new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Smaller Language Models Are Better Instruction Evolvers

Instruction tuning has been widely used to unleash the complete potential of large language models. Notably, complex and diverse instructions are of significant importance as they can effectively align models with various downstream tasks. However, current approaches to constructing large-scale instructions predominantly favour powerful models such as GPT-4 or those with over 70 billion parameters, under the empirical presumption that such larger language models (LLMs) inherently possess enhanced capabilities. In this study, we question this prevalent assumption and conduct an in-depth exploration into the potential of smaller language models (SLMs) in the context of instruction evolution. Extensive experiments across three scenarios of instruction evolution reveal that smaller language models (SLMs) can synthesize more effective instructions than LLMs. Further analysis demonstrates that SLMs possess a broader output space during instruction evolution, resulting in more complex and diverse variants. We also observe that the existing metrics fail to focus on the impact of the instructions. Thus, we propose Instruction Complex-Aware IFD (IC-IFD), which introduces instruction complexity in the original IFD score to evaluate the effectiveness of instruction data more accurately. Our source code is available at: https://github.com/HypherX/Evolution-Analysis{https://github.com/HypherX/Evolution-Analysis}

SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe

To induce desired behaviors in large language models (LLMs) for interaction-driven tasks, the instruction-tuning stage typically trains LLMs on instruction-response pairs using the next-token prediction (NTP) loss. Previous work aiming to improve instruction-tuning performance often emphasizes the need for higher-quality supervised fine-tuning (SFT) datasets, which typically involves expensive data filtering with proprietary LLMs or labor-intensive data generation by human annotators. However, these approaches do not fully leverage the datasets' intrinsic properties, resulting in high computational and labor costs, thereby limiting scalability and performance gains. In this paper, we propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm, without the need for well-curated datasets. Observing that LLMs exhibit uneven confidence across the semantic representation space, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process. Based on this insight, SFTMix leverages training dynamics to identify examples with varying confidence levels, then applies a Mixup-based regularization to mitigate overfitting on confident examples while propagating supervision signals to improve learning on relatively unconfident ones. This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks, demonstrating its adaptability to diverse LLM families and scalability to datasets of any size. Comprehensive ablation studies further verify the robustness of SFTMix's design choices, underscoring its versatility in consistently enhancing performance across different LLMs and datasets in broader natural language processing applications.

Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering

Layout-aware pre-trained models has achieved significant progress on document image question answering. They introduce extra learnable modules into existing language models to capture layout information within document images from text bounding box coordinates obtained by OCR tools. However, extra modules necessitate pre-training on extensive document images. This prevents these methods from directly utilizing off-the-shelf instruction-tuning language foundation models, which have recently shown promising potential in zero-shot learning. Instead, in this paper, we find that instruction-tuning language models like Claude and ChatGPT can understand layout by spaces and line breaks. Based on this observation, we propose the LAyout and Task aware Instruction Prompt (LATIN-Prompt), which consists of layout-aware document content and task-aware instruction. Specifically, the former uses appropriate spaces and line breaks to recover the layout information among text segments obtained by OCR tools, and the latter ensures that generated answers adhere to formatting requirements. Moreover, we propose the LAyout and Task aware Instruction Tuning (LATIN-Tuning) to improve the performance of small instruction-tuning models like Alpaca. Experimental results show that LATIN-Prompt enables zero-shot performance of Claude and ChatGPT to be comparable to the fine-tuning performance of SOTAs on document image question answering, and LATIN-Tuning enhances the zero-shot performance of Alpaca significantly. For example, LATIN-Prompt improves the performance of Claude and ChatGPT on DocVQA by 263% and 20% respectively. LATIN-Tuning improves the performance of Alpaca on DocVQA by 87.7%. Quantitative and qualitative analyses demonstrate the effectiveness of LATIN-Prompt and LATIN-Tuning. We provide the code in supplementary and will release it to facilitate future research.

Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding

We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.

ImageBind-LLM: Multi-modality Instruction Tuning

We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.

Mamba State-Space Models Are Lyapunov-Stable Learners

Mamba state-space models (SSMs) were recently shown to outperform state-of-the-art (SOTA) Transformer large language models (LLMs) across various tasks. Despite subsequent widespread adaptation, little work has focused on Mamba LLMs' amenability for fine-tuning frameworks ubiquitously used for Transformer-based LLMs, e.g., mixed-precision fine-tuning (MPFT) and parameter-efficient fine-tuning (PEFT). For the former, it currently remains an open question whether Mamba's recurrent dynamics are robust to small input changes, such as those encountered during MPFT. Using dynamical systems theory (in particular, Lyapunov exponents), we answer this question in the affirmative. We empirically validate this result through several experiments, showing that Mamba SSMs are significantly more stable to changes introduced by mixed-precision than comparable Transformers, even when both MPFT and PEFT are combined. For PEFT, we show how targeting specific memory buffers in Mamba's customized CUDA kernels for low-rank adaptation regularizes SSM parameters, thus providing both parameter efficient learning and computational savings. Finally, with both MPFT and PEFT enabled, we explore the impact of instruction tuning Mamba SSMs for in-context learning (ICL) on natural language tasks. While pretrained Mamba and Mamba-2 models only achieve 38% and 82% (respectively) of the ICL improvements of comparable Transformer-based LLMs, we show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.

MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing

Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.

Compositional Image Retrieval via Instruction-Aware Contrastive Learning

Composed Image Retrieval (CIR) involves retrieving a target image based on a composed query of an image paired with text that specifies modifications or changes to the visual reference. CIR is inherently an instruction-following task, as the model needs to interpret and apply modifications to the image. In practice, due to the scarcity of annotated data in downstream tasks, Zero-Shot CIR (ZS-CIR) is desirable. While existing ZS-CIR models based on CLIP have shown promising results, their capability in interpreting and following modification instructions remains limited. Some research attempts to address this by incorporating Large Language Models (LLMs). However, these approaches still face challenges in effectively integrating multimodal information and instruction understanding. To tackle above challenges, we propose a novel embedding method utilizing an instruction-tuned Multimodal LLM (MLLM) to generate composed representation, which significantly enhance the instruction following capability for a comprehensive integration between images and instructions. Nevertheless, directly applying MLLMs introduces a new challenge since MLLMs are primarily designed for text generation rather than embedding extraction as required in CIR. To address this, we introduce a two-stage training strategy to efficiently learn a joint multimodal embedding space and further refining the ability to follow modification instructions by tuning the model in a triplet dataset similar to the CIR format. Extensive experiments on four public datasets: FashionIQ, CIRR, GeneCIS, and CIRCO demonstrates the superior performance of our model, outperforming state-of-the-art baselines by a significant margin. Codes are available at the GitHub repository.

UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers

Existing information retrieval (IR) models often assume a homogeneous structure for knowledge sources and user queries, limiting their applicability in real-world settings where retrieval is inherently heterogeneous and diverse. In this paper, we introduce UniHGKR, a unified instruction-aware heterogeneous knowledge retriever that (1) builds a unified retrieval space for heterogeneous knowledge and (2) follows diverse user instructions to retrieve knowledge of specified types. UniHGKR consists of three principal stages: heterogeneous self-supervised pretraining, text-anchored embedding alignment, and instruction-aware retriever fine-tuning, enabling it to generalize across varied retrieval contexts. This framework is highly scalable, with a BERT-based version and a UniHGKR-7B version trained on large language models. Also, we introduce CompMix-IR, the first native heterogeneous knowledge retrieval benchmark. It includes two retrieval scenarios with various instructions, over 9,400 question-answer (QA) pairs, and a corpus of 10 million entries, covering four different types of data. Extensive experiments show that UniHGKR consistently outperforms state-of-the-art methods on CompMix-IR, achieving up to 6.36% and 54.23% relative improvements in two scenarios, respectively. Finally, by equipping our retriever for open-domain heterogeneous QA systems, we achieve a new state-of-the-art result on the popular ConvMix task, with an absolute improvement of up to 4.80 points.

Omni-Mol: Exploring Universal Convergent Space for Omni-Molecular Tasks

Building generalist models has recently demonstrated remarkable capabilities in diverse scientific domains. Within the realm of molecular learning, several studies have explored unifying diverse tasks across diverse domains. However, negative conflicts and interference between molecules and knowledge from different domain may have a worse impact in threefold. First, conflicting molecular representations can lead to optimization difficulties for the models. Second, mixing and scaling up training data across diverse tasks is inherently challenging. Third, the computational cost of refined pretraining is prohibitively high. To address these limitations, this paper presents Omni-Mol, a scalable and unified LLM-based framework for direct instruction tuning. Omni-Mol builds on three key components to tackles conflicts: (1) a unified encoding mechanism for any task input; (2) an active-learning-driven data selection strategy that significantly reduces dataset size; (3) a novel design of the adaptive gradient stabilization module and anchor-and-reconcile MoE framework that ensures stable convergence. Experimentally, Omni-Mol achieves state-of-the-art performance across 15 molecular tasks, demonstrates the presence of scaling laws in the molecular domain, and is supported by extensive ablation studies and analyses validating the effectiveness of its design. The code and weights of the powerful AI-driven chemistry generalist are open-sourced at: https://anonymous.4open.science/r/Omni-Mol-8EDB.

Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning

Robotic manipulation is often challenging due to the long-horizon tasks and the complex object relationships. A common solution is to develop a task and motion planning framework that integrates planning for high-level task and low-level motion. Recently, inspired by the powerful reasoning ability of Large Language Models (LLMs), LLM-based planning approaches have achieved remarkable progress. However, these methods still heavily rely on expert-specific knowledge, often generating invalid plans for unseen and unfamiliar tasks. To address this issue, we propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization. It is the first expert-free planning framework since we combine the world knowledge from LLMs with formal reasoning, resulting in improved generalization capability to new tasks. Specifically, differ to most existing work, our LM-SymOpt employs LLMs to translate natural language instructions into symbolic representations, thereby representing actions as high-level symbols and reducing the search space for planning. Next, after evaluating the action probability of completing the task using LLMs, a weighted random sampling method is introduced to generate candidate plans. Their feasibility is assessed through symbolic reasoning and their cost efficiency is then evaluated using trajectory optimization for selecting the optimal planning. Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.

Multi-Reward as Condition for Instruction-based Image Editing

High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in 0sim 5 and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.

InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following

The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git

Large Language Model Meets Graph Neural Network in Knowledge Distillation

Despite recent community revelations about the advancements and potential applications of Large Language Models (LLMs) in understanding Text-Attributed Graph (TAG), the deployment of LLMs for production is hindered by its high computational and storage requirements, as well as long latencies during model inference. Simultaneously, although traditional Graph Neural Networks (GNNs) are light weight and adept at learning structural features of graphs, their ability to grasp the complex semantics in TAG is somewhat constrained for real applications. To address these limitations, we concentrate on the downstream task of node classification in TAG and propose a novel graph knowledge distillation framework, termed Linguistic Graph Knowledge Distillation (LinguGKD), using LLMs as teacher models and GNNs as student models for knowledge distillation. It involves TAG-oriented instruction tuning of LLM on designed tailored prompts, followed by propagating knowledge and aligning the hierarchically learned node features from the teacher LLM to the student GNN in latent space, employing a layer-adaptive contrastive learning strategy. Through extensive experiments on a variety of LLM and GNN models and multiple benchmark datasets, the proposed LinguGKD significantly boosts the student GNN's predictive accuracy and convergence rate, without the need of extra data or model parameters. Compared to teacher LLM, distilled GNN achieves superior inference speed equipped with much fewer computing and storage demands, when surpassing the teacher LLM's classification accuracy on some of benchmark datasets.

PointLLM: Empowering Large Language Models to Understand Point Clouds

The unprecedented advancements in Large Language Models (LLMs) have created a profound impact on natural language processing but are yet to fully embrace the realm of 3D understanding. This paper introduces PointLLM, a preliminary effort to fill this gap, thereby enabling LLMs to understand point clouds and offering a new avenue beyond 2D visual data. PointLLM processes colored object point clouds with human instructions and generates contextually appropriate responses, illustrating its grasp of point clouds and common sense. Specifically, it leverages a point cloud encoder with a powerful LLM to effectively fuse geometric, appearance, and linguistic information. We collect a novel dataset comprising 660K simple and 70K complex point-text instruction pairs to enable a two-stage training strategy: initially aligning latent spaces and subsequently instruction-tuning the unified model. To rigorously evaluate our model's perceptual abilities and its generalization capabilities, we establish two benchmarks: Generative 3D Object Classification and 3D Object Captioning, assessed through three different methods, including human evaluation, GPT-4/ChatGPT evaluation, and traditional metrics. Experiment results show that PointLLM demonstrates superior performance over existing 2D baselines. Remarkably, in human-evaluated object captioning tasks, PointLLM outperforms human annotators in over 50% of the samples. Codes, datasets, and benchmarks are available at https://github.com/OpenRobotLab/PointLLM .

SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation

Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.

AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases

LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.

CodecLM: Aligning Language Models with Tailored Synthetic Data

Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.

Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models

Instruction tuning is instrumental in enabling Large Language Models~(LLMs) to follow user instructions to complete various open-domain tasks. The success of instruction tuning depends on the availability of high-quality instruction data. Owing to the exorbitant cost and substandard quality of human annotation, recent works have been deeply engaged in the exploration of the utilization of powerful closed-source models to generate instruction data automatically. However, these methods carry potential risks arising from the usage requirements of powerful closed-source models, which strictly forbid the utilization of their outputs to develop machine learning models. To deal with this problem, in this work, we explore alternative approaches to generate high-quality instruction data that do not rely on closed-source models. Our exploration includes an investigation of various existing instruction generation methods, culminating in the integration of the most efficient variant with two novel strategies to enhance the quality further. Evaluation results from two benchmarks and the GPT-4 model demonstrate the effectiveness of our generated instruction data, which can outperform Alpaca, a method reliant on closed-source models. We hope that more progress can be achieved in generating high-quality instruction data without using closed-source models.

GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest

Instruction tuning large language model (LLM) on image-text pairs has achieved unprecedented vision-language multimodal abilities. However, their vision-language alignments are only built on image-level, the lack of region-level alignment limits their advancements to fine-grained multimodal understanding. In this paper, we propose instruction tuning on region-of-interest. The key design is to reformulate the bounding box as the format of spatial instruction. The interleaved sequences of visual features extracted by the spatial instruction and the language embedding are input to LLM, and trained on the transformed region-text data in instruction tuning format. Our region-level vision-language model, termed as GPT4RoI, brings brand new conversational and interactive experience beyond image-level understanding. (1) Controllability: Users can interact with our model by both language and spatial instructions to flexibly adjust the detail level of the question. (2) Capacities: Our model supports not only single-region spatial instruction but also multi-region. This unlocks more region-level multimodal capacities such as detailed region caption and complex region reasoning. (3) Composition: Any off-the-shelf object detector can be a spatial instruction provider so as to mine informative object attributes from our model, like color, shape, material, action, relation to other objects, etc. The code, data, and demo can be found at https://github.com/jshilong/GPT4RoI.

LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image Understanding

Instruction tuning unlocks the superior capability of Large Language Models (LLM) to interact with humans. Furthermore, recent instruction-following datasets include images as visual inputs, collecting responses for image-based instructions. However, visual instruction-tuned models cannot comprehend textual details within images well. This work enhances the current visual instruction tuning pipeline with text-rich images (e.g., movie posters, book covers, etc.). Specifically, we first use publicly available OCR tools to collect results on 422K text-rich images from the LAION dataset. Moreover, we prompt text-only GPT-4 with recognized texts and image captions to generate 16K conversations, each containing question-answer pairs for text-rich images. By combining our collected data with previous multi-modal instruction-following data, our model, LLaVAR, substantially improves the LLaVA model's capability on text-based VQA datasets (up to 20% accuracy improvement) while achieving an accuracy of 91.42% on ScienceQA. The GPT-4-based instruction-following evaluation also demonstrates the improvement of our model on both natural images and text-rich images. Through qualitative analysis, LLaVAR shows promising interaction (e.g., reasoning, writing, and elaboration) skills with humans based on the latest real-world online content that combines text and images. We make our code/data/models publicly available at https://llavar.github.io/.

Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation

Instruction tuning has emerged to enhance the capabilities of large language models (LLMs) to comprehend instructions and generate appropriate responses. Existing methods either manually annotate or employ LLM (e.g., GPT-series) to generate data for instruction tuning. However, they often overlook associating instructions with existing annotated datasets. In this paper, we propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data. Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions. By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions (e.g., it costs less than $12 USD by calling GPT-3.5-turbo for generating 800K instruction tuning samples; 2) it provides high-quality data for instruction tuning (e.g., it performs better than Alpaca and Flan on Super-NI and Longform with comparable data sizes); and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available. We further investigate a continual learning scheme for learning with the ever-growing instruction-tuning dataset, and demonstrate that replaying tasks with diverse instruction embeddings not only helps mitigate forgetting issues but generalizes to unseen tasks better. Code and data are available at https://github.com/WadeYin9712/Dynosaur.

MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment

This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models. The MM-Instruct dataset, benchmark, and pre-trained models are available at https://github.com/jihaonew/MM-Instruct.

Dynamics of Instruction Tuning: Each Ability of Large Language Models Has Its Own Growth Pace

Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). However, the creation of instruction data is still largely heuristic, leading to significant variation in quality and distribution across existing datasets. Experimental conclusions drawn from these datasets are also inconsistent, with some studies emphasizing the importance of scaling instruction numbers, while others argue that a limited number of samples suffice. To better understand data construction guidelines, we deepen our focus from the overall model performance to the growth of each underlying ability, such as creative writing, code generation, and logical reasoning. We systematically investigate the effects of data volume, parameter size, and data construction methods on the development of various abilities, using hundreds of model checkpoints (7b to 33b) fully instruction-tuned on a new collection of over 40k human-curated instruction data. This proposed dataset is stringently quality-controlled and categorized into ten distinct LLM abilities. Our study reveals three primary findings: (i) Despite data volume and parameter scale directly impacting models' overall performance, some abilities are more responsive to their increases and can be effectively trained using limited data, while some are highly resistant to these changes. (ii) Human-curated data strongly outperforms synthetic data from GPT-4 in efficiency and can constantly enhance model performance with volume increases, but is unachievable with synthetic data. (iii) Instruction data brings powerful cross-ability generalization, with evaluation results on out-of-domain data mirroring the first two observations. Furthermore, we demonstrate how these findings can guide more efficient data constructions, leading to practical performance improvements on public benchmarks.

Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models

Instruction tuning plays a critical role in aligning large language models (LLMs) with human preference. Despite the vast amount of open instruction datasets, naively training a LLM on all existing instructions may not be optimal and practical. To pinpoint the most beneficial datapoints, data assessment and selection methods have been proposed in the fields of natural language processing (NLP) and deep learning. However, under the context of instruction tuning, there still exists a gap in knowledge on what kind of data evaluation metrics can be employed and how they can be integrated into the selection mechanism. To bridge this gap, we present a comprehensive review on existing literature of data assessment and selection especially for instruction tuning of LLMs. We systematically categorize all applicable methods into quality-based, diversity-based, and importance-based ones where a unified, fine-grained taxonomy is structured. For each category, representative methods are elaborated to describe the landscape of relevant research. In addition, comparison between latest methods is conducted on their officially reported results to provide in-depth discussions on their limitations. Finally, we summarize the open challenges and propose the promosing avenues for future studies. All related contents are available at https://github.com/yuleiqin/fantastic-data-engineering.

Toward General Instruction-Following Alignment for Retrieval-Augmented Generation

Following natural instructions is crucial for the effective application of Retrieval-Augmented Generation (RAG) systems. Despite recent advancements in Large Language Models (LLMs), research on assessing and improving instruction-following (IF) alignment within the RAG domain remains limited. To address this issue, we propose VIF-RAG, the first automated, scalable, and verifiable synthetic pipeline for instruction-following alignment in RAG systems. We start by manually crafting a minimal set of atomic instructions (<100) and developing combination rules to synthesize and verify complex instructions for a seed set. We then use supervised models for instruction rewriting while simultaneously generating code to automate the verification of instruction quality via a Python executor. Finally, we integrate these instructions with extensive RAG and general data samples, scaling up to a high-quality VIF-RAG-QA dataset (>100k) through automated processes. To further bridge the gap in instruction-following auto-evaluation for RAG systems, we introduce FollowRAG Benchmark, which includes approximately 3K test samples, covering 22 categories of general instruction constraints and four knowledge-intensive QA datasets. Due to its robust pipeline design, FollowRAG can seamlessly integrate with different RAG benchmarks. Using FollowRAG and eight widely-used IF and foundational abilities benchmarks for LLMs, we demonstrate that VIF-RAG markedly enhances LLM performance across a broad range of general instruction constraints while effectively leveraging its capabilities in RAG scenarios. Further analysis offers practical insights for achieving IF alignment in RAG systems. Our code and datasets are released at https://FollowRAG.github.io.

Align^2LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation

Recent advances in Multi-modal Large Language Models (MLLMs), such as LLaVA-series models, are driven by massive machine-generated instruction-following data tuning. Such automatic instruction collection pipelines, however, inadvertently introduce significant variability in data quality. This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment, to compress this vast corpus of machine-generated multimodal instructions to a compact and high-quality form: (i) For human preference alignment, we have collected a machine-generated multimodal instruction dataset and established a comprehensive set of both subjective and objective criteria to guide the data quality assessment critically from human experts. By doing so, a reward model was trained on the annotated dataset to internalize the nuanced human understanding of instruction alignment. (ii) For LLM preference alignment, given the instruction selected by the reward model, we propose leveraging the inner LLM used in MLLM to align the writing style of visual instructions with that of the inner LLM itself, resulting in LLM-aligned instruction improvement. Extensive experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%. Impressively, by aggressively reducing the total training sample size from 158k to 14k (9times smaller), our model consistently outperforms its full-size dataset counterpart across various MLLM benchmarks. Our project is available at https://github.com/DCDmllm/Align2LLaVA.

Automatic Instruction Optimization for Open-source LLM Instruction Tuning

Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (https://github.com/lunyiliu/CoachLM).

Synthetic Data (Almost) from Scratch: Generalized Instruction Tuning for Language Models

We introduce Generalized Instruction Tuning (called GLAN), a general and scalable method for instruction tuning of Large Language Models (LLMs). Unlike prior work that relies on seed examples or existing datasets to construct instruction tuning data, GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and generates large-scale synthetic instruction data across all disciplines. Specifically, inspired by the systematic structure in human education system, we build the taxonomy by decomposing human knowledge and capabilities to various fields, sub-fields and ultimately, distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a comprehensive list of subjects for every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in every class session of the syllabus, we are able to generate diverse instructions with a broad coverage across the entire spectrum of human knowledge and skills. Extensive experiments on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic exams, logical reasoning to general instruction following without using task-specific training data of these tasks. In addition, GLAN allows for easy customization and new fields or skills can be added by simply incorporating a new node into our taxonomy.

Ensemble-Instruct: Generating Instruction-Tuning Data with a Heterogeneous Mixture of LMs

Using in-context learning (ICL) for data generation, techniques such as Self-Instruct (Wang et al., 2023) or the follow-up Alpaca (Taori et al., 2023) can train strong conversational agents with only a small amount of human supervision. One limitation of these approaches is that they resort to very large language models (around 175B parameters) that are also proprietary and non-public. Here we explore the application of such techniques to language models that are much smaller (around 10B--40B parameters) and have permissive licenses. We find the Self-Instruct approach to be less effective at these sizes and propose new ICL methods that draw on two main ideas: (a) Categorization and simplification of the ICL templates to make prompt learning easier for the LM, and (b) Ensembling over multiple LM outputs to help select high-quality synthetic examples. Our algorithm leverages the 175 Self-Instruct seed tasks and employs separate pipelines for instructions that require an input and instructions that do not. Empirical investigations with different LMs show that: (1) Our proposed method yields higher-quality instruction tuning data than Self-Instruct, (2) It improves performances of both vanilla and instruction-tuned LMs by significant margins, and (3) Smaller instruction-tuned LMs generate more useful outputs than their larger un-tuned counterparts. Our codebase is available at https://github.com/IBM/ensemble-instruct.

MMInstruct: A High-Quality Multi-Modal Instruction Tuning Dataset with Extensive Diversity

Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of Vision Large Language Models (VLLMs). However, existing visual instruction tuning datasets include the following limitations: (1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance, instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations. (2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct, which consists of 973K instructions from 24 domains. There are four instruction types: Judgement, Multiple-Choice, Long Visual Question Answering and Short Visual Question Answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments, we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://github.com/yuecao0119/MMInstruct.

SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models

Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR.

How to Train Long-Context Language Models (Effectively)

We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.

How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources

In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied by limited evaluation, making it difficult to compare models across the board and determine the utility of various resources. We provide a large set of instruction-tuned models from 6.7B to 65B parameters in size, trained on 12 instruction datasets ranging from manually curated (e.g., OpenAssistant) to synthetic and distilled (e.g., Alpaca) and systematically evaluate them on their factual knowledge, reasoning, multilinguality, coding, and open-ended instruction following abilities through a collection of automatic, model-based, and human-based metrics. We further introduce T\"ulu, our best performing instruction-tuned model suite finetuned on a combination of high-quality open resources. Our experiments show that different instruction-tuning datasets can uncover or enhance specific skills, while no single dataset (or combination) provides the best performance across all evaluations. Interestingly, we find that model and human preference-based evaluations fail to reflect differences in model capabilities exposed by benchmark-based evaluations, suggesting the need for the type of systemic evaluation performed in this work. Our evaluations show that the best model in any given evaluation reaches on average 83% of ChatGPT performance, and 68% of GPT-4 performance, suggesting that further investment in building better base models and instruction-tuning data is required to close the gap. We release our instruction-tuned models, including a fully finetuned 65B T\"ulu, along with our code, data, and evaluation framework at https://github.com/allenai/open-instruct to facilitate future research.

ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs

Despite the advancements of open-source large language models (LLMs) and their variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing higher-level tasks, such as following human instructions to use external tools (APIs). This is because current instruction tuning largely focuses on basic language tasks instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs, e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are unfortunately closed source. To facilitate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-use framework of data construction, model training and evaluation. We first present ToolBench, an instruction-tuning dataset for tool use, which is created automatically using ChatGPT. Specifically, we collect 16,464 real-world RESTful APIs spanning 49 categories from RapidAPI Hub, then prompt ChatGPT to generate diverse human instructions involving these APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT to search for a valid solution path (chain of API calls) for each instruction. To make the searching process more efficient, we develop a novel depth-first search-based decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and expand the search space. We show that DFSDT significantly enhances the planning and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable ability to execute complex instructions and generalize to unseen APIs, and exhibits comparable performance to ChatGPT. To make the pipeline more practical, we devise a neural API retriever to recommend appropriate APIs for each instruction, negating the need for manual API selection.

Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy

Large Language Models (LLMs) are susceptible to security and safety threats, such as prompt injection, prompt extraction, and harmful requests. One major cause of these vulnerabilities is the lack of an instruction hierarchy. Modern LLM architectures treat all inputs equally, failing to distinguish between and prioritize various types of instructions, such as system messages, user prompts, and data. As a result, lower-priority user prompts may override more critical system instructions, including safety protocols. Existing approaches to achieving instruction hierarchy, such as delimiters and instruction-based training, do not address this issue at the architectural level. We introduce the Instructional Segment Embedding (ISE) technique, inspired by BERT, to modern large language models, which embeds instruction priority information directly into the model. This approach enables models to explicitly differentiate and prioritize various instruction types, significantly improving safety against malicious prompts that attempt to override priority rules. Our experiments on the Structured Query and Instruction Hierarchy benchmarks demonstrate an average robust accuracy increase of up to 15.75% and 18.68%, respectively. Furthermore, we observe an improvement in instruction-following capability of up to 4.1% evaluated on AlpacaEval. Overall, our approach offers a promising direction for enhancing the safety and effectiveness of LLM architectures.

Large-Scale Data Selection for Instruction Tuning

Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.

Benchmarking Large Language Models on Controllable Generation under Diversified Instructions

While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.

Large Language Models Are Human-Level Prompt Engineers

By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.

On the Loss of Context-awareness in General Instruction Fine-tuning

Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.

L-Eval: Instituting Standardized Evaluation for Long Context Language Models

Recently, there has been growing interest in extending the context length of instruction-following models in order to effectively process single-turn long input (e.g. summarizing a paper) and conversations with more extensive histories. While proprietary models such as GPT-4 and Claude have demonstrated considerable advancements in handling tens of thousands of tokens of context, open-sourced models are still in the early stages of experimentation. It also remains unclear whether developing these long context models can offer substantial gains on practical downstream tasks over retrieval-based methods or models simply trained on chunked contexts. To address this challenge, we propose to institute standardized evaluation for long context language models. Concretely, we develop L-Eval which contains 411 long documents and over 2,000 query-response pairs manually annotated and checked by the authors encompassing areas such as law, finance, school lectures, lengthy conversations, news, long-form novels, and meetings. L-Eval also adopts diverse evaluation methods and instruction styles, enabling a more reliable assessment of Long Context Language Models (LCLMs). Our findings indicate that while open-source models typically lag behind their commercial counterparts, they still exhibit impressive performance. LLaMA2 achieves the best results (win 45\% vs turbo-16k) on open-ended tasks with only 4k context length and ChatGLM2 achieves the best results on closed-ended tasks with 8k input tokens. We release our new evaluation suite, code, and all generation results including predictions from all open-sourced LCLMs, GPT4-32k, Cluade-100k at {https://github.com/OpenLMLab/LEval}.

The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities

Large Language Models (LLMs), trained on extensive web-scale corpora, have demonstrated remarkable abilities across diverse tasks, especially as they are scaled up. Nevertheless, even state-of-the-art models struggle in certain cases, sometimes failing at problems solvable by young children, indicating that traditional notions of task complexity are insufficient for explaining LLM capabilities. However, exploring LLM capabilities is complicated by the fact that most widely-used models are also "instruction-tuned" to respond appropriately to prompts. With the goal of disentangling the factors influencing LLM performance, we investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples. Through extensive experiments across various model families, scales and task types, which included instruction tuning 90 different LLMs, we demonstrate that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts. By clarifying what instruction-tuning contributes, we extend prior research into in-context learning, which suggests that base models use priors from pretraining data to solve tasks. Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve, with the added influence of the instruction-tuning dataset.

Evaluating the Zero-shot Robustness of Instruction-tuned Language Models

Instruction fine-tuning has recently emerged as a promising approach for improving the zero-shot capabilities of Large Language Models (LLMs) on new tasks. This technique has shown particular strength in improving the performance of modestly sized LLMs, sometimes inducing performance competitive with much larger model variants. In this paper we ask two questions: (1) How sensitive are instruction-tuned models to the particular phrasings of instructions, and, (2) How can we make them more robust to such natural language variation? To answer the former, we collect a set of 319 instructions manually written by NLP practitioners for over 80 unique tasks included in widely used benchmarks, and we evaluate the variance and average performance of these instructions as compared to instruction phrasings observed during instruction fine-tuning. We find that using novel (unobserved) but appropriate instruction phrasings consistently degrades model performance, sometimes substantially so. Further, such natural instructions yield a wide variance in downstream performance, despite their semantic equivalence. Put another way, instruction-tuned models are not especially robust to instruction re-phrasings. We propose a simple method to mitigate this issue by introducing ``soft prompt'' embedding parameters and optimizing these to maximize the similarity between representations of semantically equivalent instructions. We show that this method consistently improves the robustness of instruction-tuned models.

Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data

Instruction fine-tuning is crucial for today's large language models (LLMs) to learn to follow instructions and align with human preferences. Conventionally, supervised data, including the instruction and the correct response, is required for instruction fine-tuning. To obtain such data, some researchers prompted well-trained models like GPT-4 to generate instructions and correct responses. In this paper, we propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response. Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities. This observation is verified by fine-tuning several well-known pre-trained LLMs (e.g., LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, Mistral-7B-v0.1). The "non-instructional data" also improved some models that underwent supervised fine-tuning and human preference alignment. Our LLaMA-3-70B-Instruct fine-tuned through "non-instructional data" is comparable with LLaMA-3.1-70B-Instruct on the Arena Hard leaderboard. We analyzed the "non-instructional data" and ensured it is devoid of content related to instruction fine-tuning. Our findings will inspire further investigation into how to develop instruction-following capabilities without explicit instruction-related data.

LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints

Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.

Thinking Like an Annotator: Generation of Dataset Labeling Instructions

Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.

InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning

General-purpose language models that can solve various language-domain tasks have emerged driven by the pre-training and instruction-tuning pipeline. However, building general-purpose vision-language models is challenging due to the increased task discrepancy introduced by the additional visual input. Although vision-language pre-training has been widely studied, vision-language instruction tuning remains relatively less explored. In this paper, we conduct a systematic and comprehensive study on vision-language instruction tuning based on the pre-trained BLIP-2 models. We gather a wide variety of 26 publicly available datasets, transform them into instruction tuning format and categorize them into two clusters for held-in instruction tuning and held-out zero-shot evaluation. Additionally, we introduce instruction-aware visual feature extraction, a crucial method that enables the model to extract informative features tailored to the given instruction. The resulting InstructBLIP models achieve state-of-the-art zero-shot performance across all 13 held-out datasets, substantially outperforming BLIP-2 and the larger Flamingo. Our models also lead to state-of-the-art performance when finetuned on individual downstream tasks (e.g., 90.7% accuracy on ScienceQA IMG). Furthermore, we qualitatively demonstrate the advantages of InstructBLIP over concurrent multimodal models. All InstructBLIP models have been open-sourced at https://github.com/salesforce/LAVIS/tree/main/projects/instructblip.

What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning

Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.

What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices

Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.

ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models

With the rise of multimodal applications, instruction data has become critical for training multimodal language models capable of understanding complex image-based queries. Existing practices rely on powerful but costly large language models (LLMs) or multimodal language models (MLMs) to produce instruction data. These are often prone to hallucinations, licensing issues and the generation process is often hard to scale and interpret. In this work, we present a programmatic approach that employs scene graphs as symbolic representations of images and human-written programs to systematically synthesize vision-centric instruction data. Our approach ensures the interpretability and controllability of the data generation process and scales efficiently while maintaining factual accuracy. By implementing a suite of 24 single-image, 14 multi-image instruction generators, and a scene graph generation pipeline, we build a scalable, cost-effective system: ProVision which produces diverse question-answer pairs concerning objects, attributes, relations, depth, etc., for any given image. Applied to Visual Genome and DataComp datasets, we generate over 10 million instruction data points, ProVision-10M, and leverage them in both pretraining and instruction tuning stages of MLMs. When adopted in the instruction tuning stage, our single-image instruction data yields up to a 7% improvement on the 2D split and 8% on the 3D split of CVBench, along with a 3% increase in performance on QBench2, RealWorldQA, and MMMU. Our multi-image instruction data leads to an 8% improvement on Mantis-Eval. Incorporation of our data in both pre-training and fine-tuning stages of xGen-MM-4B leads to an averaged improvement of 1.6% across 11 benchmarks.

Effective Long-Context Scaling of Foundation Models

We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with Refined Data Generation

Recent work demonstrates that, after being fine-tuned on a high-quality instruction dataset, the resulting model can obtain impressive capabilities to address a wide range of tasks. However, existing methods for instruction data generation often produce duplicate data and are not controllable enough on data quality. In this paper, we extend the generalization of instruction tuning by classifying the instruction data to 4 code-related tasks and propose a LLM-based Generator-Discriminator data process framework to generate diverse, high-quality instruction data from open source code. Hence, we introduce CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal code-related tasks,which is aimed at augmenting the effectiveness of instruction tuning and improving the generalization ability of fine-tuned model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with Widespread And Versatile Enhanced instruction tuning. This model is specifically designed for enhancing instruction tuning of Code Language Models (LLMs). Our experiments demonstrate that Wavecoder models outperform other open-source models in terms of generalization ability across different code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder exhibits high efficiency in previous code generation tasks. This paper thus offers a significant contribution to the field of instruction data generation and fine-tuning models, providing new insights and tools for enhancing performance in code-related tasks.

Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs

Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data. The models also need to be fine-tuned with specific instructions to maintain their ability to follow instructions accurately. Typically, LLMs are released in two versions: the Base LLM, pre-trained on diverse data, and the instruction-refined LLM, additionally trained with specific instructions for better instruction following. The question arises as to which model should undergo continuous pre-training to maintain its instruction-following abilities while also staying current with the latest data. In this study, we delve into the intricate relationship between continuous pre-training and instruction fine-tuning of the LLMs and investigate the impact of continuous pre-training on the instruction following abilities of both the base and its instruction finetuned model. Further, the instruction fine-tuning process is computationally intense and requires a substantial number of hand-annotated examples for the model to learn effectively. This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning. We empirically prove our findings on the LLaMa 3, 3.1 and Qwen 2, 2.5 family of base and instruction models, providing a comprehensive exploration of our hypotheses across varying sizes of pre-training data corpus and different LLMs settings.

MMMT-IF: A Challenging Multimodal Multi-Turn Instruction Following Benchmark

Evaluating instruction following capabilities for multimodal, multi-turn dialogue is challenging. With potentially multiple instructions in the input model context, the task is time-consuming for human raters and we show LLM based judges are biased towards answers from the same model. We propose MMMT-IF, an image based multi-turn Q&A evaluation set with added global instructions between questions, constraining the answer format. This challenges models to retrieve instructions dispersed across long dialogues and reason under instruction constraints. All instructions are objectively verifiable through code execution. We introduce the Programmatic Instruction Following (PIF) metric to measure the fraction of the instructions that are correctly followed while performing a reasoning task. The PIF-N-K set of metrics further evaluates robustness by measuring the fraction of samples in a corpus where, for each sample, at least K out of N generated model responses achieve a PIF score of one. The PIF metric aligns with human instruction following ratings, showing 60 percent correlation. Experiments show Gemini 1.5 Pro, GPT-4o, and Claude 3.5 Sonnet, have a PIF metric that drops from 0.81 on average at turn 1 across the models, to 0.64 at turn 20. Across all turns, when each response is repeated 4 times (PIF-4-4), GPT-4o and Gemini successfully follow all instructions only 11% of the time. When all the instructions are also appended to the end of the model input context, the PIF metric improves by 22.3 points on average, showing that the challenge with the task lies not only in following the instructions, but also in retrieving the instructions spread out in the model context. We plan to open source the MMMT-IF dataset and metric computation code.

OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization

Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.

Improving Translation Faithfulness of Large Language Models via Augmenting Instructions

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

L2MAC: Large Language Model Automatic Computer for Extensive Code Generation

Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.

Efficient Inference of Vision Instruction-Following Models with Elastic Cache

In the field of instruction-following large vision-language models (LVLMs), the efficient deployment of these models faces challenges, notably due to the high memory demands of their key-value (KV) caches. Conventional cache management strategies for LLMs focus on cache eviction, which often fails to address the specific needs of multimodal instruction-following models. Recognizing this gap, in this paper, we introduce Elastic Cache, a novel approach that benefits from applying distinct acceleration methods for instruction encoding and output generation stages. We investigate the metrics of importance in different stages and propose an importance-driven cache merging strategy to prune redundancy caches. Instead of discarding less important caches, our strategy identifies important key/value vectors as anchor points. Surrounding less important caches are then merged with these anchors, enhancing the preservation of contextual information in the KV caches while yielding an arbitrary acceleration ratio. For instruction encoding, we utilize the frequency to evaluate the importance of caches. Regarding output generation, we prioritize tokens based on their distance with an offset, by which both the initial and most recent tokens are retained. Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation across various tasks. Code is available at https://github.com/liuzuyan/ElasticCache

Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing

Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.

LESS: Selecting Influential Data for Targeted Instruction Tuning

Instruction tuning has unlocked powerful capabilities in large language models (LLMs), effectively using combined datasets to develop generalpurpose chatbots. However, real-world applications often require a specialized suite of skills (e.g., reasoning). The challenge lies in identifying the most relevant data from these extensive datasets to effectively develop specific capabilities, a setting we frame as targeted instruction tuning. We propose LESS, an optimizer-aware and practically efficient algorithm to effectively estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection. Crucially, LESS adapts existing influence formulations to work with the Adam optimizer and variable-length instruction data. LESS first constructs a highly reusable and transferable gradient datastore with low-dimensional gradient features and then selects examples based on their similarity to few-shot examples embodying a specific capability. Experiments show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks. Furthermore, the selected data is highly transferable: smaller models can be leveraged to select useful data for larger models and models from different families. Our qualitative analysis shows that our method goes beyond surface form cues to identify data that exemplifies the necessary reasoning skills for the intended downstream application.

Can Large Language Models Understand Symbolic Graphics Programs?

Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.

Improving Diffusion Models for Scene Text Editing with Dual Encoders

Scene text editing is a challenging task that involves modifying or inserting specified texts in an image while maintaining its natural and realistic appearance. Most previous approaches to this task rely on style-transfer models that crop out text regions and feed them into image transfer models, such as GANs. However, these methods are limited in their ability to change text style and are unable to insert texts into images. Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing. However, our empirical analysis reveals that state-of-the-art diffusion models struggle with rendering correct text and controlling text style. To address these problems, we propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design, which includes a character encoder for better text legibility and an instruction encoder for better style control. An instruction tuning framework is introduced to train our model to learn the mapping from the text instruction to the corresponding image with either the specified style or the style of the surrounding texts in the background. Such a training method further brings our method the zero-shot generalization ability to the following three scenarios: generating text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using more relaxed forms of natural language as the instructions to guide the generation task. We evaluate our approach on five datasets and demonstrate its superior performance in terms of text correctness, image naturalness, and style controllability. Our code is publicly available. https://github.com/UCSB-NLP-Chang/DiffSTE

VideoSAVi: Self-Aligned Video Language Models without Human Supervision

Recent advances in vision-language models (VLMs) have significantly enhanced video understanding tasks. Instruction tuning (i.e., fine-tuning models on datasets of instructions paired with desired outputs) has been key to improving model performance. However, creating diverse instruction-tuning datasets is challenging due to high annotation costs and the complexity of capturing temporal information in videos. Existing approaches often rely on large language models to generate instruction-output pairs, which can limit diversity and lead to responses that lack grounding in the video content. To address this, we propose VideoSAVi (Self-Aligned Video Language Model), a novel self-training pipeline that enables VLMs to generate their own training data without extensive manual annotation. The process involves three stages: (1) generating diverse video-specific questions, (2) producing multiple candidate answers, and (3) evaluating these responses for alignment with the video content. This self-generated data is then used for direct preference optimization (DPO), allowing the model to refine its own high-quality outputs and improve alignment with video content. Our experiments demonstrate that even smaller models (0.5B and 7B parameters) can effectively use this self-training approach, outperforming previous methods and achieving results comparable to those trained on proprietary preference data. VideoSAVi shows significant improvements across multiple benchmarks: up to 28% on multi-choice QA, 8% on zero-shot open-ended QA, and 12% on temporal reasoning benchmarks. These results demonstrate the effectiveness of our self-training approach in enhancing video understanding while reducing dependence on proprietary models.

Aligning Large Multi-Modal Model with Robust Instruction Tuning

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMM) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset consists of 120k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at two semantic levels: (i) Nonexistent Element Manipulation and (ii) Existent Element Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a novel approach to evaluate visual instruction tuning without the need for human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate that existing LMMs exhibit significant hallucination when presented with our negative instructions, particularly with Existent Element Manipulation instructions. Moreover, by finetuning MiniGPT4 on LRV-Instruction, we successfully mitigate hallucination while improving performance on public datasets using less training data compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Our project link is available at https://fuxiaoliu.github.io/LRV/.

sharpDARTS: Faster and More Accurate Differentiable Architecture Search

Neural Architecture Search (NAS) has been a source of dramatic improvements in neural network design, with recent results meeting or exceeding the performance of hand-tuned architectures. However, our understanding of how to represent the search space for neural net architectures and how to search that space efficiently are both still in their infancy. We have performed an in-depth analysis to identify limitations in a widely used search space and a recent architecture search method, Differentiable Architecture Search (DARTS). These findings led us to introduce novel network blocks with a more general, balanced, and consistent design; a better-optimized Cosine Power Annealing learning rate schedule; and other improvements. Our resulting sharpDARTS search is 50% faster with a 20-30% relative improvement in final model error on CIFAR-10 when compared to DARTS. Our best single model run has 1.93% (1.98+/-0.07) validation error on CIFAR-10 and 5.5% error (5.8+/-0.3) on the recently released CIFAR-10.1 test set. To our knowledge, both are state of the art for models of similar size. This model also generalizes competitively to ImageNet at 25.1% top-1 (7.8% top-5) error. We found improvements for existing search spaces but does DARTS generalize to new domains? We propose Differentiable Hyperparameter Grid Search and the HyperCuboid search space, which are representations designed to leverage DARTS for more general parameter optimization. Here we find that DARTS fails to generalize when compared against a human's one shot choice of models. We look back to the DARTS and sharpDARTS search spaces to understand why, and an ablation study reveals an unusual generalization gap. We finally propose Max-W regularization to solve this problem, which proves significantly better than the handmade design. Code will be made available.

Only-IF:Revealing the Decisive Effect of Instruction Diversity on Generalization

Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.

From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning

Large Language Models (LLMs) have achieved remarkable success, demonstrating powerful instruction-following capabilities across diverse tasks. Instruction fine-tuning is critical in enabling LLMs to align with user intentions and effectively follow instructions. In this work, we investigate how instruction fine-tuning modifies pre-trained models, focusing on two perspectives: instruction recognition and knowledge evolution. To study the behavior shift of LLMs, we employ a suite of local and global explanation methods, including a gradient-based approach for input-output attribution and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. Our findings reveal three significant impacts of instruction fine-tuning: 1) It empowers LLMs to better recognize the instruction parts from user prompts, thereby facilitating high-quality response generation and addressing the ``lost-in-the-middle'' issue observed in pre-trained models; 2) It aligns the knowledge stored in feed-forward layers with user-oriented tasks, exhibiting minimal shifts across linguistic levels. 3) It facilitates the learning of word-word relations with instruction verbs through the self-attention mechanism, particularly in the lower and middle layers, indicating enhanced recognition of instruction words. These insights contribute to a deeper understanding of the behavior shifts in LLMs after instruction fine-tuning and lay the groundwork for future research aimed at interpreting and optimizing LLMs for various applications. We will release our code and data soon.

INSTRUCTEVAL: Towards Holistic Evaluation of Instruction-Tuned Large Language Models

Instruction-tuned large language models have revolutionized natural language processing and have shown great potential in applications such as conversational agents. These models, such as GPT-4, can not only master language but also solve complex tasks in areas like mathematics, coding, medicine, and law. Despite their impressive capabilities, there is still a lack of comprehensive understanding regarding their full potential, primarily due to the black-box nature of many models and the absence of holistic evaluation studies. To address these challenges, we present INSTRUCTEVAL, a more comprehensive evaluation suite designed specifically for instruction-tuned large language models. Unlike previous works, our evaluation involves a rigorous assessment of models based on problem-solving, writing ability, and alignment to human values. We take a holistic approach to analyze various factors affecting model performance, including the pretraining foundation, instruction-tuning data, and training methods. Our findings reveal that the quality of instruction data is the most crucial factor in scaling model performance. While open-source models demonstrate impressive writing abilities, there is substantial room for improvement in problem-solving and alignment. We are encouraged by the rapid development of models by the open-source community, but we also highlight the need for rigorous evaluation to support claims made about these models. Through INSTRUCTEVAL, we aim to foster a deeper understanding of instruction-tuned models and advancements in their capabilities. INSTRUCTEVAL is publicly available at https://github.com/declare-lab/instruct-eval.

Instruction Following without Instruction Tuning

Instruction tuning commonly means finetuning a language model on instruction-response pairs. We discover two forms of adaptation (tuning) that are deficient compared to instruction tuning, yet still yield instruction following; we call this implicit instruction tuning. We first find that instruction-response pairs are not necessary: training solely on responses, without any corresponding instructions, yields instruction following. This suggests pretrained models have an instruction-response mapping which is revealed by teaching the model the desired distribution of responses. However, we then find it's not necessary to teach the desired distribution of responses: instruction-response training on narrow-domain data like poetry still leads to broad instruction-following behavior like recipe generation. In particular, when instructions are very different from those in the narrow finetuning domain, models' responses do not adhere to the style of the finetuning domain. To begin to explain implicit instruction tuning, we hypothesize that very simple changes to a language model's distribution yield instruction following. We support this by hand-writing a rule-based language model which yields instruction following in a product-of-experts with a pretrained model. The rules are to slowly increase the probability of ending the sequence, penalize repetition, and uniformly change 15 words' probabilities. In summary, adaptations made without being designed to yield instruction following can do so implicitly.