtual agent, we demonstrate that the 1-step approach outperforms the typical 2-step approach which first generates lexical transcriptions followed by text-based entity extraction for identifying spoken entities. 3 authors · Feb 16, 2023
- PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable Pre-training models have been proved effective for a wide range of natural language processing tasks. Inspired by this, we propose a novel dialogue generation pre-training framework to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. In this framework, we adopt flexible attention mechanisms to fully leverage the bi-directional context and the uni-directional characteristic of language generation. We also introduce discrete latent variables to tackle the inherent one-to-many mapping problem in response generation. Two reciprocal tasks of response generation and latent act recognition are designed and carried out simultaneously within a shared network. Comprehensive experiments on three publicly available datasets verify the effectiveness and superiority of the proposed framework. 5 authors · Oct 17, 2019
22 Learning to Retrieve In-Context Examples for Large Language Models Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes. 3 authors · Jul 14, 2023
- From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations. 4 authors · Apr 2, 2022
- Enhancing the Stability of LLM-based Speech Generation Systems through Self-Supervised Representations Large Language Models (LLMs) are one of the most promising technologies for the next era of speech generation systems, due to their scalability and in-context learning capabilities. Nevertheless, they suffer from multiple stability issues at inference time, such as hallucinations, content skipping or speech repetitions. In this work, we introduce a new self-supervised Voice Conversion (VC) architecture which can be used to learn to encode transitory features, such as content, separately from stationary ones, such as speaker ID or recording conditions, creating speaker-disentangled representations. Using speaker-disentangled codes to train LLMs for text-to-speech (TTS) allows the LLM to generate the content and the style of the speech only from the text, similarly to humans, while the speaker identity is provided by the decoder of the VC model. Results show that LLMs trained over speaker-disentangled self-supervised representations provide an improvement of 4.7pp in speaker similarity over SOTA entangled representations, and a word error rate (WER) 5.4pp lower. Furthermore, they achieve higher naturalness than human recordings of the LibriTTS test-other dataset. Finally, we show that using explicit reference embedding negatively impacts intelligibility (stability), with WER increasing by 14pp compared to the model that only uses text to infer the style. 9 authors · Feb 5, 2024
1 Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings. 9 authors · Sep 13, 2024
- Probabilistic Transformer: A Probabilistic Dependency Model for Contextual Word Representation Syntactic structures used to play a vital role in natural language processing (NLP), but since the deep learning revolution, NLP has been gradually dominated by neural models that do not consider syntactic structures in their design. One vastly successful class of neural models is transformers. When used as an encoder, a transformer produces contextual representation of words in the input sentence. In this work, we propose a new model of contextual word representation, not from a neural perspective, but from a purely syntactic and probabilistic perspective. Specifically, we design a conditional random field that models discrete latent representations of all words in a sentence as well as dependency arcs between them; and we use mean field variational inference for approximate inference. Strikingly, we find that the computation graph of our model resembles transformers, with correspondences between dependencies and self-attention and between distributions over latent representations and contextual embeddings of words. Experiments show that our model performs competitively to transformers on small to medium sized datasets. We hope that our work could help bridge the gap between traditional syntactic and probabilistic approaches and cutting-edge neural approaches to NLP, and inspire more linguistically-principled neural approaches in the future. 2 authors · Nov 26, 2023 1
43 AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/ 16 authors · Feb 19, 2024 7
- DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning While in-context Learning (ICL) has proven to be an effective technique to improve the performance of Large Language Models (LLMs) in a variety of complex tasks, notably in translating natural language questions into Structured Query Language (NL2SQL), the question of how to select the most beneficial demonstration examples remains an open research problem. While prior works often adapted off-the-shelf encoders to retrieve examples dynamically, an inherent discrepancy exists in the representational capacities between the external retrievers and the LLMs. Further, optimizing the selection of examples is a non-trivial task, since there are no straightforward methods to assess the relative benefits of examples without performing pairwise inference. To address these shortcomings, we propose DeTriever, a novel demonstration retrieval framework that learns a weighted combination of LLM hidden states, where rich semantic information is encoded. To train the model, we propose a proxy score that estimates the relative benefits of examples based on the similarities between output queries. Experiments on two popular NL2SQL benchmarks demonstrate that our method significantly outperforms the state-of-the-art baselines on one-shot NL2SQL tasks. 7 authors · Jun 12, 2024
- BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues Interacting with human via high-quality multi-turn dialogues is a key feature of large language models (LLMs). However, human-based evaluation of such capability involves intensive manual labor. This report provides a preliminary evaluation of existing large language models for human-style multi-turn chatting, through an LLM-based approach. We start from real-world human dialogues and keep the very first utterances as the ChatSEED. Then we prompt LLMs to generate a full multi-turn dialogue (tens of utterances) based on the ChatSEED, utterance by utterance. Finally, we adopt state-of-the-art LLMs (GPT-4, \etc) as the judge to evaluate the generated dialogues. With different evaluation protocols, we come to substantially identical conclusions. We find that GPT-4 can generate human-style multi-turn dialogues with impressive quality, significantly outperforms its counterparts. It's difficult for a discriminator to distinguish between GPT-4 generated dialogues and human dialogues. In contrast, other LLMs struggle to generate multi-turn dialogues of satisfactory quality due to poor instruction-following capability, tendency to generate lengthy utterances, or limited general capability. All data and codes will be provided in https://github.com/open-compass/BotChat/ and we hope they can serve as a valuable resource for evaluating multi-turn chatting capabilities of LLMs. 8 authors · Oct 20, 2023
- Towards General-Purpose Text-Instruction-Guided Voice Conversion This paper introduces a novel voice conversion (VC) model, guided by text instructions such as "articulate slowly with a deep tone" or "speak in a cheerful boyish voice". Unlike traditional methods that rely on reference utterances to determine the attributes of the converted speech, our model adds versatility and specificity to voice conversion. The proposed VC model is a neural codec language model which processes a sequence of discrete codes, resulting in the code sequence of converted speech. It utilizes text instructions as style prompts to modify the prosody and emotional information of the given speech. In contrast to previous approaches, which often rely on employing separate encoders like prosody and content encoders to handle different aspects of the source speech, our model handles various information of speech in an end-to-end manner. Experiments have demonstrated the impressive capabilities of our model in comprehending instructions and delivering reasonable results. 8 authors · Sep 25, 2023
- Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications. 2 authors · Nov 20, 2024
1 Sequence-to-Sequence Spanish Pre-trained Language Models In recent years, substantial advancements in pre-trained language models have paved the way for the development of numerous non-English language versions, with a particular focus on encoder-only and decoder-only architectures. While Spanish language models encompassing BERT, RoBERTa, and GPT have exhibited prowess in natural language understanding and generation, there remains a scarcity of encoder-decoder models designed for sequence-to-sequence tasks involving input-output pairs. This paper breaks new ground by introducing the implementation and evaluation of renowned encoder-decoder architectures, exclusively pre-trained on Spanish corpora. Specifically, we present Spanish versions of BART, T5, and BERT2BERT-style models and subject them to a comprehensive assessment across a diverse range of sequence-to-sequence tasks, spanning summarization, rephrasing, and generative question answering. Our findings underscore the competitive performance of all models, with BART and T5 emerging as top performers across all evaluated tasks. As an additional contribution, we have made all models publicly available to the research community, fostering future exploration and development in Spanish language processing. 4 authors · Sep 20, 2023
1 Zero-Shot Slot and Intent Detection in Low-Resource Languages Intent detection and slot filling are critical tasks in spoken and natural language understanding for task-oriented dialog systems. In this work we describe our participation in the slot and intent detection for low-resource language varieties (SID4LR; Aepli et al. (2023)). We investigate the slot and intent detection (SID) tasks using a wide range of models and settings. Given the recent success of multitask-prompted finetuning of large language models, we also test the generalization capability of the recent encoder-decoder model mT0 (Muennighoff et al., 2022) on new tasks (i.e., SID) in languages they have never intentionally seen. We show that our best model outperforms the baseline by a large margin (up to +30 F1 points) in both SID tasks 5 authors · Apr 26, 2023
1 D2LLM: Decomposed and Distilled Large Language Models for Semantic Search The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM. 5 authors · Jun 25, 2024
1 Re^3Dial: Retrieve, Reorganize and Rescale Dialogue Corpus for Long-Turn Open-Domain Dialogue Pre-training Large-scale open-domain dialogue data crawled from public social media has greatly improved the performance of dialogue models. However, long-turn dialogues are still highly scarce. Specifically, most dialogue sessions in existing corpora have less than three turns. To alleviate this issue, we propose the Retrieve, Reorganize and Rescale framework (Re^3Dial), which can automatically construct a billion-scale long-turn dialogue corpus from existing short-turn dialogue data. Re^3Dial first trains an Unsupervised Dense Session Retriever (UDSR) to capture semantic and discourse relationships within multi-turn dialogues for retrieving relevant and coherent sessions. It then reorganizes the short-turn dialogues into long-turn sessions via recursively retrieving and selecting the consecutive sessions with our proposed diversity sampling strategy. Extensive evaluations on multiple multi-turn dialogue benchmarks demonstrate that Re^3Dial consistently and significantly improves the dialogue model's ability to utilize long-term context for modeling multi-turn dialogues across different pre-training settings. Finally, we build a toolkit for efficiently rescaling dialogue corpus with Re^3Dial, which enables us to construct a corpus containing 1B Chinese dialogue sessions with 11.3 turns on average (5X longer than the original EVA corpus). We will release our UDSR model, toolkit, and data for public use. 3 authors · May 4, 2023
4 Learning from Naturally Occurring Feedback Human feedback data is a critical component in developing language models. However, collecting this feedback is costly and ultimately not scalable. We propose a scalable method for extracting feedback that users naturally include when interacting with chat models, and leveraging it for model training. We are further motivated by previous work that showed there are also qualitative advantages to using naturalistic (rather than auto-generated) feedback, such as less hallucinations and biases. We manually annotated conversation data to confirm the presence of naturally occurring feedback in a standard corpus, finding that as much as 30% of the chats include explicit feedback. We apply our method to over 1M conversations to obtain hundreds of thousands of feedback samples. Training with the extracted feedback shows significant performance improvements over baseline models, demonstrating the efficacy of our approach in enhancing model alignment to human preferences. 3 authors · Jul 15, 2024
- CoQAR: Question Rewriting on CoQA Questions asked by humans during a conversation often contain contextual dependencies, i.e., explicit or implicit references to previous dialogue turns. These dependencies take the form of coreferences (e.g., via pronoun use) or ellipses, and can make the understanding difficult for automated systems. One way to facilitate the understanding and subsequent treatments of a question is to rewrite it into an out-of-context form, i.e., a form that can be understood without the conversational context. We propose CoQAR, a corpus containing 4.5K conversations from the Conversational Question-Answering dataset CoQA, for a total of 53K follow-up question-answer pairs. Each original question was manually annotated with at least 2 at most 3 out-of-context rewritings. CoQAR can be used in the supervised learning of three tasks: question paraphrasing, question rewriting and conversational question answering. In order to assess the quality of CoQAR's rewritings, we conduct several experiments consisting in training and evaluating models for these three tasks. Our results support the idea that question rewriting can be used as a preprocessing step for question answering models, thereby increasing their performances. 3 authors · Jul 7, 2022
- Educating Text Autoencoders: Latent Representation Guidance via Denoising Generative autoencoders offer a promising approach for controllable text generation by leveraging their latent sentence representations. However, current models struggle to maintain coherent latent spaces required to perform meaningful text manipulations via latent vector operations. Specifically, we demonstrate by example that neural encoders do not necessarily map similar sentences to nearby latent vectors. A theoretical explanation for this phenomenon establishes that high capacity autoencoders can learn an arbitrary mapping between sequences and associated latent representations. To remedy this issue, we augment adversarial autoencoders with a denoising objective where original sentences are reconstructed from perturbed versions (referred to as DAAE). We prove that this simple modification guides the latent space geometry of the resulting model by encouraging the encoder to map similar texts to similar latent representations. In empirical comparisons with various types of autoencoders, our model provides the best trade-off between generation quality and reconstruction capacity. Moreover, the improved geometry of the DAAE latent space enables zero-shot text style transfer via simple latent vector arithmetic. 4 authors · May 29, 2019
- Key-Value Retrieval Networks for Task-Oriented Dialogue Neural task-oriented dialogue systems often struggle to smoothly interface with a knowledge base. In this work, we seek to address this problem by proposing a new neural dialogue agent that is able to effectively sustain grounded, multi-domain discourse through a novel key-value retrieval mechanism. The model is end-to-end differentiable and does not need to explicitly model dialogue state or belief trackers. We also release a new dataset of 3,031 dialogues that are grounded through underlying knowledge bases and span three distinct tasks in the in-car personal assistant space: calendar scheduling, weather information retrieval, and point-of-interest navigation. Our architecture is simultaneously trained on data from all domains and significantly outperforms a competitive rule-based system and other existing neural dialogue architectures on the provided domains according to both automatic and human evaluation metrics. 2 authors · May 15, 2017
- Dialog Inpainting: Turning Documents into Dialogs Many important questions (e.g. "How to eat healthier?") require conversation to establish context and explore in depth. However, conversational question answering (ConvQA) systems have long been stymied by scarce training data that is expensive to collect. To address this problem, we propose a new technique for synthetically generating diverse and high-quality dialog data: dialog inpainting. Our approach takes the text of any document and transforms it into a two-person dialog between the writer and an imagined reader: we treat sentences from the article as utterances spoken by the writer, and then use a dialog inpainter to predict what the imagined reader asked or said in between each of the writer's utterances. By applying this approach to passages from Wikipedia and the web, we produce WikiDialog and WebDialog, two datasets totalling 19 million diverse information-seeking dialogs -- 1,000x larger than the largest existing ConvQA dataset. Furthermore, human raters judge the answer adequacy and conversationality of WikiDialog to be as good or better than existing manually-collected datasets. Using our inpainted data to pre-train ConvQA retrieval systems, we significantly advance state-of-the-art across three benchmarks (QReCC, OR-QuAC, TREC CAsT) yielding up to 40% relative gains on standard evaluation metrics. 7 authors · May 18, 2022
- Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors. 3 authors · Apr 18, 2023
1 A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models. 7 authors · Apr 16, 2018
- Dialogue-Based Relation Extraction We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/. 4 authors · Apr 16, 2020
- Trusting Your Evidence: Hallucinate Less with Context-aware Decoding Language models (LMs) often struggle to pay enough attention to the input context, and generate texts that are unfaithful or contain hallucinations. To mitigate this issue, we present context-aware decoding (CAD), which follows a contrastive output distribution that amplifies the difference between the output probabilities when a model is used with and without context. Our experiments show that CAD, without additional training, significantly improves the faithfulness of different LM families, including OPT, GPT, LLaMA and FLAN-T5 for summarization tasks (e.g., 14.3% gain for LLaMA in factuality metrics). Furthermore, CAD is particularly effective in overriding a model's prior knowledge when it contradicts the provided context, leading to substantial improvements in tasks where resolving the knowledge conflict is essential. 6 authors · May 24, 2023
- Conversational Recommendation as Retrieval: A Simple, Strong Baseline Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs. 6 authors · May 23, 2023
- Learning To Retrieve Prompts for In-Context Learning In-context learning is a recent paradigm in natural language understanding, where a large pre-trained language model (LM) observes a test instance and a few training examples as its input, and directly decodes the output without any update to its parameters. However, performance has been shown to strongly depend on the selected training examples (termed prompt). In this work, we propose an efficient method for retrieving prompts for in-context learning using annotated data and a LM. Given an input-output pair, we estimate the probability of the output given the input and a candidate training example as the prompt, and label training examples as positive or negative based on this probability. We then train an efficient dense retriever from this data, which is used to retrieve training examples as prompts at test time. We evaluate our approach on three sequence-to-sequence tasks where language utterances are mapped to meaning representations, and find that it substantially outperforms prior work and multiple baselines across the board. 3 authors · Dec 16, 2021
4 When to Speak, When to Abstain: Contrastive Decoding with Abstention Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust. 4 authors · Dec 16, 2024 2
62 Kanana: Compute-efficient Bilingual Language Models We introduce Kanana, a series of bilingual language models that demonstrate exceeding performance in Korean and competitive performance in English. The computational cost of Kanana is significantly lower than that of state-of-the-art models of similar size. The report details the techniques employed during pre-training to achieve compute-efficient yet competitive models, including high quality data filtering, staged pre-training, depth up-scaling, and pruning and distillation. Furthermore, the report outlines the methodologies utilized during the post-training of the Kanana models, encompassing supervised fine-tuning and preference optimization, aimed at enhancing their capability for seamless interaction with users. Lastly, the report elaborates on plausible approaches used for language model adaptation to specific scenarios, such as embedding, retrieval augmented generation, and function calling. The Kanana model series spans from 2.1B to 32.5B parameters with 2.1B models (base, instruct, embedding) publicly released to promote research on Korean language models. 29 authors · Feb 26 2
- Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process. 7 authors · Feb 24, 2024
- Increasing The Performance of Cognitively Inspired Data-Efficient Language Models via Implicit Structure Building In this paper, we describe our submission to the BabyLM Challenge 2023 shared task on data-efficient language model (LM) pretraining (Warstadt et al., 2023). We train transformer-based masked language models that incorporate unsupervised predictions about hierarchical sentence structure into the model architecture. Concretely, we use the Structformer architecture (Shen et al., 2021) and variants thereof. StructFormer models have been shown to perform well on unsupervised syntactic induction based on limited pretraining data, and to yield performance improvements over a vanilla transformer architecture (Shen et al., 2021). Evaluation of our models on 39 tasks provided by the BabyLM challenge shows promising improvements of models that integrate a hierarchical bias into the architecture at some particular tasks, even though they fail to consistently outperform the RoBERTa baseline model provided by the shared task organizers on all tasks. 3 authors · Oct 31, 2023
- A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance. 4 authors · Feb 2, 2024
1 ILuvUI: Instruction-tuned LangUage-Vision modeling of UIs from Machine Conversations Multimodal Vision-Language Models (VLMs) enable powerful applications from their fused understanding of images and language, but many perform poorly on UI tasks due to the lack of UI training data. In this paper, we adapt a recipe for generating paired text-image training data for VLMs to the UI domain by combining existing pixel-based methods with a Large Language Model (LLM). Unlike prior art, our method requires no human-provided annotations, and it can be applied to any dataset of UI screenshots. We generate a dataset of 335K conversational examples paired with UIs that cover Q&A, UI descriptions, and planning, and use it to fine-tune a conversational VLM for UI tasks. To assess the performance of our model, we benchmark it on UI element detection tasks, evaluate response quality, and showcase its applicability to multi-step UI navigation and planning. 4 authors · Oct 7, 2023
- Building a Role Specified Open-Domain Dialogue System Leveraging Large-Scale Language Models Recent open-domain dialogue models have brought numerous breakthroughs. However, building a chat system is not scalable since it often requires a considerable volume of human-human dialogue data, especially when enforcing features such as persona, style, or safety. In this work, we study the challenge of imposing roles on open-domain dialogue systems, with the goal of making the systems maintain consistent roles while conversing naturally with humans. To accomplish this, the system must satisfy a role specification that includes certain conditions on the stated features as well as a system policy on whether or not certain types of utterances are allowed. For this, we propose an efficient data collection framework leveraging in-context few-shot learning of large-scale language models for building role-satisfying dialogue dataset from scratch. We then compare various architectures for open-domain dialogue systems in terms of meeting role specifications while maintaining conversational abilities. Automatic and human evaluations show that our models return few out-of-bounds utterances, keeping competitive performance on general metrics. We release a Korean dialogue dataset we built for further research. 7 authors · Apr 30, 2022
- Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding Large language models (LLMs) have become ubiquitous in practice and are widely used for generation tasks such as translation, summarization and instruction following. However, their enormous size and reliance on autoregressive decoding increase deployment costs and complicate their use in latency-critical applications. In this work, we propose a hybrid approach that combines language models of different sizes to increase the efficiency of autoregressive decoding while maintaining high performance. Our method utilizes a pretrained frozen LLM that encodes all prompt tokens once in parallel, and uses the resulting representations to condition and guide a small language model (SLM), which then generates the response more efficiently. We investigate the combination of encoder-decoder LLMs with both encoder-decoder and decoder-only SLMs from different model families and only require fine-tuning of the SLM. Experiments with various benchmarks show substantial speedups of up to 4times, with minor performance penalties of 1-2% for translation and summarization tasks compared to the LLM. 6 authors · Feb 26, 2024
1 From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models. 15 authors · Nov 6, 2024
- Attention Is Indeed All You Need: Semantically Attention-Guided Decoding for Data-to-Text NLG Ever since neural models were adopted in data-to-text language generation, they have invariably been reliant on extrinsic components to improve their semantic accuracy, because the models normally do not exhibit the ability to generate text that reliably mentions all of the information provided in the input. In this paper, we propose a novel decoding method that extracts interpretable information from encoder-decoder models' cross-attention, and uses it to infer which attributes are mentioned in the generated text, which is subsequently used to rescore beam hypotheses. Using this decoding method with T5 and BART, we show on three datasets its ability to dramatically reduce semantic errors in the generated outputs, while maintaining their state-of-the-art quality. 2 authors · Sep 14, 2021
1 Ranking Large Language Models without Ground Truth Evaluation and ranking of large language models (LLMs) has become an important problem with the proliferation of these models and their impact. Evaluation methods either require human responses which are expensive to acquire or use pairs of LLMs to evaluate each other which can be unreliable. In this paper, we provide a novel perspective where, given a dataset of prompts (viz. questions, instructions, etc.) and a set of LLMs, we rank them without access to any ground truth or reference responses. Inspired by real life where both an expert and a knowledgeable person can identify a novice our main idea is to consider triplets of models, where each one of them evaluates the other two, correctly identifying the worst model in the triplet with high probability. We also analyze our idea and provide sufficient conditions for it to succeed. Applying this idea repeatedly, we propose two methods to rank LLMs. In experiments on different generative tasks (summarization, multiple-choice, and dialog), our methods reliably recover close to true rankings without reference data. This points to a viable low-resource mechanism for practical use. 5 authors · Feb 20, 2024
- Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD. 5 authors · Feb 17
1 Multi-Task End-to-End Training Improves Conversational Recommendation In this paper, we analyze the performance of a multitask end-to-end transformer model on the task of conversational recommendations, which aim to provide recommendations based on a user's explicit preferences expressed in dialogue. While previous works in this area adopt complex multi-component approaches where the dialogue management and entity recommendation tasks are handled by separate components, we show that a unified transformer model, based on the T5 text-to-text transformer model, can perform competitively in both recommending relevant items and generating conversation dialogue. We fine-tune our model on the ReDIAL conversational movie recommendation dataset, and create additional training tasks derived from MovieLens (such as the prediction of movie attributes and related movies based on an input movie), in a multitask learning setting. Using a series of probe studies, we demonstrate that the learned knowledge in the additional tasks is transferred to the conversational setting, where each task leads to a 9%-52% increase in its related probe score. 7 authors · May 8, 2023