Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts
Leveraging the models' outputs, specifically the logits, is a common approach to estimating the test accuracy of a pre-trained neural network on out-of-distribution (OOD) samples without requiring access to the corresponding ground truth labels. Despite their ease of implementation and computational efficiency, current logit-based methods are vulnerable to overconfidence issues, leading to prediction bias, especially under the natural shift. In this work, we first study the relationship between logits and generalization performance from the view of low-density separation assumption. Our findings motivate our proposed method MaNo which (1) applies a data-dependent normalization on the logits to reduce prediction bias, and (2) takes the L_p norm of the matrix of normalized logits as the estimation score. Our theoretical analysis highlights the connection between the provided score and the model's uncertainty. We conduct an extensive empirical study on common unsupervised accuracy estimation benchmarks and demonstrate that MaNo achieves state-of-the-art performance across various architectures in the presence of synthetic, natural, or subpopulation shifts.
Logit Attenuating Weight Normalization
Over-parameterized deep networks trained using gradient-based optimizers are a popular choice for solving classification and ranking problems. Without appropriately tuned ell_2 regularization or weight decay, such networks have the tendency to make output scores (logits) and network weights large, causing training loss to become too small and the network to lose its adaptivity (ability to move around) in the parameter space. Although regularization is typically understood from an overfitting perspective, we highlight its role in making the network more adaptive and enabling it to escape more easily from weights that generalize poorly. To provide such a capability, we propose a method called Logit Attenuating Weight Normalization (LAWN), that can be stacked onto any gradient-based optimizer. LAWN controls the logits by constraining the weight norms of layers in the final homogeneous sub-network. Empirically, we show that the resulting LAWN variant of the optimizer makes a deep network more adaptive to finding minimas with superior generalization performance on large-scale image classification and recommender systems. While LAWN is particularly impressive in improving Adam, it greatly improves all optimizers when used with large batch sizes
Understanding and Improving Knowledge Distillation
Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from student's compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student model's training dynamics remains under-explored. In this paper, we categorize teacher's knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe', where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to student's logit layer geometry; and (3) instance specific knowledge, where teacher rescales student model's per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head
Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.
Do Input Gradients Highlight Discriminative Features?
Post-hoc gradient-based interpretability methods [Simonyan et al., 2013, Smilkov et al., 2017] that provide instance-specific explanations of model predictions are often based on assumption (A): magnitude of input gradients -- gradients of logits with respect to input -- noisily highlight discriminative task-relevant features. In this work, we test the validity of assumption (A) using a three-pronged approach. First, we develop an evaluation framework, DiffROAR, to test assumption (A) on four image classification benchmarks. Our results suggest that (i) input gradients of standard models (i.e., trained on original data) may grossly violate (A), whereas (ii) input gradients of adversarially robust models satisfy (A). Second, we introduce BlockMNIST, an MNIST-based semi-real dataset, that by design encodes a priori knowledge of discriminative features. Our analysis on BlockMNIST leverages this information to validate as well as characterize differences between input gradient attributions of standard and robust models. Finally, we theoretically prove that our empirical findings hold on a simplified version of the BlockMNIST dataset. Specifically, we prove that input gradients of standard one-hidden-layer MLPs trained on this dataset do not highlight instance-specific signal coordinates, thus grossly violating assumption (A). Our findings motivate the need to formalize and test common assumptions in interpretability in a falsifiable manner [Leavitt and Morcos, 2020]. We believe that the DiffROAR evaluation framework and BlockMNIST-based datasets can serve as sanity checks to audit instance-specific interpretability methods; code and data available at https://github.com/harshays/inputgradients.
From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes
We focus on the classification problem with a separable dataset, one of the most important and classical problems from machine learning. The standard approach to this task is logistic regression with gradient descent (LR+GD). Recent studies have observed that LR+GD can find a solution with arbitrarily large step sizes, defying conventional optimization theory. Our work investigates this phenomenon and makes three interconnected key observations about LR+GD with large step sizes. First, we find a remarkably simple explanation of why LR+GD with large step sizes solves the classification problem: LR+GD reduces to a batch version of the celebrated perceptron algorithm when the step size gamma to infty. Second, we observe that larger step sizes lead LR+GD to higher logistic losses when it tends to the perceptron algorithm, but larger step sizes also lead to faster convergence to a solution for the classification problem, meaning that logistic loss is an unreliable metric of the proximity to a solution. Surprisingly, high loss values can actually indicate faster convergence. Third, since the convergence rate in terms of loss function values of LR+GD is unreliable, we examine the iteration complexity required by LR+GD with large step sizes to solve the classification problem and prove that this complexity is suboptimal. To address this, we propose a new method, Normalized LR+GD - based on the connection between LR+GD and the perceptron algorithm - with much better theoretical guarantees.
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
This paper extends the classic theory of convex optimization to the minimization of functions that are equal to the negated logarithm of what we term as a sum-log-concave function, i.e., a sum of log-concave functions. In particular, we show that such functions are in general not convex but still satisfy generalized convexity inequalities. These inequalities unveil the key importance of a certain vector that we call the cross-gradient and that is, in general, distinct from the usual gradient. Thus, we propose the Cross Gradient Descent (XGD) algorithm moving in the opposite direction of the cross-gradient and derive a convergence analysis. As an application of our sum-log-concave framework, we introduce the so-called checkered regression method relying on a sum-log-concave function. This classifier extends (multiclass) logistic regression to non-linearly separable problems since it is capable of tessellating the feature space by using any given number of hyperplanes, creating a checkerboard-like pattern of decision regions.
Towards the Fundamental Limits of Knowledge Transfer over Finite Domains
We characterize the statistical efficiency of knowledge transfer through n samples from a teacher to a probabilistic student classifier with input space mathcal S over labels mathcal A. We show that privileged information at three progressive levels accelerates the transfer. At the first level, only samples with hard labels are known, via which the maximum likelihood estimator attains the minimax rate {|{mathcal S||{mathcal A}|}/{n}}. The second level has the teacher probabilities of sampled labels available in addition, which turns out to boost the convergence rate lower bound to {{|{mathcal S}||{mathcal A}|}/{n}}. However, under this second data acquisition protocol, minimizing a naive adaptation of the cross-entropy loss results in an asymptotically biased student. We overcome this limitation and achieve the fundamental limit by using a novel empirical variant of the squared error logit loss. The third level further equips the student with the soft labels (complete logits) on {mathcal A} given every sampled input, thereby provably enables the student to enjoy a rate {|{mathcal S}|}/{n} free of |{mathcal A}|. We find any Kullback-Leibler divergence minimizer to be optimal in the last case. Numerical simulations distinguish the four learners and corroborate our theory.
One-vs-the-Rest Loss to Focus on Important Samples in Adversarial Training
This paper proposes a new loss function for adversarial training. Since adversarial training has difficulties, e.g., necessity of high model capacity, focusing on important data points by weighting cross-entropy loss has attracted much attention. However, they are vulnerable to sophisticated attacks, e.g., Auto-Attack. This paper experimentally reveals that the cause of their vulnerability is their small margins between logits for the true label and the other labels. Since neural networks classify the data points based on the logits, logit margins should be large enough to avoid flipping the largest logit by the attacks. Importance-aware methods do not increase logit margins of important samples but decrease those of less-important samples compared with cross-entropy loss. To increase logit margins of important samples, we propose switching one-vs-the-rest loss (SOVR), which switches from cross-entropy to one-vs-the-rest loss for important samples that have small logit margins. We prove that one-vs-the-rest loss increases logit margins two times larger than the weighted cross-entropy loss for a simple problem. We experimentally confirm that SOVR increases logit margins of important samples unlike existing methods and achieves better robustness against Auto-Attack than importance-aware methods.
Categorical Reparameterization with Gumbel-Softmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a novel Gumbel-Softmax distribution. This distribution has the essential property that it can be smoothly annealed into a categorical distribution. We show that our Gumbel-Softmax estimator outperforms state-of-the-art gradient estimators on structured output prediction and unsupervised generative modeling tasks with categorical latent variables, and enables large speedups on semi-supervised classification.
Leveraging Label Non-Uniformity for Node Classification in Graph Neural Networks
In node classification using graph neural networks (GNNs), a typical model generates logits for different class labels at each node. A softmax layer often outputs a label prediction based on the largest logit. We demonstrate that it is possible to infer hidden graph structural information from the dataset using these logits. We introduce the key notion of label non-uniformity, which is derived from the Wasserstein distance between the softmax distribution of the logits and the uniform distribution. We demonstrate that nodes with small label non-uniformity are harder to classify correctly. We theoretically analyze how the label non-uniformity varies across the graph, which provides insights into boosting the model performance: increasing training samples with high non-uniformity or dropping edges to reduce the maximal cut size of the node set of small non-uniformity. These mechanisms can be easily added to a base GNN model. Experimental results demonstrate that our approach improves the performance of many benchmark base models.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
LumiNet: The Bright Side of Perceptual Knowledge Distillation
In knowledge distillation literature, feature-based methods have dominated due to their ability to effectively tap into extensive teacher models. In contrast, logit-based approaches, which aim to distill `dark knowledge' from teachers, typically exhibit inferior performance compared to feature-based methods. To bridge this gap, we present LumiNet, a novel knowledge distillation algorithm designed to enhance logit-based distillation. We introduce the concept of 'perception', aiming to calibrate logits based on the model's representation capability. This concept addresses overconfidence issues in logit-based distillation method while also introducing a novel method to distill knowledge from the teacher. It reconstructs the logits of a sample/instances by considering relationships with other samples in the batch. LumiNet excels on benchmarks like CIFAR-100, ImageNet, and MSCOCO, outperforming leading feature-based methods, e.g., compared to KD with ResNet18 and MobileNetV2 on ImageNet, it shows improvements of 1.5% and 2.05%, respectively.
Confidence Ranking for CTR Prediction
Model evolution and constant availability of data are two common phenomena in large-scale real-world machine learning applications, e.g. ads and recommendation systems. To adapt, the real-world system typically retrain with all available data and online learn with recently available data to update the models periodically with the goal of better serving performance. In this paper, we propose a novel framework, named Confidence Ranking, which designs the optimization objective as a ranking function with two different models. Our confidence ranking loss allows direct optimization of the logits output for different convex surrogate functions of metrics, e.g. AUC and Accuracy depending on the target task and dataset. Armed with our proposed methods, our experiments show that the introduction of confidence ranking loss can outperform all baselines on the CTR prediction tasks of public and industrial datasets. This framework has been deployed in the advertisement system of JD.com to serve the main traffic in the fine-rank stage.
The First to Know: How Token Distributions Reveal Hidden Knowledge in Large Vision-Language Models?
Large vision-language models (LVLMs), designed to interpret and respond to human instructions, occasionally generate hallucinated or harmful content due to inappropriate instructions. This study uses linear probing to shed light on the hidden knowledge at the output layer of LVLMs. We demonstrate that the logit distributions of the first tokens contain sufficient information to determine whether to respond to the instructions, including recognizing unanswerable visual questions, defending against multi-modal jailbreaking attack, and identifying deceptive questions. Such hidden knowledge is gradually lost in logits of subsequent tokens during response generation. Then, we illustrate a simple decoding strategy at the generation of the first token, effectively improving the generated content. In experiments, we find a few interesting insights: First, the CLIP model already contains a strong signal for solving these tasks, indicating potential bias in the existing datasets. Second, we observe performance improvement by utilizing the first logit distributions on three additional tasks, including indicting uncertainty in math solving, mitigating hallucination, and image classification. Last, with the same training data, simply finetuning LVLMs improve models' performance but is still inferior to linear probing on these tasks.
SGD Implicitly Regularizes Generalization Error
We derive a simple and model-independent formula for the change in the generalization gap due to a gradient descent update. We then compare the change in the test error for stochastic gradient descent to the change in test error from an equivalent number of gradient descent updates and show explicitly that stochastic gradient descent acts to regularize generalization error by decorrelating nearby updates. These calculations depends on the details of the model only through the mean and covariance of the gradient distribution, which may be readily measured for particular models of interest. We discuss further improvements to these calculations and comment on possible implications for stochastic optimization.
AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning
Recently, pre-trained vision-language models (e.g., CLIP) have shown great potential in few-shot learning and attracted a lot of research interest. Although efforts have been made to improve few-shot ability of CLIP, key factors on the effectiveness of existing methods have not been well studied, limiting further exploration of CLIP's potential in few-shot learning. In this paper, we first introduce a unified formulation to analyze CLIP-based few-shot learning methods from a perspective of logit bias, which encourages us to learn an effective logit bias for further improving performance of CLIP-based few-shot learning methods. To this end, we disassemble three key components involved in computation of logit bias (i.e., logit features, logit predictor, and logit fusion) and empirically analyze the effect on performance of few-shot classification. Based on analysis of key components, this paper proposes a novel AMU-Tuning method to learn effective logit bias for CLIP-based few-shot classification. Specifically, our AMU-Tuning predicts logit bias by exploiting the appropriate textbf{A}uxiliary features, which are fed into an efficient feature-initialized linear classifier with textbf{M}ulti-branch training. Finally, an textbf{U}ncertainty-based fusion is developed to incorporate logit bias into CLIP for few-shot classification. The experiments are conducted on several widely used benchmarks, and the results show AMU-Tuning clearly outperforms its counterparts while achieving state-of-the-art performance of CLIP-based few-shot learning without bells and whistles.
Dual Focal Loss for Calibration
The use of deep neural networks in real-world applications require well-calibrated networks with confidence scores that accurately reflect the actual probability. However, it has been found that these networks often provide over-confident predictions, which leads to poor calibration. Recent efforts have sought to address this issue by focal loss to reduce over-confidence, but this approach can also lead to under-confident predictions. While different variants of focal loss have been explored, it is difficult to find a balance between over-confidence and under-confidence. In our work, we propose a new loss function by focusing on dual logits. Our method not only considers the ground truth logit, but also take into account the highest logit ranked after the ground truth logit. By maximizing the gap between these two logits, our proposed dual focal loss can achieve a better balance between over-confidence and under-confidence. We provide theoretical evidence to support our approach and demonstrate its effectiveness through evaluations on multiple models and datasets, where it achieves state-of-the-art performance. Code is available at https://github.com/Linwei94/DualFocalLoss
ODICE: Revealing the Mystery of Distribution Correction Estimation via Orthogonal-gradient Update
In this study, we investigate the DIstribution Correction Estimation (DICE) methods, an important line of work in offline reinforcement learning (RL) and imitation learning (IL). DICE-based methods impose state-action-level behavior constraint, which is an ideal choice for offline learning. However, they typically perform much worse than current state-of-the-art (SOTA) methods that solely use action-level behavior constraint. After revisiting DICE-based methods, we find there exist two gradient terms when learning the value function using true-gradient update: forward gradient (taken on the current state) and backward gradient (taken on the next state). Using forward gradient bears a large similarity to many offline RL methods, and thus can be regarded as applying action-level constraint. However, directly adding the backward gradient may degenerate or cancel out its effect if these two gradients have conflicting directions. To resolve this issue, we propose a simple yet effective modification that projects the backward gradient onto the normal plane of the forward gradient, resulting in an orthogonal-gradient update, a new learning rule for DICE-based methods. We conduct thorough theoretical analyses and find that the projected backward gradient brings state-level behavior regularization, which reveals the mystery of DICE-based methods: the value learning objective does try to impose state-action-level constraint, but needs to be used in a corrected way. Through toy examples and extensive experiments on complex offline RL and IL tasks, we demonstrate that DICE-based methods using orthogonal-gradient updates (O-DICE) achieve SOTA performance and great robustness.
When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement
Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.
GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data
Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE
Trust your neighbours: Penalty-based constraints for model calibration
Ensuring reliable confidence scores from deep networks is of pivotal importance in critical decision-making systems, notably in the medical domain. While recent literature on calibrating deep segmentation networks has led to significant progress, their uncertainty is usually modeled by leveraging the information of individual pixels, which disregards the local structure of the object of interest. In particular, only the recent Spatially Varying Label Smoothing (SVLS) approach addresses this issue by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a variety of well-known segmentation benchmarks demonstrate the superior performance of the proposed approach.
Revisiting Discriminative vs. Generative Classifiers: Theory and Implications
A large-scale deep model pre-trained on massive labeled or unlabeled data transfers well to downstream tasks. Linear evaluation freezes parameters in the pre-trained model and trains a linear classifier separately, which is efficient and attractive for transfer. However, little work has investigated the classifier in linear evaluation except for the default logistic regression. Inspired by the statistical efficiency of naive Bayes, the paper revisits the classical topic on discriminative vs. generative classifiers. Theoretically, the paper considers the surrogate loss instead of the zero-one loss in analyses and generalizes the classical results from binary cases to multiclass ones. We show that, under mild assumptions, multiclass naive Bayes requires O(log n) samples to approach its asymptotic error while the corresponding multiclass logistic regression requires O(n) samples, where n is the feature dimension. To establish it, we present a multiclass H-consistency bound framework and an explicit bound for logistic loss, which are of independent interests. Simulation results on a mixture of Gaussian validate our theoretical findings. Experiments on various pre-trained deep vision models show that naive Bayes consistently converges faster as the number of data increases. Besides, naive Bayes shows promise in few-shot cases and we observe the "two regimes" phenomenon in pre-trained supervised models. Our code is available at https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers.
From Optimization Dynamics to Generalization Bounds via Łojasiewicz Gradient Inequality
Optimization and generalization are two essential aspects of statistical machine learning. In this paper, we propose a framework to connect optimization with generalization by analyzing the generalization error based on the optimization trajectory under the gradient flow algorithm. The key ingredient of this framework is the Uniform-LGI, a property that is generally satisfied when training machine learning models. Leveraging the Uniform-LGI, we first derive convergence rates for gradient flow algorithm, then we give generalization bounds for a large class of machine learning models. We further apply our framework to three distinct machine learning models: linear regression, kernel regression, and two-layer neural networks. Through our approach, we obtain generalization estimates that match or extend previous results.
A Close Look at Decomposition-based XAI-Methods for Transformer Language Models
Various XAI attribution methods have been recently proposed for the transformer architecture, allowing for insights into the decision-making process of large language models by assigning importance scores to input tokens and intermediate representations. One class of methods that seems very promising in this direction includes decomposition-based approaches, i.e., XAI-methods that redistribute the model's prediction logit through the network, as this value is directly related to the prediction. In the previous literature we note though that two prominent methods of this category, namely ALTI-Logit and LRP, have not yet been analyzed in juxtaposition and hence we propose to close this gap by conducting a careful quantitative evaluation w.r.t. ground truth annotations on a subject-verb agreement task, as well as various qualitative inspections, using BERT, GPT-2 and LLaMA-3 as a testbed. Along the way we compare and extend the ALTI-Logit and LRP methods, including the recently proposed AttnLRP variant, from an algorithmic and implementation perspective. We further incorporate in our benchmark two widely-used gradient-based attribution techniques. Finally, we make our carefullly constructed benchmark dataset for evaluating attributions on language models, as well as our code, publicly available in order to foster evaluation of XAI-methods on a well-defined common ground.
Feature Gradients: Scalable Feature Selection via Discrete Relaxation
In this paper we introduce Feature Gradients, a gradient-based search algorithm for feature selection. Our approach extends a recent result on the estimation of learnability in the sublinear data regime by showing that the calculation can be performed iteratively (i.e., in mini-batches) and in linear time and space with respect to both the number of features D and the sample size N . This, along with a discrete-to-continuous relaxation of the search domain, allows for an efficient, gradient-based search algorithm among feature subsets for very large datasets. Crucially, our algorithm is capable of finding higher-order correlations between features and targets for both the N > D and N < D regimes, as opposed to approaches that do not consider such interactions and/or only consider one regime. We provide experimental demonstration of the algorithm in small and large sample-and feature-size settings.
Categorical Foundations of Gradient-Based Learning
We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy, shedding new light on their similarities and differences. Our approach to gradient-based learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our framework with an implementation in Python.
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.
SmoothGrad: removing noise by adding noise
Explaining the output of a deep network remains a challenge. In the case of an image classifier, one type of explanation is to identify pixels that strongly influence the final decision. A starting point for this strategy is the gradient of the class score function with respect to the input image. This gradient can be interpreted as a sensitivity map, and there are several techniques that elaborate on this basic idea. This paper makes two contributions: it introduces SmoothGrad, a simple method that can help visually sharpen gradient-based sensitivity maps, and it discusses lessons in the visualization of these maps. We publish the code for our experiments and a website with our results.
Binary Classifier Optimization for Large Language Model Alignment
Aligning Large Language Models (LLMs) to human preferences through preference optimization has been crucial but labor-intensive, necessitating for each prompt a comparison of both a chosen and a rejected text completion by evaluators. Recently, Kahneman-Tversky Optimization (KTO) has demonstrated that LLMs can be aligned using merely binary "thumbs-up" or "thumbs-down" signals on each prompt-completion pair. In this paper, we present theoretical foundations to explain the successful alignment achieved through these binary signals. Our analysis uncovers a new perspective: optimizing a binary classifier, whose logit is a reward, implicitly induces minimizing the Direct Preference Optimization (DPO) loss. In the process of this discovery, we identified two techniques for effective alignment: reward shift and underlying distribution matching. Consequently, we propose a new algorithm, Binary Classifier Optimization, that integrates the techniques. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO and KTO; and second, on binary signal datasets simulating real-world conditions with divergent underlying distributions between thumbs-up and thumbs-down data. Our model consistently demonstrates effective and robust alignment across two base LLMs and three different binary signal datasets, showcasing the strength of our approach to learning from binary feedback.
On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion
Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging. Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training? In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question. Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance. % To address this, To surmount these limitations, we propose a dynamic logit fusion approach that works with a series of task-specific small models, each specialized in a different task. This method adaptively allocates weights among these models at each decoding step, learning the weights through Kullback-Leibler divergence constrained optimization problems. We conduct extensive experiments across various benchmarks in both single-task and multi-task settings, achieving leading results. By transferring expertise from the 7B model to the 13B model, our method closes the performance gap by 96.4\% in single-task scenarios and by 86.3\% in multi-task scenarios compared to full fine-tuning of the 13B model. Notably, we achieve surpassing performance on unseen tasks. Moreover, we further demonstrate that our method can effortlessly integrate in-context learning for single tasks and task arithmetic for multi-task scenarios. (Our implementation is available in https://github.com/Facico/Dynamic-Logit-Fusion.)
Studying Large Language Model Generalization with Influence Functions
When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs.
Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower- Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.
Understanding Hessian Alignment for Domain Generalization
Out-of-distribution (OOD) generalization is a critical ability for deep learning models in many real-world scenarios including healthcare and autonomous vehicles. Recently, different techniques have been proposed to improve OOD generalization. Among these methods, gradient-based regularizers have shown promising performance compared with other competitors. Despite this success, our understanding of the role of Hessian and gradient alignment in domain generalization is still limited. To address this shortcoming, we analyze the role of the classifier's head Hessian matrix and gradient in domain generalization using recent OOD theory of transferability. Theoretically, we show that spectral norm between the classifier's head Hessian matrices across domains is an upper bound of the transfer measure, a notion of distance between target and source domains. Furthermore, we analyze all the attributes that get aligned when we encourage similarity between Hessians and gradients. Our analysis explains the success of many regularizers like CORAL, IRM, V-REx, Fish, IGA, and Fishr as they regularize part of the classifier's head Hessian and/or gradient. Finally, we propose two simple yet effective methods to match the classifier's head Hessians and gradients in an efficient way, based on the Hessian Gradient Product (HGP) and Hutchinson's method (Hutchinson), and without directly calculating Hessians. We validate the OOD generalization ability of proposed methods in different scenarios, including transferability, severe correlation shift, label shift and diversity shift. Our results show that Hessian alignment methods achieve promising performance on various OOD benchmarks. The code is available at https://github.com/huawei-noah/Federated-Learning/tree/main/HessianAlignment.
Can Forward Gradient Match Backpropagation?
Forward Gradients - the idea of using directional derivatives in forward differentiation mode - have recently been shown to be utilizable for neural network training while avoiding problems generally associated with backpropagation gradient computation, such as locking and memorization requirements. The cost is the requirement to guess the step direction, which is hard in high dimensions. While current solutions rely on weighted averages over isotropic guess vector distributions, we propose to strongly bias our gradient guesses in directions that are much more promising, such as feedback obtained from small, local auxiliary networks. For a standard computer vision neural network, we conduct a rigorous study systematically covering a variety of combinations of gradient targets and gradient guesses, including those previously presented in the literature. We find that using gradients obtained from a local loss as a candidate direction drastically improves on random noise in Forward Gradient methods.
Fast and Unified Path Gradient Estimators for Normalizing Flows
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
Influence Scores at Scale for Efficient Language Data Sampling
Modern ML systems ingest data aggregated from diverse sources, such as synthetic, human-annotated, and live customer traffic. Understanding which examples are important to the performance of a learning algorithm is crucial for efficient model training. Recently, a growing body of literature has given rise to various "influence scores," which use training artifacts such as model confidence or checkpointed gradients to identify important subsets of data. However, these methods have primarily been developed in computer vision settings, and it remains unclear how well they generalize to language-based tasks using pretrained models. In this paper, we explore the applicability of influence scores in language classification tasks. We evaluate a diverse subset of these scores on the SNLI dataset by quantifying accuracy changes in response to pruning training data through random and influence-score-based sampling. We then stress-test one of the scores -- "variance of gradients" (VoG) from Agarwal et al. (2022) -- in an NLU model stack that was exposed to dynamic user speech patterns in a voice assistant type of setting. Our experiments demonstrate that in many cases, encoder-based language models can be finetuned on roughly 50% of the original data without degradation in performance metrics. Along the way, we summarize lessons learned from applying out-of-the-box implementations of influence scores, quantify the effects of noisy and class-imbalanced data, and offer recommendations on score-based sampling for better accuracy and training efficiency.
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Gradient regularization (GR) is a method that penalizes the gradient norm of the training loss during training. While some studies have reported that GR can improve generalization performance, little attention has been paid to it from the algorithmic perspective, that is, the algorithms of GR that efficiently improve the performance. In this study, we first reveal that a specific finite-difference computation, composed of both gradient ascent and descent steps, reduces the computational cost of GR. Next, we show that the finite-difference computation also works better in the sense of generalization performance. We theoretically analyze a solvable model, a diagonal linear network, and clarify that GR has a desirable implicit bias to so-called rich regime and finite-difference computation strengthens this bias. Furthermore, finite-difference GR is closely related to some other algorithms based on iterative ascent and descent steps for exploring flat minima. In particular, we reveal that the flooding method can perform finite-difference GR in an implicit way. Thus, this work broadens our understanding of GR for both practice and theory.
Scalable Nested Optimization for Deep Learning
Gradient-based optimization has been critical to the success of machine learning, updating a single set of parameters to minimize a single loss. A growing number of applications rely on a generalization of this, where we have a bilevel or nested optimization of which subsets of parameters update on different objectives nested inside each other. We focus on motivating examples of hyperparameter optimization and generative adversarial networks. However, naively applying classical methods often fails when we look at solving these nested problems on a large scale. In this thesis, we build tools for nested optimization that scale to deep learning setups.
Sequential Training of Neural Networks with Gradient Boosting
This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.
Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation
Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. Further, we iterate on the two steps again by using the second step's embeddings as new covariates for the next iteration. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (up to 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples.
Dataset Distillation with Convexified Implicit Gradients
We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66% gain over SOTA on Tiny-ImageNet and 37% on CIFAR-100.
Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions
Due to the rise of privacy concerns, in many practical applications the training data is aggregated before being shared with the learner, in order to protect privacy of users' sensitive responses. In an aggregate learning framework, the dataset is grouped into bags of samples, where each bag is available only with an aggregate response, providing a summary of individuals' responses in that bag. In this paper, we study two natural loss functions for learning from aggregate responses: bag-level loss and the instance-level loss. In the former, the model is learnt by minimizing a loss between aggregate responses and aggregate model predictions, while in the latter the model aims to fit individual predictions to the aggregate responses. In this work, we show that the instance-level loss can be perceived as a regularized form of the bag-level loss. This observation lets us compare the two approaches with respect to bias and variance of the resulting estimators, and introduce a novel interpolating estimator which combines the two approaches. For linear regression tasks, we provide a precise characterization of the risk of the interpolating estimator in an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis allows us to theoretically understand the effect of different factors, such as bag size on the model prediction risk. In addition, we propose a mechanism for differentially private learning from aggregate responses and derive the optimal bag size in terms of prediction risk-privacy trade-off. We also carry out thorough experiments to corroborate our theory and show the efficacy of the interpolating estimator.
ViM: Out-Of-Distribution with Virtual-logit Matching
Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet-1K, which is human-annotated and is 8.8x the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim.
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin et al., 2019): GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.
fairret: a Framework for Differentiable Fairness Regularization Terms
Current tools for machine learning fairness only admit a limited range of fairness definitions and have seen little integration with automatic differentiation libraries, despite the central role these libraries play in modern machine learning pipelines. We introduce a framework of fairness regularization terms (fairrets) which quantify bias as modular objectives that are easily integrated in automatic differentiation pipelines. By employing a general definition of fairness in terms of linear-fractional statistics, a wide class of fairrets can be computed efficiently. Experiments show the behavior of their gradients and their utility in enforcing fairness with minimal loss of predictive power compared to baselines. Our contribution includes a PyTorch implementation of the fairret framework.
Gradient Boosting Reinforcement Learning
Neural networks (NN) achieve remarkable results in various tasks, but lack key characteristics: interpretability, support for categorical features, and lightweight implementations suitable for edge devices. While ongoing efforts aim to address these challenges, Gradient Boosting Trees (GBT) inherently meet these requirements. As a result, GBTs have become the go-to method for supervised learning tasks in many real-world applications and competitions. However, their application in online learning scenarios, notably in reinforcement learning (RL), has been limited. In this work, we bridge this gap by introducing Gradient-Boosting RL (GBRL), a framework that extends the advantages of GBT to the RL domain. Using the GBRL framework, we implement various actor-critic algorithms and compare their performance with their NN counterparts. Inspired by shared backbones in NN we introduce a tree-sharing approach for policy and value functions with distinct learning rates, enhancing learning efficiency over millions of interactions. GBRL achieves competitive performance across a diverse array of tasks, excelling in domains with structured or categorical features. Additionally, we present a high-performance, GPU-accelerated implementation that integrates seamlessly with widely-used RL libraries (available at https://github.com/NVlabs/gbrl). GBRL expands the toolkit for RL practitioners, demonstrating the viability and promise of GBT within the RL paradigm, particularly in domains characterized by structured or categorical features.
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
In this work, we provide a characterization of the feature-learning process in two-layer ReLU networks trained by gradient descent on the logistic loss following random initialization. We consider data with binary labels that are generated by an XOR-like function of the input features. We permit a constant fraction of the training labels to be corrupted by an adversary. We show that, although linear classifiers are no better than random guessing for the distribution we consider, two-layer ReLU networks trained by gradient descent achieve generalization error close to the label noise rate. We develop a novel proof technique that shows that at initialization, the vast majority of neurons function as random features that are only weakly correlated with useful features, and the gradient descent dynamics 'amplify' these weak, random features to strong, useful features.
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.
DRED: Zero-Shot Transfer in Reinforcement Learning via Data-Regularised Environment Design
Autonomous agents trained using deep reinforcement learning (RL) often lack the ability to successfully generalise to new environments, even when these environments share characteristics with the ones they have encountered during training. In this work, we investigate how the sampling of individual environment instances, or levels, affects the zero-shot generalisation (ZSG) ability of RL agents. We discover that, for deep actor-critic architectures sharing their base layers, prioritising levels according to their value loss minimises the mutual information between the agent's internal representation and the set of training levels in the generated training data. This provides a novel theoretical justification for the regularisation achieved by certain adaptive sampling strategies. We then turn our attention to unsupervised environment design (UED) methods, which assume control over level generation. We find that existing UED methods can significantly shift the training distribution, which translates to low ZSG performance. To prevent both overfitting and distributional shift, we introduce data-regularised environment design (DRED). DRED generates levels using a generative model trained to approximate the ground truth distribution of an initial set of level parameters. Through its grounding, DRED achieves significant improvements in ZSG over adaptive level sampling strategies and UED methods. Our code and experimental data are available at https://github.com/uoe-agents/dred.
GIO: Gradient Information Optimization for Training Dataset Selection
It is often advantageous to train models on a subset of the available train examples, because the examples are of variable quality or because one would like to train with fewer examples, without sacrificing performance. We present Gradient Information Optimization (GIO), a scalable, task-agnostic approach to this data selection problem that requires only a small set of (unlabeled) examples representing a target distribution. GIO begins from a natural, information-theoretic objective that is intractable in practice. Our contribution is in showing that it can be made highly scalable through a simple relaxation of the objective and a highly efficient implementation. In experiments with machine translation, spelling correction, and image recognition, we show that GIO delivers outstanding results with very small train sets. These findings are robust to different representation models and hyperparameters for GIO itself. GIO is task- and domain-agnostic and can be applied out-of-the-box to new datasets and domains.
Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits
We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on L-smoothness to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for L_{1}-regularized problems, showing that increasing the regularization penalty leads to an increase in the L_{1} norm of optimal solutions in NGDMs. Consequently, we show that widely adopted L_{1} penalization-based techniques for network pruning do not yield expected results. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
Bayesian inference of the climbing grade scale
Climbing grades are used to classify a climbing route based on its perceived difficulty, and have come to play a central role in the sport of rock climbing. Recently, the first statistically rigorous method for estimating climbing grades from whole-history ascent data was described, based on the dynamic Bradley-Terry model for games between players of time-varying ability. In this paper, we implement inference under the whole-history rating model using Markov chain Monte Carlo and apply the method to a curated data set made up of climbers who climb regularly. We use these data to get an estimate of the model's fundamental scale parameter m, which defines the proportional increase in difficulty associated with an increment of grade. We show that the data conform to assumptions that the climbing grade scale is a logarithmic scale of difficulty, like decibels or stellar magnitude. We estimate that an increment in Ewbank, French and UIAA climbing grade systems corresponds to 2.1, 2.09 and 2.13 times increase in difficulty respectively, assuming a logistic model of probability of success as a function of grade. Whereas we find that the Vermin scale for bouldering (V-grade scale) corresponds to a 3.17 increase in difficulty per grade increment. In addition, we highlight potential connections between the logarithmic properties of climbing grade scales and the psychophysical laws of Weber and Fechner.
In-context Learning and Gradient Descent Revisited
In-context learning (ICL) has shown impressive results in few-shot learning tasks, yet its underlying mechanism is still not fully understood. A recent line of work suggests that ICL performs gradient descent (GD)-based optimization implicitly. While appealing, much of the research focuses on simplified settings, where the parameters of a shallow model are optimized. In this work, we revisit evidence for ICL-GD correspondence on realistic NLP tasks and models. We find gaps in evaluation, both in terms of problematic metrics and insufficient baselines. We show that surprisingly, even untrained models achieve comparable ICL-GD similarity scores despite not exhibiting ICL. Next, we explore a major discrepancy in the flow of information throughout the model between ICL and GD, which we term Layer Causality. We propose a simple GD-based optimization procedure that respects layer causality, and show it improves similarity scores significantly.
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.
Mitigating Popularity Bias in Recommendation with Unbalanced Interactions: A Gradient Perspective
Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient framework to mitigate popularity bias from a gradient perspective. Specifically, we first normalize each user embedding and record accumulated gradients of users and items via popularity bias measures in model training. To address the popularity bias issues, we develop a gradient-based embedding adjustment approach used in model testing. This strategy is generic, model-agnostic, and can be seamlessly integrated into most existing recommender systems. Our extensive experiments on two classic recommendation models and four real-world datasets demonstrate the effectiveness of our method over state-of-the-art debiasing baselines.
Full-Gradient Representation for Neural Network Visualization
We introduce a new tool for interpreting neural net responses, namely full-gradients, which decomposes the neural net response into input sensitivity and per-neuron sensitivity components. This is the first proposed representation which satisfies two key properties: completeness and weak dependence, which provably cannot be satisfied by any saliency map-based interpretability method. For convolutional nets, we also propose an approximate saliency map representation, called FullGrad, obtained by aggregating the full-gradient components. We experimentally evaluate the usefulness of FullGrad in explaining model behaviour with two quantitative tests: pixel perturbation and remove-and-retrain. Our experiments reveal that our method explains model behaviour correctly, and more comprehensively than other methods in the literature. Visual inspection also reveals that our saliency maps are sharper and more tightly confined to object regions than other methods.
On Implicit Bias in Overparameterized Bilevel Optimization
Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively. In practice, often at least one of these sub-problems is overparameterized. In this case, there are many ways to choose among optima that achieve equivalent objective values. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of gradient-based algorithms for bilevel optimization. We delineate two standard BLO methods -- cold-start and warm-start -- and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer parameters are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.
Bridging Discrete and Backpropagation: Straight-Through and Beyond
Backpropagation, the cornerstone of deep learning, is limited to computing gradients for continuous variables. This limitation poses challenges for problems involving discrete latent variables. To address this issue, we propose a novel approach to approximate the gradient of parameters involved in generating discrete latent variables. First, we examine the widely used Straight-Through (ST) heuristic and demonstrate that it works as a first-order approximation of the gradient. Guided by our findings, we propose ReinMax, which achieves second-order accuracy by integrating Heun's method, a second-order numerical method for solving ODEs. ReinMax does not require Hessian or other second-order derivatives, thus having negligible computation overheads. Extensive experimental results on various tasks demonstrate the superiority of ReinMax over the state of the art. Implementations are released at https://github.com/microsoft/ReinMax.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
Revisiting the Weaknesses of Reinforcement Learning for Neural Machine Translation
Policy gradient algorithms have found wide adoption in NLP, but have recently become subject to criticism, doubting their suitability for NMT. Choshen et al. (2020) identify multiple weaknesses and suspect that their success is determined by the shape of output distributions rather than the reward. In this paper, we revisit these claims and study them under a wider range of configurations. Our experiments on in-domain and cross-domain adaptation reveal the importance of exploration and reward scaling, and provide empirical counter-evidence to these claims.
Adaptive Guidance: Training-free Acceleration of Conditional Diffusion Models
This paper presents a comprehensive study on the role of Classifier-Free Guidance (CFG) in text-conditioned diffusion models from the perspective of inference efficiency. In particular, we relax the default choice of applying CFG in all diffusion steps and instead search for efficient guidance policies. We formulate the discovery of such policies in the differentiable Neural Architecture Search framework. Our findings suggest that the denoising steps proposed by CFG become increasingly aligned with simple conditional steps, which renders the extra neural network evaluation of CFG redundant, especially in the second half of the denoising process. Building upon this insight, we propose "Adaptive Guidance" (AG), an efficient variant of CFG, that adaptively omits network evaluations when the denoising process displays convergence. Our experiments demonstrate that AG preserves CFG's image quality while reducing computation by 25%. Thus, AG constitutes a plug-and-play alternative to Guidance Distillation, achieving 50% of the speed-ups of the latter while being training-free and retaining the capacity to handle negative prompts. Finally, we uncover further redundancies of CFG in the first half of the diffusion process, showing that entire neural function evaluations can be replaced by simple affine transformations of past score estimates. This method, termed LinearAG, offers even cheaper inference at the cost of deviating from the baseline model. Our findings provide insights into the efficiency of the conditional denoising process that contribute to more practical and swift deployment of text-conditioned diffusion models.
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution Protection
Model attributions are important in deep neural networks as they aid practitioners in understanding the models, but recent studies reveal that attributions can be easily perturbed by adding imperceptible noise to the input. The non-differentiable Kendall's rank correlation is a key performance index for attribution protection. In this paper, we first show that the expected Kendall's rank correlation is positively correlated to cosine similarity and then indicate that the direction of attribution is the key to attribution robustness. Based on these findings, we explore the vector space of attribution to explain the shortcomings of attribution defense methods using ell_p norm and propose integrated gradient regularizer (IGR), which maximizes the cosine similarity between natural and perturbed attributions. Our analysis further exposes that IGR encourages neurons with the same activation states for natural samples and the corresponding perturbed samples, which is shown to induce robustness to gradient-based attribution methods. Our experiments on different models and datasets confirm our analysis on attribution protection and demonstrate a decent improvement in adversarial robustness.
Long-Tailed Recognition by Mutual Information Maximization between Latent Features and Ground-Truth Labels
Although contrastive learning methods have shown prevailing performance on a variety of representation learning tasks, they encounter difficulty when the training dataset is long-tailed. Many researchers have combined contrastive learning and a logit adjustment technique to address this problem, but the combinations are done ad-hoc and a theoretical background has not yet been provided. The goal of this paper is to provide the background and further improve the performance. First, we show that the fundamental reason contrastive learning methods struggle with long-tailed tasks is that they try to maximize the mutual information maximization between latent features and input data. As ground-truth labels are not considered in the maximization, they are not able to address imbalances between class labels. Rather, we interpret the long-tailed recognition task as a mutual information maximization between latent features and ground-truth labels. This approach integrates contrastive learning and logit adjustment seamlessly to derive a loss function that shows state-of-the-art performance on long-tailed recognition benchmarks. It also demonstrates its efficacy in image segmentation tasks, verifying its versatility beyond image classification.
Robustly Learning a Single Neuron via Sharpness
We study the problem of learning a single neuron with respect to the L_2^2-loss in the presence of adversarial label noise. We give an efficient algorithm that, for a broad family of activations including ReLUs, approximates the optimal L_2^2-error within a constant factor. Our algorithm applies under much milder distributional assumptions compared to prior work. The key ingredient enabling our results is a novel connection to local error bounds from optimization theory.
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.
Directly Fine-Tuning Diffusion Models on Differentiable Rewards
We present Direct Reward Fine-Tuning (DRaFT), a simple and effective method for fine-tuning diffusion models to maximize differentiable reward functions, such as scores from human preference models. We first show that it is possible to backpropagate the reward function gradient through the full sampling procedure, and that doing so achieves strong performance on a variety of rewards, outperforming reinforcement learning-based approaches. We then propose more efficient variants of DRaFT: DRaFT-K, which truncates backpropagation to only the last K steps of sampling, and DRaFT-LV, which obtains lower-variance gradient estimates for the case when K=1. We show that our methods work well for a variety of reward functions and can be used to substantially improve the aesthetic quality of images generated by Stable Diffusion 1.4. Finally, we draw connections between our approach and prior work, providing a unifying perspective on the design space of gradient-based fine-tuning algorithms.
Beyond the Binary: Capturing Diverse Preferences With Reward Regularization
Large language models (LLMs) are increasingly deployed via public-facing interfaces to interact with millions of users, each with diverse preferences. Despite this, preference tuning of LLMs predominantly relies on reward models trained using binary judgments where annotators select the preferred choice out of pairs of model outputs. In this work, we argue that this reliance on binary choices does not capture the broader, aggregate preferences of the target user in real-world tasks. We propose a taxonomy that identifies two dimensions of subjectivity where different users disagree on the preferred output-namely, the Plurality of Responses to Prompts, where prompts allow for multiple correct answers, and the Indistinguishability of Responses, where candidate outputs are paraphrases of each other. We show that reward models correlate weakly with user preferences in these cases. As a first step to address this issue, we introduce a simple yet effective method that augments existing binary preference datasets with synthetic preference judgments to estimate potential user disagreement. Incorporating these via a margin term as a form of regularization during model training yields predictions that better align with the aggregate user preferences.
Divide, Reweight, and Conquer: A Logit Arithmetic Approach for In-Context Learning
In-Context Learning (ICL) emerges as a key feature for Large Language Models (LLMs), allowing them to adapt to new tasks by leveraging task-specific examples without updating model parameters. However, ICL faces challenges with increasing numbers of examples due to performance degradation and quadratic computational costs. In this paper, we propose Logit Arithmetic Reweighting Approach (LARA), a novel framework that enhances ICL by using logit-based ensembling of multiple demonstrations. Our approach divides long input demonstrations into parallelizable shorter inputs to significantly reduce memory requirements, and then effectively aggregate the information by reweighting logits of each group via a non-gradient optimization approach. We further introduce Binary LARA (B-LARA), a variant that constrains weights to binary values to simplify the search space and reduces memory usage by filtering out less informative demonstration groups. Experiments on BBH and MMLU demonstrate that LARA and B-LARA outperform all baseline methods in both accuracy and memory efficiency. We also conduct extensive analysis to show that LARA generalizes well to scenarios of varying numbers of examples from limited to many-shot demonstrations.
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Recent success in deep learning has partially been driven by training increasingly overparametrized networks on ever larger datasets. It is therefore natural to ask: how much of the data is superfluous, which examples are important for generalization, and how do we find them? In this work, we make the striking observation that, in standard vision datasets, simple scores averaged over several weight initializations can be used to identify important examples very early in training. We propose two such scores -- the Gradient Normed (GraNd) and the Error L2-Norm (EL2N) scores -- and demonstrate their efficacy on a range of architectures and datasets by pruning significant fractions of training data without sacrificing test accuracy. In fact, using EL2N scores calculated a few epochs into training, we can prune half of the CIFAR10 training set while slightly improving test accuracy. Furthermore, for a given dataset, EL2N scores from one architecture or hyperparameter configuration generalize to other configurations. Compared to recent work that prunes data by discarding examples that are rarely forgotten over the course of training, our scores use only local information early in training. We also use our scores to detect noisy examples and study training dynamics through the lens of important examples -- we investigate how the data distribution shapes the loss surface and identify subspaces of the model's data representation that are relatively stable over training.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Generating and Imputing Tabular Data via Diffusion and Flow-based Gradient-Boosted Trees
Tabular data is hard to acquire and is subject to missing values. This paper proposes a novel approach to generate and impute mixed-type (continuous and categorical) tabular data using score-based diffusion and conditional flow matching. Contrary to previous work that relies on neural networks as function approximators, we instead utilize XGBoost, a popular Gradient-Boosted Tree (GBT) method. In addition to being elegant, we empirically show on various datasets that our method i) generates highly realistic synthetic data when the training dataset is either clean or tainted by missing data and ii) generates diverse plausible data imputations. Our method often outperforms deep-learning generation methods and can trained in parallel using CPUs without the need for a GPU. To make it easily accessible, we release our code through a Python library on PyPI and an R package on CRAN.
FairGBM: Gradient Boosting with Fairness Constraints
Tabular data is prevalent in many high-stakes domains, such as financial services or public policy. Gradient Boosted Decision Trees (GBDT) are popular in these settings due to their scalability, performance, and low training cost. While fairness in these domains is a foremost concern, existing in-processing Fair ML methods are either incompatible with GBDT, or incur in significant performance losses while taking considerably longer to train. We present FairGBM, a dual ascent learning framework for training GBDT under fairness constraints, with little to no impact on predictive performance when compared to unconstrained GBDT. Since observational fairness metrics are non-differentiable, we propose smooth convex error rate proxies for common fairness criteria, enabling gradient-based optimization using a ``proxy-Lagrangian'' formulation. Our implementation shows an order of magnitude speedup in training time relative to related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.
Probabilistic Discriminative Learning with Layered Graphical Models
Probabilistic graphical models are traditionally known for their successes in generative modeling. In this work, we advocate layered graphical models (LGMs) for probabilistic discriminative learning. To this end, we design LGMs in close analogy to neural networks (NNs), that is, they have deep hierarchical structures and convolutional or local connections between layers. Equipped with tensorized truncated variational inference, our LGMs can be efficiently trained via backpropagation on mainstream deep learning frameworks such as PyTorch. To deal with continuous valued inputs, we use a simple yet effective soft-clamping strategy for efficient inference. Through extensive experiments on image classification over MNIST and FashionMNIST datasets, we demonstrate that LGMs are capable of achieving competitive results comparable to NNs of similar architectures, while preserving transparent probabilistic modeling.
What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs), through the lens of gradient, when training with different responses and initial models. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popularity of training LLMs on reasoning paths such as chain-of-thoughts (CoT) and process rewards. In our study, fast thinking without CoT leads to larger gradients and larger differences of gradients across layers than slow thinking (Detailed CoT), indicating the learning stability brought by the latter. Moreover, pre-trained LLMs are less affected by the instability of fast thinking than instruction-tuned LLMs. Additionally, we study whether the gradient patterns can reflect the correctness of responses when training different LLMs using slow vs. fast thinking paths. The results show that the gradients of slow thinking can distinguish correct and irrelevant reasoning paths. As a comparison, we conduct similar gradient analyses on non-reasoning knowledge learning tasks, on which, however, trivially increasing the response length does not lead to similar behaviors of slow thinking. Our study strengthens fundamental understandings of LLM training and sheds novel insights on its efficiency and stability, which pave the way towards building a generalizable System-2 agent. Our code, data, and gradient statistics can be found in: https://github.com/MingLiiii/Layer_Gradient.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
We show that deep neural networks (DNNs) can efficiently learn any composition of functions with bounded F_{1}-norm, which allows DNNs to break the curse of dimensionality in ways that shallow networks cannot. More specifically, we derive a generalization bound that combines a covering number argument for compositionality, and the F_{1}-norm (or the related Barron norm) for large width adaptivity. We show that the global minimizer of the regularized loss of DNNs can fit for example the composition of two functions f^{*}=hcirc g from a small number of observations, assuming g is smooth/regular and reduces the dimensionality (e.g. g could be the modulo map of the symmetries of f^{*}), so that h can be learned in spite of its low regularity. The measures of regularity we consider is the Sobolev norm with different levels of differentiability, which is well adapted to the F_{1} norm. We compute scaling laws empirically and observe phase transitions depending on whether g or h is harder to learn, as predicted by our theory.
Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions
We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small L^2 error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in epsilon-accuracy can be done in tilde Oleft(d log (1/delta){epsilon}right) steps: 1) the variance-delta Gaussian perturbation of any data distribution; 2) data distributions with 1/delta-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties -- most frequently, that particular features are important or unimportant. These attribution priors are often based on attribution methods that are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here, we introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms. This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene expression, and health care data sets. We believe this work motivates and provides the necessary tools to support the widespread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results have been made freely available to academic communities.
Distributional Reinforcement Learning with Ensembles
It is well known that ensemble methods often provide enhanced performance in reinforcement learning. In this paper, we explore this concept further by using group-aided training within the distributional reinforcement learning paradigm. Specifically, we propose an extension to categorical reinforcement learning, where distributional learning targets are implicitly based on the total information gathered by an ensemble. We empirically show that this may lead to much more robust initial learning, a stronger individual performance level, and good efficiency on a per-sample basis.
Gradient Matching for Domain Generalization
Machine learning systems typically assume that the distributions of training and test sets match closely. However, a critical requirement of such systems in the real world is their ability to generalize to unseen domains. Here, we propose an inter-domain gradient matching objective that targets domain generalization by maximizing the inner product between gradients from different domains. Since direct optimization of the gradient inner product can be computationally prohibitive -- requires computation of second-order derivatives -- we derive a simpler first-order algorithm named Fish that approximates its optimization. We demonstrate the efficacy of Fish on 6 datasets from the Wilds benchmark, which captures distribution shift across a diverse range of modalities. Our method produces competitive results on these datasets and surpasses all baselines on 4 of them. We perform experiments on both the Wilds benchmark, which captures distribution shift in the real world, as well as datasets in DomainBed benchmark that focuses more on synthetic-to-real transfer. Our method produces competitive results on both benchmarks, demonstrating its effectiveness across a wide range of domain generalization tasks.
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.
Random Walk on Pixel Manifolds for Anomaly Segmentation of Complex Driving Scenes
In anomaly segmentation for complex driving scenes, state-of-the-art approaches utilize anomaly scoring functions to calculate anomaly scores. For these functions, accurately predicting the logits of inlier classes for each pixel is crucial for precisely inferring the anomaly score. However, in real-world driving scenarios, the diversity of scenes often results in distorted manifolds of pixel embeddings in the space. This effect is not conducive to directly using the pixel embeddings for the logit prediction during inference, a concern overlooked by existing methods. To address this problem, we propose a novel method called Random Walk on Pixel Manifolds (RWPM). RWPM utilizes random walks to reveal the intrinsic relationships among pixels to refine the pixel embeddings. The refined pixel embeddings alleviate the distortion of manifolds, improving the accuracy of anomaly scores. Our extensive experiments show that RWPM consistently improve the performance of the existing anomaly segmentation methods and achieve the best results. Code is available at: https://github.com/ZelongZeng/RWPM.
Parametric Information Maximization for Generalized Category Discovery
We introduce a Parametric Information Maximization (PIM) model for the Generalized Category Discovery (GCD) problem. Specifically, we propose a bi-level optimization formulation, which explores a parameterized family of objective functions, each evaluating a weighted mutual information between the features and the latent labels, subject to supervision constraints from the labeled samples. Our formulation mitigates the class-balance bias encoded in standard information maximization approaches, thereby handling effectively both short-tailed and long-tailed data sets. We report extensive experiments and comparisons demonstrating that our PIM model consistently sets new state-of-the-art performances in GCD across six different datasets, more so when dealing with challenging fine-grained problems.
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation -- crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.
Sensitivity Analysis On Loss Landscape
Gradients can be employed for sensitivity analysis. Here, we leverage the advantages of the Loss Landscape to comprehend which independent variables impact the dependent variable. We seek to grasp the loss landscape by utilizing first, second, and third derivatives through automatic differentiation. we know that Spearman's rank correlation coefficient can detect the monotonic relationship between two variables. However, I have found that second-order gradients, with certain configurations and parameters, provide information that can be visualized similarly to Spearman results, In this approach, we incorporate a loss function with an activation function, resulting in a non-linear pattern. Each exploration of the loss landscape through retraining yields new valuable information. Furthermore, the first and third derivatives are also beneficial, as they indicate the extent to which independent variables influence the dependent variable.
Gradients without Backpropagation
Using backpropagation to compute gradients of objective functions for optimization has remained a mainstay of machine learning. Backpropagation, or reverse-mode differentiation, is a special case within the general family of automatic differentiation algorithms that also includes the forward mode. We present a method to compute gradients based solely on the directional derivative that one can compute exactly and efficiently via the forward mode. We call this formulation the forward gradient, an unbiased estimate of the gradient that can be evaluated in a single forward run of the function, entirely eliminating the need for backpropagation in gradient descent. We demonstrate forward gradient descent in a range of problems, showing substantial savings in computation and enabling training up to twice as fast in some cases.
HelpSteer2-Preference: Complementing Ratings with Preferences
Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. We also demonstrate the effectiveness of this reward model at aligning models to follow instructions in RLHF. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2 and openly release the trained Reward Model at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
Dimensionality Reduction for General KDE Mode Finding
Finding the mode of a high dimensional probability distribution D is a fundamental algorithmic problem in statistics and data analysis. There has been particular interest in efficient methods for solving the problem when D is represented as a mixture model or kernel density estimate, although few algorithmic results with worst-case approximation and runtime guarantees are known. In this work, we significantly generalize a result of (LeeLiMusco:2021) on mode approximation for Gaussian mixture models. We develop randomized dimensionality reduction methods for mixtures involving a broader class of kernels, including the popular logistic, sigmoid, and generalized Gaussian kernels. As in Lee et al.'s work, our dimensionality reduction results yield quasi-polynomial algorithms for mode finding with multiplicative accuracy (1-epsilon) for any epsilon > 0. Moreover, when combined with gradient descent, they yield efficient practical heuristics for the problem. In addition to our positive results, we prove a hardness result for box kernels, showing that there is no polynomial time algorithm for finding the mode of a kernel density estimate, unless P = NP. Obtaining similar hardness results for kernels used in practice (like Gaussian or logistic kernels) is an interesting future direction.
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.
UER: A Heuristic Bias Addressing Approach for Online Continual Learning
Online continual learning aims to continuously train neural networks from a continuous data stream with a single pass-through data. As the most effective approach, the rehearsal-based methods replay part of previous data. Commonly used predictors in existing methods tend to generate biased dot-product logits that prefer to the classes of current data, which is known as a bias issue and a phenomenon of forgetting. Many approaches have been proposed to overcome the forgetting problem by correcting the bias; however, they still need to be improved in online fashion. In this paper, we try to address the bias issue by a more straightforward and more efficient method. By decomposing the dot-product logits into an angle factor and a norm factor, we empirically find that the bias problem mainly occurs in the angle factor, which can be used to learn novel knowledge as cosine logits. On the contrary, the norm factor abandoned by existing methods helps remember historical knowledge. Based on this observation, we intuitively propose to leverage the norm factor to balance the new and old knowledge for addressing the bias. To this end, we develop a heuristic approach called unbias experience replay (UER). UER learns current samples only by the angle factor and further replays previous samples by both the norm and angle factors. Extensive experiments on three datasets show that UER achieves superior performance over various state-of-the-art methods. The code is in https://github.com/FelixHuiweiLin/UER.
Identifying Policy Gradient Subspaces
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be accelerated by leveraging the fact that gradients lie in a low-dimensional and slowly-changing subspace. In this paper, we conduct a thorough evaluation of this phenomenon for two popular deep policy gradient methods on various simulated benchmark tasks. Our results demonstrate the existence of such gradient subspaces despite the continuously changing data distribution inherent to reinforcement learning. These findings reveal promising directions for future work on more efficient reinforcement learning, e.g., through improving parameter-space exploration or enabling second-order optimization.
Maximum Likelihood Estimation is All You Need for Well-Specified Covariate Shift
A key challenge of modern machine learning systems is to achieve Out-of-Distribution (OOD) generalization -- generalizing to target data whose distribution differs from that of source data. Despite its significant importance, the fundamental question of ``what are the most effective algorithms for OOD generalization'' remains open even under the standard setting of covariate shift. This paper addresses this fundamental question by proving that, surprisingly, classical Maximum Likelihood Estimation (MLE) purely using source data (without any modification) achieves the minimax optimality for covariate shift under the well-specified setting. That is, no algorithm performs better than MLE in this setting (up to a constant factor), justifying MLE is all you need. Our result holds for a very rich class of parametric models, and does not require any boundedness condition on the density ratio. We illustrate the wide applicability of our framework by instantiating it to three concrete examples -- linear regression, logistic regression, and phase retrieval. This paper further complement the study by proving that, under the misspecified setting, MLE is no longer the optimal choice, whereas Maximum Weighted Likelihood Estimator (MWLE) emerges as minimax optimal in certain scenarios.
Simpson's Bias in NLP Training
In most machine learning tasks, we evaluate a model M on a given data population S by measuring a population-level metric F(S;M). Examples of such evaluation metric F include precision/recall for (binary) recognition, the F1 score for multi-class classification, and the BLEU metric for language generation. On the other hand, the model M is trained by optimizing a sample-level loss G(S_t;M) at each learning step t, where S_t is a subset of S (a.k.a. the mini-batch). Popular choices of G include cross-entropy loss, the Dice loss, and sentence-level BLEU scores. A fundamental assumption behind this paradigm is that the mean value of the sample-level loss G, if averaged over all possible samples, should effectively represent the population-level metric F of the task, such as, that E[ G(S_t;M) ] approx F(S;M). In this paper, we systematically investigate the above assumption in several NLP tasks. We show, both theoretically and experimentally, that some popular designs of the sample-level loss G may be inconsistent with the true population-level metric F of the task, so that models trained to optimize the former can be substantially sub-optimal to the latter, a phenomenon we call it, Simpson's bias, due to its deep connections with the classic paradox known as Simpson's reversal paradox in statistics and social sciences.
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.
NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second order boosting implemented in popular packages like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural network based models for sampling.
Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond
Deep learning sometimes appears to work in unexpected ways. In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network consisting of a sequence of first-order approximations telescoping out into a single empirically operational tool for practical analysis. Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena in the literature -- including double descent, grokking, linear mode connectivity, and the challenges of applying deep learning on tabular data -- highlighting that this model allows us to construct and extract metrics that help predict and understand the a priori unexpected performance of neural networks. We also demonstrate that this model presents a pedagogical formalism allowing us to isolate components of the training process even in complex contemporary settings, providing a lens to reason about the effects of design choices such as architecture & optimization strategy, and reveals surprising parallels between neural network learning and gradient boosting.
Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies
Many recent datasets contain a variety of different data modalities, for instance, image, question, and answer data in visual question answering (VQA). When training deep net classifiers on those multi-modal datasets, the modalities get exploited at different scales, i.e., some modalities can more easily contribute to the classification results than others. This is suboptimal because the classifier is inherently biased towards a subset of the modalities. To alleviate this shortcoming, we propose a novel regularization term based on the functional entropy. Intuitively, this term encourages to balance the contribution of each modality to the classification result. However, regularization with the functional entropy is challenging. To address this, we develop a method based on the log-Sobolev inequality, which bounds the functional entropy with the functional-Fisher-information. Intuitively, this maximizes the amount of information that the modalities contribute. On the two challenging multi-modal datasets VQA-CPv2 and SocialIQ, we obtain state-of-the-art results while more uniformly exploiting the modalities. In addition, we demonstrate the efficacy of our method on Colored MNIST.
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion
Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.
One-step Diffusion Models with f-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel f-divergence minimization framework, termed f-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the f-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative f-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, f-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
This paper studies the problem of training a two-layer ReLU network for binary classification using gradient flow with small initialization. We consider a training dataset with well-separated input vectors: Any pair of input data with the same label are positively correlated, and any pair with different labels are negatively correlated. Our analysis shows that, during the early phase of training, neurons in the first layer try to align with either the positive data or the negative data, depending on its corresponding weight on the second layer. A careful analysis of the neurons' directional dynamics allows us to provide an O(log n{mu}) upper bound on the time it takes for all neurons to achieve good alignment with the input data, where n is the number of data points and mu measures how well the data are separated. After the early alignment phase, the loss converges to zero at a O(1{t}) rate, and the weight matrix on the first layer is approximately low-rank. Numerical experiments on the MNIST dataset illustrate our theoretical findings.
Efficient Gradient Tracking Algorithms for Distributed Optimization Problems with Inexact Communication
Distributed optimization problems usually face inexact communication issues induced by communication quantization, differential privacy protection, or channels noise. Most existing algorithms need two-timescale setting of the stepsize of gradient descent and the parameter of noise suppression to ensure the convergence to the optimal solution. In this paper, we propose two single-timescale algorithms, VRA-DGT and VRA--DSGT, for distributed deterministic and stochastic optimization problems with inexact communication respectively. VRA-DGT integrates the Variance-Reduced Aggregation (VRA) mechanism with the distributed gradient tracking framework, which achieves a convergence rate of Oleft(k^{-1}right) in the mean-square sense when the objective function is strongly convex and smooth. For distributed stochastic optimization problem,VRA-DSGT, where a hybrid variance reduction technique has been introduced in VRA-DGT, VRA-DGT,, maintains the convergence rate of Oleft(k^{-1}right) for strongly convex and smooth objective function. Simulated experiments on logistic regression problem with real-world data verify the effectiveness of the proposed algorithms.
Visualizing the Loss Landscape of Neural Nets
Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.
Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
This paper considers the Pointer Value Retrieval (PVR) benchmark introduced in [ZRKB21], where a 'reasoning' function acts on a string of digits to produce the label. More generally, the paper considers the learning of logical functions with gradient descent (GD) on neural networks. It is first shown that in order to learn logical functions with gradient descent on symmetric neural networks, the generalization error can be lower-bounded in terms of the noise-stability of the target function, supporting a conjecture made in [ZRKB21]. It is then shown that in the distribution shift setting, when the data withholding corresponds to freezing a single feature (referred to as canonical holdout), the generalization error of gradient descent admits a tight characterization in terms of the Boolean influence for several relevant architectures. This is shown on linear models and supported experimentally on other models such as MLPs and Transformers. In particular, this puts forward the hypothesis that for such architectures and for learning logical functions such as PVR functions, GD tends to have an implicit bias towards low-degree representations, which in turn gives the Boolean influence for the generalization error under quadratic loss.
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
The past decade has seen vast progress in deep reinforcement learning (RL) on the back of algorithms manually designed by human researchers. Recently, it has been shown that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks. Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a generalization gap when these algorithms are applied to unseen environments. In this work, we examine how characteristics of the meta-training distribution impact the generalization performance of these algorithms. Motivated by this analysis and building on ideas from Unsupervised Environment Design (UED), we propose a novel approach for automatically generating curricula to maximize the regret of a meta-learned optimizer, in addition to a novel approximation of regret, which we name algorithmic regret (AR). The result is our method, General RL Optimizers Obtained Via Environment Design (GROOVE). In a series of experiments, we show that GROOVE achieves superior generalization to LPG, and evaluate AR against baseline metrics from UED, identifying it as a critical component of environment design in this setting. We believe this approach is a step towards the discovery of truly general RL algorithms, capable of solving a wide range of real-world environments.
The AdEMAMix Optimizer: Better, Faster, Older
Momentum based optimizers are central to a wide range of machine learning applications. These typically rely on an Exponential Moving Average (EMA) of gradients, which decays exponentially the present contribution of older gradients. This accounts for gradients being local linear approximations which lose their relevance as the iterate moves along the loss landscape. This work questions the use of a single EMA to accumulate past gradients and empirically demonstrates how this choice can be sub-optimal: a single EMA cannot simultaneously give a high weight to the immediate past, and a non-negligible weight to older gradients. Building on this observation, we propose AdEMAMix, a simple modification of the Adam optimizer with a mixture of two EMAs to better take advantage of past gradients. Our experiments on language modeling and image classification show -- quite surprisingly -- that gradients can stay relevant for tens of thousands of steps. They help to converge faster, and often to lower minima: e.g., a 1.3B parameter AdEMAMix LLM trained on 101B tokens performs comparably to an AdamW model trained on 197B tokens (+95%). Moreover, our method significantly slows-down model forgetting during training. Our work motivates further exploration of different types of functions to leverage past gradients, beyond EMAs.
On the Generalization Mystery in Deep Learning
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Monotonic Differentiable Sorting Networks
Differentiable sorting algorithms allow training with sorting and ranking supervision, where only the ordering or ranking of samples is known. Various methods have been proposed to address this challenge, ranging from optimal transport-based differentiable Sinkhorn sorting algorithms to making classic sorting networks differentiable. One problem of current differentiable sorting methods is that they are non-monotonic. To address this issue, we propose a novel relaxation of conditional swap operations that guarantees monotonicity in differentiable sorting networks. We introduce a family of sigmoid functions and prove that they produce differentiable sorting networks that are monotonic. Monotonicity ensures that the gradients always have the correct sign, which is an advantage in gradient-based optimization. We demonstrate that monotonic differentiable sorting networks improve upon previous differentiable sorting methods.
Sampling Multimodal Distributions with the Vanilla Score: Benefits of Data-Based Initialization
There is a long history, as well as a recent explosion of interest, in statistical and generative modeling approaches based on score functions -- derivatives of the log-likelihood of a distribution. In seminal works, Hyv\"arinen proposed vanilla score matching as a way to learn distributions from data by computing an estimate of the score function of the underlying ground truth, and established connections between this method and established techniques like Contrastive Divergence and Pseudolikelihood estimation. It is by now well-known that vanilla score matching has significant difficulties learning multimodal distributions. Although there are various ways to overcome this difficulty, the following question has remained unanswered -- is there a natural way to sample multimodal distributions using just the vanilla score? Inspired by a long line of related experimental works, we prove that the Langevin diffusion with early stopping, initialized at the empirical distribution, and run on a score function estimated from data successfully generates natural multimodal distributions (mixtures of log-concave distributions).
Feature Shift Detection: Localizing Which Features Have Shifted via Conditional Distribution Tests
While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.
Training Data Attribution via Approximate Unrolled Differentiation
Many training data attribution (TDA) methods aim to estimate how a model's behavior would change if one or more data points were removed from the training set. Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification, the implicit bias of the optimization algorithm, or multi-stage training pipelines. By contrast, methods based on unrolling address these issues but face scalability challenges. In this work, we connect the implicit-differentiation-based and unrolling-based approaches and combine their benefits by introducing Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula. While being computationally efficient compared to unrolling-based approaches, Source is suitable in cases where implicit-differentiation-based approaches struggle, such as in non-converged models and multi-stage training pipelines. Empirically, Source outperforms existing TDA techniques in counterfactual prediction, especially in settings where implicit-differentiation-based approaches fall short.
Principled Training of Neural Networks with Direct Feedback Alignment
The backpropagation algorithm has long been the canonical training method for neural networks. Modern paradigms are implicitly optimized for it, and numerous guidelines exist to ensure its proper use. Recently, synthetic gradients methods -where the error gradient is only roughly approximated - have garnered interest. These methods not only better portray how biological brains are learning, but also open new computational possibilities, such as updating layers asynchronously. Even so, they have failed to scale past simple tasks like MNIST or CIFAR-10. This is in part due to a lack of standards, leading to ill-suited models and practices forbidding such methods from performing to the best of their abilities. In this work, we focus on direct feedback alignment and present a set of best practices justified by observations of the alignment angles. We characterize a bottleneck effect that prevents alignment in narrow layers, and hypothesize it may explain why feedback alignment methods have yet to scale to large convolutional networks.
A Neural Tangent Kernel Perspective of GANs
We propose a novel theoretical framework of analysis for Generative Adversarial Networks (GANs). We reveal a fundamental flaw of previous analyses which, by incorrectly modeling GANs' training scheme, are subject to ill-defined discriminator gradients. We overcome this issue which impedes a principled study of GAN training, solving it within our framework by taking into account the discriminator's architecture. To this end, we leverage the theory of infinite-width neural networks for the discriminator via its Neural Tangent Kernel. We characterize the trained discriminator for a wide range of losses and establish general differentiability properties of the network. From this, we derive new insights about the convergence of the generated distribution, advancing our understanding of GANs' training dynamics. We empirically corroborate these results via an analysis toolkit based on our framework, unveiling intuitions that are consistent with GAN practice.
ExcelFormer: Can a DNN be a Sure Bet for Tabular Prediction?
Data organized in tabular format is ubiquitous in real-world applications, and users often craft tables with biased feature definitions and flexibly set prediction targets of their interests. Thus, a rapid development of a robust, effective, dataset-versatile, user-friendly tabular prediction approach is highly desired. While Gradient Boosting Decision Trees (GBDTs) and existing deep neural networks (DNNs) have been extensively utilized by professional users, they present several challenges for casual users, particularly: (i) the dilemma of model selection due to their different dataset preferences, and (ii) the need for heavy hyperparameter searching, failing which their performances are deemed inadequate. In this paper, we delve into this question: Can we develop a deep learning model that serves as a "sure bet" solution for a wide range of tabular prediction tasks, while also being user-friendly for casual users? We delve into three key drawbacks of deep tabular models, encompassing: (P1) lack of rotational variance property, (P2) large data demand, and (P3) over-smooth solution. We propose ExcelFormer, addressing these challenges through a semi-permeable attention module that effectively constrains the influence of less informative features to break the DNNs' rotational invariance property (for P1), data augmentation approaches tailored for tabular data (for P2), and attentive feedforward network to boost the model fitting capability (for P3). These designs collectively make ExcelFormer a "sure bet" solution for diverse tabular datasets. Extensive and stratified experiments conducted on real-world datasets demonstrate that our model outperforms previous approaches across diverse tabular data prediction tasks, and this framework can be friendly to casual users, offering ease of use without the heavy hyperparameter tuning.
Refined Regret for Adversarial MDPs with Linear Function Approximation
We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
Small-scale proxies for large-scale Transformer training instabilities
Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training stability and instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the muParam (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model activation and gradient norms.
CREAM: Consistency Regularized Self-Rewarding Language Models
Recent self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to iteratively improve the alignment performance without the need of human annotations for preference data. These methods commonly utilize the same LLM to act as both the policy model (which generates responses) and the reward model (which scores and ranks those responses). The ranked responses are then used as preference pairs to train the LLM via direct alignment technologies (e.g. DPO). However, it is noteworthy that throughout this process, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data. Empirical results from relatively small LLMs (e.g., 7B parameters) also indicate that improvements from self-rewarding may diminish after several iterations in certain situations, which we hypothesize is due to accumulated bias in the reward system. This bias can lead to unreliable preference data for training the LLM. To address this issue, we first formulate and analyze the generalized iterative preference fine-tuning framework for self-rewarding language model. We then introduce the regularization to this generalized framework to mitigate the overconfident preference labeling in the self-rewarding process. Based on this theoretical insight, we propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training, helping the model to learn from more reliable preference data. With this explicit regularization, our empirical results demonstrate the superiority of CREAM in improving both reward consistency and alignment performance. The code is publicly available at https://github.com/Raibows/CREAM.
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
Jacobian Descent for Multi-Objective Optimization
Many optimization problems are inherently multi-objective. To address them, we formalize Jacobian descent (JD), a direct generalization of gradient descent for vector-valued functions. Each step of this algorithm relies on a Jacobian matrix consisting of one gradient per objective. The aggregator, responsible for reducing this matrix into an update vector, characterizes JD. While the multi-task learning literature already contains a variety of aggregators, they often lack some natural properties. In particular, the update should not conflict with any objective and should scale proportionally to the norm of each gradient. We propose a new aggregator specifically designed to satisfy this. Emphasizing conflict between objectives, we then highlight direct applications for our methods. Most notably, we introduce instance-wise risk minimization (IWRM), a learning paradigm in which the loss of each training example is considered a separate objective. On simple image classification tasks, IWRM exhibits promising results compared to the direct minimization of the average loss. The performance of our aggregator in those experiments also corroborates our theoretical findings. Lastly, as speed is the main limitation of JD, we provide a path towards a more efficient implementation.
A density estimation perspective on learning from pairwise human preferences
Learning from human feedback (LHF) -- and in particular learning from pairwise preferences -- has recently become a crucial ingredient in training large language models (LLMs), and has been the subject of much research. Most recent works frame it as a reinforcement learning problem, where a reward function is learned from pairwise preference data and the LLM is treated as a policy which is adapted to maximize the rewards, often under additional regularization constraints. We propose an alternative interpretation which centers on the generative process for pairwise preferences and treats LHF as a density estimation problem. We provide theoretical and empirical results showing that for a family of generative processes defined via preference behavior distribution equations, training a reward function on pairwise preferences effectively models an annotator's implicit preference distribution. Finally, we discuss and present findings on "annotator misspecification" -- failure cases where wrong modeling assumptions are made about annotator behavior, resulting in poorly-adapted models -- suggesting that approaches that learn from pairwise human preferences could have trouble learning from a population of annotators with diverse viewpoints.
Decoding-time Realignment of Language Models
Aligning language models with human preferences is crucial for reducing errors and biases in these models. Alignment techniques, such as reinforcement learning from human feedback (RLHF), are typically cast as optimizing a tradeoff between human preference rewards and a proximity regularization term that encourages staying close to the unaligned model. Selecting an appropriate level of regularization is critical: insufficient regularization can lead to reduced model capabilities due to reward hacking, whereas excessive regularization hinders alignment. Traditional methods for finding the optimal regularization level require retraining multiple models with varying regularization strengths. This process, however, is resource-intensive, especially for large models. To address this challenge, we propose decoding-time realignment (DeRa), a simple method to explore and evaluate different regularization strengths in aligned models without retraining. DeRa enables control over the degree of alignment, allowing users to smoothly transition between unaligned and aligned models. It also enhances the efficiency of hyperparameter tuning by enabling the identification of effective regularization strengths using a validation dataset.
T-REG: Preference Optimization with Token-Level Reward Regularization
Reinforcement learning from human feedback (RLHF) has been crucial in aligning large language models (LLMs) with human values. Traditionally, RLHF involves generating responses to a query and using a reward model to assign a reward to the entire response. However, this approach faces challenges due to its reliance on a single, sparse reward, which makes it challenging for the model to identify which parts of the sequence contribute most significantly to the final reward. Recent methods have attempted to address this limitation by introducing token-level rewards. However, these methods often rely on either a trained credit assignment model or AI annotators, raising concerns about the quality and reliability of the rewards. In this paper, we propose token-level reward regularization (T-REG), a novel approach that leverages both sequence-level and token-level rewards for preference optimization. Harnessing the self-refinement capabilities of LLMs, our method uses contrastive prompting to enable LLMs to self-generate token-level rewards. These self-generated rewards then act as reward regularization, guiding the model to more effectively distribute sequence-level rewards across tokens. This facilitates better token-level credit assignment and enhances alignment performance. Experiments on the instruction following benchmarks, including Alpaca Eval 2 and Arena-Hard, show that our method consistently outperforms baseline methods by up to 3.8% and 4.4%, respectively. We will release the code and models at https://github.com/wzhouad/T-REG.
Preference Learning Algorithms Do Not Learn Preference Rankings
Preference learning algorithms (e.g., RLHF and DPO) are frequently used to steer LLMs to produce generations that are more preferred by humans, but our understanding of their inner workings is still limited. In this work, we study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs, measured via ranking accuracy. Surprisingly, we find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets. We furthermore derive the idealized ranking accuracy that a preference-tuned LLM would achieve if it optimized the DPO or RLHF objective perfectly. We demonstrate that existing models exhibit a significant alignment gap -- i.e., a gap between the observed and idealized ranking accuracies. We attribute this discrepancy to the DPO objective, which is empirically and theoretically ill-suited to fix even mild ranking errors in the reference model, and derive a simple and efficient formula for quantifying the difficulty of learning a given preference datapoint. Finally, we demonstrate that ranking accuracy strongly correlates with the empirically popular win rate metric when the model is close to the reference model used in the objective, shedding further light on the differences between on-policy (e.g., RLHF) and off-policy (e.g., DPO) preference learning algorithms.
Fira: Can We Achieve Full-rank Training of LLMs Under Low-rank Constraint?
Low-rank training has emerged as a promising approach for reducing memory usage in training Large Language Models (LLMs). Previous methods either rely on decomposing weight matrices (e.g., LoRA), or seek to decompose gradient matrices (e.g., GaLore) to ensure reduced memory consumption. However, both of them constrain the training in a low-rank subspace, thus inevitably leading to sub-optimal performance. This raises a question: whether it is possible to consistently preserve the low-rank constraint for memory efficiency, while achieving full-rank training (i.e., training with full-rank gradients of full-rank weights) to avoid inferior outcomes? In this paper, we propose a new plug-and-play training framework for LLMs called Fira, as the first attempt to achieve this goal. First, we observe an interesting phenomenon during LLM training: the scaling impact of adaptive optimizers (e.g., Adam) on the gradient norm remains similar from low-rank to full-rank training. Based on this observation, we propose a norm-based scaling method, which utilizes the scaling impact of low-rank optimizers as substitutes for that of original full-rank optimizers to enable full-rank training. In this way, we can preserve the low-rank constraint in the optimizer while achieving full-rank training for better performance. Moreover, we find that there are sudden gradient rises during the optimization process, potentially causing loss spikes. To address this, we further put forward a norm-growth limiter to smooth the gradient via regulating the relative increase of gradient norms. Extensive experiments on the pre-training and fine-tuning of LLMs show that Fira outperforms both LoRA and GaLore, achieving performance that is comparable to or even better than full-rank training.
Model-agnostic Measure of Generalization Difficulty
The measure of a machine learning algorithm is the difficulty of the tasks it can perform, and sufficiently difficult tasks are critical drivers of strong machine learning models. However, quantifying the generalization difficulty of machine learning benchmarks has remained challenging. We propose what is to our knowledge the first model-agnostic measure of the inherent generalization difficulty of tasks. Our inductive bias complexity measure quantifies the total information required to generalize well on a task minus the information provided by the data. It does so by measuring the fractional volume occupied by hypotheses that generalize on a task given that they fit the training data. It scales exponentially with the intrinsic dimensionality of the space over which the model must generalize but only polynomially in resolution per dimension, showing that tasks which require generalizing over many dimensions are drastically more difficult than tasks involving more detail in fewer dimensions. Our measure can be applied to compute and compare supervised learning, reinforcement learning and meta-learning generalization difficulties against each other. We show that applied empirically, it formally quantifies intuitively expected trends, e.g. that in terms of required inductive bias, MNIST < CIFAR10 < Imagenet and fully observable Markov decision processes (MDPs) < partially observable MDPs. Further, we show that classification of complex images < few-shot meta-learning with simple images. Our measure provides a quantitative metric to guide the construction of more complex tasks requiring greater inductive bias, and thereby encourages the development of more sophisticated architectures and learning algorithms with more powerful generalization capabilities.
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation
We generalize the class vectors found in neural networks to linear subspaces (i.e.~points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables the simultaneous improvement in accuracy and feature transferability. In GCR, each class is a subspace and the logit is defined as the norm of the projection of a feature onto the class subspace. We integrate Riemannian SGD into deep learning frameworks such that class subspaces in a Grassmannian are jointly optimized with the rest model parameters. Compared to the vector form, the representative capability of subspaces is more powerful. We show that on ImageNet-1K, the top-1 error of ResNet50-D, ResNeXt50, Swin-T and Deit3-S are reduced by 5.6%, 4.5%, 3.0% and 3.5%, respectively. Subspaces also provide freedom for features to vary and we observed that the intra-class feature variability grows when the subspace dimension increases. Consequently, we found the quality of GCR features is better for downstream tasks. For ResNet50-D, the average linear transfer accuracy across 6 datasets improves from 77.98% to 79.70% compared to the strong baseline of vanilla softmax. For Swin-T, it improves from 81.5% to 83.4% and for Deit3, it improves from 73.8% to 81.4%. With these encouraging results, we believe that more applications could benefit from the Grassmann class representation. Code is released at https://github.com/innerlee/GCR.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
MoreauGrad: Sparse and Robust Interpretation of Neural Networks via Moreau Envelope
Explaining the predictions of deep neural nets has been a topic of great interest in the computer vision literature. While several gradient-based interpretation schemes have been proposed to reveal the influential variables in a neural net's prediction, standard gradient-based interpretation frameworks have been commonly observed to lack robustness to input perturbations and flexibility for incorporating prior knowledge of sparsity and group-sparsity structures. In this work, we propose MoreauGrad as an interpretation scheme based on the classifier neural net's Moreau envelope. We demonstrate that MoreauGrad results in a smooth and robust interpretation of a multi-layer neural network and can be efficiently computed through first-order optimization methods. Furthermore, we show that MoreauGrad can be naturally combined with L_1-norm regularization techniques to output a sparse or group-sparse explanation which are prior conditions applicable to a wide range of deep learning applications. We empirically evaluate the proposed MoreauGrad scheme on standard computer vision datasets, showing the qualitative and quantitative success of the MoreauGrad approach in comparison to standard gradient-based interpretation methods.
Bolstering Stochastic Gradient Descent with Model Building
Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the stepsize. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the stepsize but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
The ability to learn new concepts continually is necessary in this ever-changing world. However, deep neural networks suffer from catastrophic forgetting when learning new categories. Many works have been proposed to alleviate this phenomenon, whereas most of them either fall into the stability-plasticity dilemma or take too much computation or storage overhead. Inspired by the gradient boosting algorithm to gradually fit the residuals between the target model and the previous ensemble model, we propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively. Specifically, we first dynamically expand new modules to fit the residuals between the target and the output of the original model. Next, we remove redundant parameters and feature dimensions through an effective distillation strategy to maintain the single backbone model. We validate our method FOSTER on CIFAR-100 and ImageNet-100/1000 under different settings. Experimental results show that our method achieves state-of-the-art performance. Code is available at: https://github.com/G-U-N/ECCV22-FOSTER.
Learning Unnormalized Statistical Models via Compositional Optimization
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation~(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.
The Value of Out-of-Distribution Data
We expect the generalization error to improve with more samples from a similar task, and to deteriorate with more samples from an out-of-distribution (OOD) task. In this work, we show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the number of OOD samples. As the number of OOD samples increases, the generalization error on the target task improves before deteriorating beyond a threshold. In other words, there is value in training on small amounts of OOD data. We use Fisher's Linear Discriminant on synthetic datasets and deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet to demonstrate and analyze this phenomenon. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization, and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset.
A Common Pitfall of Margin-based Language Model Alignment: Gradient Entanglement
Reinforcement Learning from Human Feedback (RLHF) has become the predominant approach for language model (LM) alignment. At its core, RLHF uses a margin-based loss for preference optimization, specifying ideal LM behavior only by the difference between preferred and dispreferred responses. In this paper, we identify a common pitfall of margin-based methods -- the under-specification of ideal LM behavior on preferred and dispreferred responses individually, which leads to two unintended consequences as the margin increases: (1) The probability of dispreferred (e.g., unsafe) responses may increase, resulting in potential safety alignment failures. (2) The probability of preferred responses may decrease, even when those responses are ideal. We demystify the reasons behind these problematic behaviors: margin-based losses couple the change in the preferred probability to the gradient of the dispreferred one, and vice versa, often preventing the preferred probability from increasing while the dispreferred one decreases, and thus causing a synchronized increase or decrease in both probabilities. We term this effect, inherent in margin-based objectives, gradient entanglement. Formally, we derive conditions for general margin-based alignment objectives under which gradient entanglement becomes concerning: the inner product of the gradients of preferred and dispreferred log-probabilities is large relative to the individual gradient norms. We theoretically investigate why such inner products can be large when aligning language models and empirically validate our findings. Empirical implications of our framework extend to explaining important differences in the training dynamics of various preference optimization algorithms, and suggesting potential algorithm designs to mitigate the under-specification issue of margin-based methods and thereby improving language model alignment.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder. In this paper, we revisit the second step of this procedure in the context of fine-tuning large pre-trained models, where fine-tuned models often appear to lie in a single low error basin. We show that averaging the weights of multiple models fine-tuned with different hyperparameter configurations often improves accuracy and robustness. Unlike a conventional ensemble, we may average many models without incurring any additional inference or memory costs -- we call the results "model soups." When fine-tuning large pre-trained models such as CLIP, ALIGN, and a ViT-G pre-trained on JFT, our soup recipe provides significant improvements over the best model in a hyperparameter sweep on ImageNet. The resulting ViT-G model, which attains 90.94% top-1 accuracy on ImageNet, achieved a new state of the art. Furthermore, we show that the model soup approach extends to multiple image classification and natural language processing tasks, improves out-of-distribution performance, and improves zero-shot performance on new downstream tasks. Finally, we analytically relate the performance similarity of weight-averaging and logit-ensembling to flatness of the loss and confidence of the predictions, and validate this relation empirically. Code is available at https://github.com/mlfoundations/model-soups.
High-dimensional SGD aligns with emerging outlier eigenspaces
We rigorously study the joint evolution of training dynamics via stochastic gradient descent (SGD) and the spectra of empirical Hessian and gradient matrices. We prove that in two canonical classification tasks for multi-class high-dimensional mixtures and either 1 or 2-layer neural networks, the SGD trajectory rapidly aligns with emerging low-rank outlier eigenspaces of the Hessian and gradient matrices. Moreover, in multi-layer settings this alignment occurs per layer, with the final layer's outlier eigenspace evolving over the course of training, and exhibiting rank deficiency when the SGD converges to sub-optimal classifiers. This establishes some of the rich predictions that have arisen from extensive numerical studies in the last decade about the spectra of Hessian and information matrices over the course of training in overparametrized networks.
Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically leverage Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we demonstrate that diffusion models are inherently well-suited for step-level reward modeling in the latent space, as they can naturally extract features from noisy latent images. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of diffusion models to predict preferences of latent images at various timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a method designed for step-level preference optimization directly in the latent space. Experimental results indicate that LPO not only significantly enhances performance in aligning diffusion models with general, aesthetic, and text-image alignment preferences, but also achieves 2.5-28times training speedup compared to existing preference optimization methods. Our code will be available at https://github.com/casiatao/LPO.
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date. Despite their success, existing methods typically rely on simple binary labels, such as those indicating preferred outputs in pairwise preferences, which fail to capture the subtle differences in relative quality between pairs. To address this limitation, we introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models. Specifically, given quality margins in pairwise preferences, we design soft target probabilities based on the Bradley-Terry model, which are then used to train models with the standard cross-entropy objective. Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench. Notably, the 7B model trained with MMPO achieves state-of-the-art performance on RewardBench as of June 2024, outperforming other models of the same scale. Our analysis also shows that MMPO is more robust to overfitting, leading to better-calibrated models.
Distributional Offline Policy Evaluation with Predictive Error Guarantees
We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) and has the flexibility of integrating any state-of-the-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite-horizon and infinite-horizon discounted settings where rewards can be multi-dimensional vectors. Our theoretical results show that for both finite-horizon and infinite-horizon discounted settings, FLE can learn distributions that are close to the ground truth under total variation distance and Wasserstein distance, respectively. Our theoretical results hold under the conditions that the offline data covers the test policy's traces and that the supervised learning MLE procedures succeed. Experimentally, we demonstrate the performance of FLE with two generative models, Gaussian mixture models and diffusion models. For the multi-dimensional reward setting, FLE with diffusion models is capable of estimating the complicated distribution of the return of a test policy.
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian. We also derive similar results for the Generalised Gauss-Newton matrix approximation of the Hessian. As a consequence of our theorems we derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. %For stochastic second-order methods and adaptive methods, we derive that the minimal damping coefficient is proportional to the ratio of the learning rate to batch size. We validate our claims on the VGG/WideResNet architectures on the CIFAR-100 and ImageNet datasets. Based on our investigations of the sub-sampled Hessian we develop a stochastic Lanczos quadrature based on the fly learning rate and momentum learner, which avoids the need for expensive multiple evaluations for these key hyper-parameters and shows good preliminary results on the Pre-Residual Architecure for CIFAR-100.
Mixture of experts models for multilevel data: modelling framework and approximation theory
Multilevel data are prevalent in many real-world applications. However, it remains an open research problem to identify and justify a class of models that flexibly capture a wide range of multilevel data. Motivated by the versatility of the mixture of experts (MoE) models in fitting regression data, in this article we extend upon the MoE and study a class of mixed MoE (MMoE) models for multilevel data. Under some regularity conditions, we prove that the MMoE is dense in the space of any continuous mixed effects models in the sense of weak convergence. As a result, the MMoE has a potential to accurately resemble almost all characteristics inherited in multilevel data, including the marginal distributions, dependence structures, regression links, random intercepts and random slopes. In a particular case where the multilevel data is hierarchical, we further show that a nested version of the MMoE universally approximates a broad range of dependence structures of the random effects among different factor levels.
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Many machine learning applications require operating on a spatially distributed dataset. Despite technological advances, privacy considerations and communication constraints may prevent gathering the entire dataset in a central unit. In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers, which is commonly used in the optimization literature due to its fast convergence. In contrast to distributed optimization, distributed sampling allows for uncertainty quantification in Bayesian inference tasks. We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art. For our theoretical results, we use convex optimization tools to establish a fundamental inequality on the generated local sample iterates. This inequality enables us to show convergence of the distribution associated with these iterates to the underlying target distribution in Wasserstein distance. In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
MaxSup: Overcoming Representation Collapse in Label Smoothing
Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
Grokking at the Edge of Numerical Stability
Grokking, the sudden generalization that occurs after prolonged overfitting, is a surprising phenomenon challenging our understanding of deep learning. Although significant progress has been made in understanding grokking, the reasons behind the delayed generalization and its dependence on regularization remain unclear. In this work, we argue that without regularization, grokking tasks push models to the edge of numerical stability, introducing floating point errors in the Softmax function, which we refer to as Softmax Collapse (SC). We demonstrate that SC prevents grokking and that mitigating SC enables grokking without regularization. Investigating the root cause of SC, we find that beyond the point of overfitting, the gradients strongly align with what we call the na\"ive loss minimization (NLM) direction. This component of the gradient does not alter the model's predictions but decreases the loss by scaling the logits, typically by scaling the weights along their current direction. We show that this scaling of the logits explains the delay in generalization characteristic of grokking and eventually leads to SC, halting further learning. To validate our hypotheses, we introduce two key contributions that address the challenges in grokking tasks: StableMax, a new activation function that prevents SC and enables grokking without regularization, and perpGrad, a training algorithm that promotes quick generalization in grokking tasks by preventing NLM altogether. These contributions provide new insights into grokking, elucidating its delayed generalization, reliance on regularization, and the effectiveness of existing grokking-inducing methods. Code for this paper is available at https://github.com/LucasPrietoAl/grokking-at-the-edge-of-numerical-stability.
Steering Language Generation: Harnessing Contrastive Expert Guidance and Negative Prompting for Coherent and Diverse Synthetic Data Generation
Large Language Models (LLMs) hold immense potential to generate synthetic data of high quality and utility, which has numerous applications from downstream model training to practical data utilisation. However, contemporary models, despite their impressive capacities, consistently struggle to produce both coherent and diverse data. To address the coherency issue, we introduce contrastive expert guidance, where the difference between the logit distributions of fine-tuned and base language models is emphasised to ensure domain adherence. In order to ensure diversity, we utilise existing real and synthetic examples as negative prompts to the model. We deem this dual-pronged approach to logit reshaping as STEER: Semantic Text Enhancement via Embedding Repositioning. STEER operates at inference-time and systematically guides the LLMs to strike a balance between adherence to the data distribution (ensuring semantic fidelity) and deviation from prior synthetic examples or existing real datasets (ensuring diversity and authenticity). This delicate balancing act is achieved by dynamically moving towards or away from chosen representations in the latent space. STEER demonstrates improved performance over previous synthetic data generation techniques, exhibiting better balance between data diversity and coherency across three distinct tasks: hypothesis generation, toxic and non-toxic comment generation, and commonsense reasoning task generation. We demonstrate how STEER allows for fine-tuned control over the diversity-coherency trade-off via its hyperparameters, highlighting its versatility.
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of {\em dynamical stability} (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to 2/eta, where eta denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the {\em equivalence} between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization effect becomes more pronounced, elucidating why SGD with a larger LR consistently demonstrates superior generalization capabilities. Additionally, numerical experiments are provided to support our theoretical findings.
Practical Convex Formulation of Robust One-hidden-layer Neural Network Training
Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the "adversarial training" problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.
Exact Gauss-Newton Optimization for Training Deep Neural Networks
We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an epsilon-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks.
Diverse Projection Ensembles for Distributional Reinforcement Learning
In contrast to classical reinforcement learning, distributional reinforcement learning algorithms aim to learn the distribution of returns rather than their expected value. Since the nature of the return distribution is generally unknown a priori or arbitrarily complex, a common approach finds approximations within a set of representable, parametric distributions. Typically, this involves a projection of the unconstrained distribution onto the set of simplified distributions. We argue that this projection step entails a strong inductive bias when coupled with neural networks and gradient descent, thereby profoundly impacting the generalization behavior of learned models. In order to facilitate reliable uncertainty estimation through diversity, this work studies the combination of several different projections and representations in a distributional ensemble. We establish theoretical properties of such projection ensembles and derive an algorithm that uses ensemble disagreement, measured by the average 1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm on the behavior suite benchmark and find that diverse projection ensembles lead to significant performance improvements over existing methods on a wide variety of tasks with the most pronounced gains in directed exploration problems.
On the Convergence of Adam and Beyond
Several recently proposed stochastic optimization methods that have been successfully used in training deep networks such as RMSProp, Adam, Adadelta, Nadam are based on using gradient updates scaled by square roots of exponential moving averages of squared past gradients. In many applications, e.g. learning with large output spaces, it has been empirically observed that these algorithms fail to converge to an optimal solution (or a critical point in nonconvex settings). We show that one cause for such failures is the exponential moving average used in the algorithms. We provide an explicit example of a simple convex optimization setting where Adam does not converge to the optimal solution, and describe the precise problems with the previous analysis of Adam algorithm. Our analysis suggests that the convergence issues can be fixed by endowing such algorithms with `long-term memory' of past gradients, and propose new variants of the Adam algorithm which not only fix the convergence issues but often also lead to improved empirical performance.
Zeroth-Order Optimization Meets Human Feedback: Provable Learning via Ranking Oracles
In this study, we delve into an emerging optimization challenge involving a black-box objective function that can only be gauged via a ranking oracle-a situation frequently encountered in real-world scenarios, especially when the function is evaluated by human judges. Such challenge is inspired from Reinforcement Learning with Human Feedback (RLHF), an approach recently employed to enhance the performance of Large Language Models (LLMs) using human guidance. We introduce ZO-RankSGD, an innovative zeroth-order optimization algorithm designed to tackle this optimization problem, accompanied by theoretical assurances. Our algorithm utilizes a novel rank-based random estimator to determine the descent direction and guarantees convergence to a stationary point. Moreover, ZO-RankSGD is readily applicable to policy optimization problems in Reinforcement Learning (RL), particularly when only ranking oracles for the episode reward are available. Last but not least, we demonstrate the effectiveness of ZO-RankSGD in a novel application: improving the quality of images generated by a diffusion generative model with human ranking feedback. Throughout experiments, we found that ZO-RankSGD can significantly enhance the detail of generated images with only a few rounds of human feedback. Overall, our work advances the field of zeroth-order optimization by addressing the problem of optimizing functions with only ranking feedback, and offers a new and effective approach for aligning Artificial Intelligence (AI) with human intentions.
Diffusion Guided Language Modeling
Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language -- ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier -- however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
Time-Efficient Reinforcement Learning with Stochastic Stateful Policies
Stateful policies play an important role in reinforcement learning, such as handling partially observable environments, enhancing robustness, or imposing an inductive bias directly into the policy structure. The conventional method for training stateful policies is Backpropagation Through Time (BPTT), which comes with significant drawbacks, such as slow training due to sequential gradient propagation and the occurrence of vanishing or exploding gradients. The gradient is often truncated to address these issues, resulting in a biased policy update. We present a novel approach for training stateful policies by decomposing the latter into a stochastic internal state kernel and a stateless policy, jointly optimized by following the stateful policy gradient. We introduce different versions of the stateful policy gradient theorem, enabling us to easily instantiate stateful variants of popular reinforcement learning and imitation learning algorithms. Furthermore, we provide a theoretical analysis of our new gradient estimator and compare it with BPTT. We evaluate our approach on complex continuous control tasks, e.g., humanoid locomotion, and demonstrate that our gradient estimator scales effectively with task complexity while offering a faster and simpler alternative to BPTT.
Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization
Large language models (LLMs) have revolutionized the role of AI, yet also pose potential risks of propagating unethical content. Alignment technologies have been introduced to steer LLMs towards human preference, gaining increasing attention. Despite notable breakthroughs in this direction, existing methods heavily rely on high-quality positive-negative training pairs, suffering from noisy labels and the marginal distinction between preferred and dispreferred response data. Given recent LLMs' proficiency in generating helpful responses, this work pivots towards a new research focus: achieving alignment using solely human-annotated negative samples, preserving helpfulness while reducing harmfulness. For this purpose, we propose Distributional Dispreference Optimization (D^2O), which maximizes the discrepancy between the generated responses and the dispreferred ones to effectively eschew harmful information. We theoretically demonstrate that D^2O is equivalent to learning a distributional instead of instance-level preference model reflecting human dispreference against the distribution of negative responses. Besides, D^2O integrates an implicit Jeffrey Divergence regularization to balance the exploitation and exploration of reference policies and converges to a non-negative one during training. Extensive experiments demonstrate that our method achieves comparable generation quality and surpasses the latest baselines in producing less harmful and more informative responses with better training stability and faster convergence.
A Loss Curvature Perspective on Training Instability in Deep Learning
In this work, we study the evolution of the loss Hessian across many classification tasks in order to understand the effect the curvature of the loss has on the training dynamics. Whereas prior work has focused on how different learning rates affect the loss Hessian observed during training, we also analyze the effects of model initialization, architectural choices, and common training heuristics such as gradient clipping and learning rate warmup. Our results demonstrate that successful model and hyperparameter choices allow the early optimization trajectory to either avoid -- or navigate out of -- regions of high curvature and into flatter regions that tolerate a higher learning rate. Our results suggest a unifying perspective on how disparate mitigation strategies for training instability ultimately address the same underlying failure mode of neural network optimization, namely poor conditioning. Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization, layer normalization, MetaInit, GradInit, and Fixup initialization.
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.
An Efficient Tester-Learner for Halfspaces
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
When is a Convolutional Filter Easy To Learn?
We analyze the convergence of (stochastic) gradient descent algorithm for learning a convolutional filter with Rectified Linear Unit (ReLU) activation function. Our analysis does not rely on any specific form of the input distribution and our proofs only use the definition of ReLU, in contrast with previous works that are restricted to standard Gaussian input. We show that (stochastic) gradient descent with random initialization can learn the convolutional filter in polynomial time and the convergence rate depends on the smoothness of the input distribution and the closeness of patches. To the best of our knowledge, this is the first recovery guarantee of gradient-based algorithms for convolutional filter on non-Gaussian input distributions. Our theory also justifies the two-stage learning rate strategy in deep neural networks. While our focus is theoretical, we also present experiments that illustrate our theoretical findings.
On the Learning and Learnability of Quasimetrics
Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.
Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through Outcome REwArd-based reinforcement Learning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future researchhttps://github.com/InternLM/OREAL.
Landscape Learning for Neural Network Inversion
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
Leverage the Average: an Analysis of KL Regularization in RL
Recent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study.
Feature Affinity Assisted Knowledge Distillation and Quantization of Deep Neural Networks on Label-Free Data
In this paper, we propose a feature affinity (FA) assisted knowledge distillation (KD) method to improve quantization-aware training of deep neural networks (DNN). The FA loss on intermediate feature maps of DNNs plays the role of teaching middle steps of a solution to a student instead of only giving final answers in the conventional KD where the loss acts on the network logits at the output level. Combining logit loss and FA loss, we found that the quantized student network receives stronger supervision than from the labeled ground-truth data. The resulting FAQD is capable of compressing model on label-free data, which brings immediate practical benefits as pre-trained teacher models are readily available and unlabeled data are abundant. In contrast, data labeling is often laborious and expensive. Finally, we propose a fast feature affinity (FFA) loss that accurately approximates FA loss with a lower order of computational complexity, which helps speed up training for high resolution image input.
Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions. Unfortunately, estimating or comparing two data distributions is extremely difficult, especially in high-dimension spaces. Recently, the gradient of log probability density (a.k.a., score) w.r.t. the sample is used as an alternative statistic to compute. However, we find that the score is sensitive in identifying adversarial samples due to insufficient information with one sample only. In this paper, we propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations. Specifically, to obtain adequate information regarding one sample, we perturb it by adding various noises to capture its multi-view observations. We theoretically prove that EPS is a proper statistic to compute the discrepancy between two samples under mild conditions. In practice, we can use a pre-trained diffusion model to estimate EPS for each sample. Last, we propose an EPS-based adversarial detection (EPS-AD) method, in which we develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples. We also prove that the EPS-based MMD between natural and adversarial samples is larger than that among natural samples. Extensive experiments show the superior adversarial detection performance of our EPS-AD.
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
Today's deep learning methods focus on how to design the most appropriate objective functions so that the prediction results of the model can be closest to the ground truth. Meanwhile, an appropriate architecture that can facilitate acquisition of enough information for prediction has to be designed. Existing methods ignore a fact that when input data undergoes layer-by-layer feature extraction and spatial transformation, large amount of information will be lost. This paper will delve into the important issues of data loss when data is transmitted through deep networks, namely information bottleneck and reversible functions. We proposed the concept of programmable gradient information (PGI) to cope with the various changes required by deep networks to achieve multiple objectives. PGI can provide complete input information for the target task to calculate objective function, so that reliable gradient information can be obtained to update network weights. In addition, a new lightweight network architecture -- Generalized Efficient Layer Aggregation Network (GELAN), based on gradient path planning is designed. GELAN's architecture confirms that PGI has gained superior results on lightweight models. We verified the proposed GELAN and PGI on MS COCO dataset based object detection. The results show that GELAN only uses conventional convolution operators to achieve better parameter utilization than the state-of-the-art methods developed based on depth-wise convolution. PGI can be used for variety of models from lightweight to large. It can be used to obtain complete information, so that train-from-scratch models can achieve better results than state-of-the-art models pre-trained using large datasets, the comparison results are shown in Figure 1. The source codes are at: https://github.com/WongKinYiu/yolov9.
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction
In this paper, we propose a general deep learning training framework XGrad which introduces weight prediction into the popular gradient-based optimizers to boost their convergence and generalization when training the deep neural network (DNN) models. In particular, ahead of each mini-batch training, the future weights are predicted according to the update rule of the used optimizer and are then applied to both the forward pass and backward propagation. In this way, during the whole training period, the optimizer always utilizes the gradients w.r.t. the future weights to update the DNN parameters, making the gradient-based optimizer achieve better convergence and generalization compared to the original optimizer without weight prediction. XGrad is rather straightforward to implement yet pretty effective in boosting the convergence of gradient-based optimizers and the accuracy of DNN models. Empirical results concerning the most three popular gradient-based optimizers including SGD with momentum, Adam, and AdamW demonstrate the effectiveness of our proposal. The experimental results validate that XGrad can attain higher model accuracy than the original optimizers when training the DNN models. The code of XGrad will be available at: https://github.com/guanleics/XGrad.
When Does Label Smoothing Help?
The generalization and learning speed of a multi-class neural network can often be significantly improved by using soft targets that are a weighted average of the hard targets and the uniform distribution over labels. Smoothing the labels in this way prevents the network from becoming over-confident and label smoothing has been used in many state-of-the-art models, including image classification, language translation and speech recognition. Despite its widespread use, label smoothing is still poorly understood. Here we show empirically that in addition to improving generalization, label smoothing improves model calibration which can significantly improve beam-search. However, we also observe that if a teacher network is trained with label smoothing, knowledge distillation into a student network is much less effective. To explain these observations, we visualize how label smoothing changes the representations learned by the penultimate layer of the network. We show that label smoothing encourages the representations of training examples from the same class to group in tight clusters. This results in loss of information in the logits about resemblances between instances of different classes, which is necessary for distillation, but does not hurt generalization or calibration of the model's predictions.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data
Neural networks trained by gradient descent (GD) have exhibited a number of surprising generalization behaviors. First, they can achieve a perfect fit to noisy training data and still generalize near-optimally, showing that overfitting can sometimes be benign. Second, they can undergo a period of classical, harmful overfitting -- achieving a perfect fit to training data with near-random performance on test data -- before transitioning ("grokking") to near-optimal generalization later in training. In this work, we show that both of these phenomena provably occur in two-layer ReLU networks trained by GD on XOR cluster data where a constant fraction of the training labels are flipped. In this setting, we show that after the first step of GD, the network achieves 100% training accuracy, perfectly fitting the noisy labels in the training data, but achieves near-random test accuracy. At a later training step, the network achieves near-optimal test accuracy while still fitting the random labels in the training data, exhibiting a "grokking" phenomenon. This provides the first theoretical result of benign overfitting in neural network classification when the data distribution is not linearly separable. Our proofs rely on analyzing the feature learning process under GD, which reveals that the network implements a non-generalizable linear classifier after one step and gradually learns generalizable features in later steps.
AdaBoost is not an Optimal Weak to Strong Learner
AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.
Gradient Descent Happens in a Tiny Subspace
We show that in a variety of large-scale deep learning scenarios the gradient dynamically converges to a very small subspace after a short period of training. The subspace is spanned by a few top eigenvectors of the Hessian (equal to the number of classes in the dataset), and is mostly preserved over long periods of training. A simple argument then suggests that gradient descent may happen mostly in this subspace. We give an example of this effect in a solvable model of classification, and we comment on possible implications for optimization and learning.
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Adaptive optimization methods are widely recognized as among the most popular approaches for training Deep Neural Networks (DNNs). Techniques such as Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search direction by incorporating information about the curvature of the objective function. However, despite their adaptive characteristics, these methods still require manual fine-tuning of the step-size. This, in turn, impacts the time required to solve a particular problem. This paper presents an optimization framework named SANIA to tackle these challenges. Beyond eliminating the need for manual step-size hyperparameter settings, SANIA incorporates techniques to address poorly scaled or ill-conditioned problems. We also explore several preconditioning methods, including Hutchinson's method, which approximates the Hessian diagonal of the loss function. We conclude with an extensive empirical examination of the proposed techniques across classification tasks, covering both convex and non-convex contexts.
Multi-aspect Knowledge Distillation with Large Language Model
Recent advancements in deep learning have significantly improved performance on computer vision tasks. Previous image classification methods primarily modify model architectures or add features, and they optimize models using cross-entropy loss on class logits. Since they focus on classifying images with considering class labels, these methods may struggle to learn various aspects of classes (e.g., natural positions and shape changes). Rethinking the previous approach from a novel view, we propose a multi-aspect knowledge distillation method using Multimodal Large Language Models (MLLMs). Our approach involves: 1) querying Large Language Model with multi-aspect questions relevant to the knowledge we want to transfer to the model, 2) extracting corresponding logits from MLLM, and 3) expanding the model's output dimensions to distill these multi-aspect logits. We then apply cross-entropy loss to class logits and binary cross-entropy loss to multi-aspect logits. Through our method, the model can learn not only the knowledge about visual aspects but also the abstract and complex aspects that require a deeper understanding. We primarily apply our method to image classification, and to explore the potential for extending our model, we expand it to other tasks, such as object detection. In all experimental results, our method improves the performance of the baselines. Additionally, we analyze the effect of multi-aspect knowledge distillation. These results demonstrate that our method can transfer knowledge about various aspects to the model and the aspect knowledge can enhance model performance in computer vision tasks. This paper demonstrates the great potential of multi-aspect knowledge distillation, and we believe it offers a promising direction for future research in computer vision and beyond.
FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
Deep Clustering with Incomplete Noisy Pairwise Annotations: A Geometric Regularization Approach
The recent integration of deep learning and pairwise similarity annotation-based constrained clustering -- i.e., deep constrained clustering (DCC) -- has proven effective for incorporating weak supervision into massive data clustering: Less than 1% of pair similarity annotations can often substantially enhance the clustering accuracy. However, beyond empirical successes, there is a lack of understanding of DCC. In addition, many DCC paradigms are sensitive to annotation noise, but performance-guaranteed noisy DCC methods have been largely elusive. This work first takes a deep look into a recently emerged logistic loss function of DCC, and characterizes its theoretical properties. Our result shows that the logistic DCC loss ensures the identifiability of data membership under reasonable conditions, which may shed light on its effectiveness in practice. Building upon this understanding, a new loss function based on geometric factor analysis is proposed to fend against noisy annotations. It is shown that even under unknown annotation confusions, the data membership can still be provably identified under our proposed learning criterion. The proposed approach is tested over multiple datasets to validate our claims.
Strengthening Multimodal Large Language Model with Bootstrapped Preference Optimization
Multimodal Large Language Models (MLLMs) excel in generating responses based on visual inputs. However, they often suffer from a bias towards generating responses similar to their pretraining corpus, overshadowing the importance of visual information. We treat this bias as a "preference" for pretraining statistics, which hinders the model's grounding in visual input. To mitigate this issue, we propose Bootstrapped Preference Optimization (BPO), which conducts preference learning with datasets containing negative responses bootstrapped from the model itself. Specifically, we propose the following two strategies: 1) using distorted image inputs to the MLLM for eliciting responses that contain signified pretraining bias; 2) leveraging text-based LLM to explicitly inject erroneous but common elements into the original response. Those undesirable responses are paired with original annotated responses from the datasets to construct the preference dataset, which is subsequently utilized to perform preference learning. Our approach effectively suppresses pretrained LLM bias, enabling enhanced grounding in visual inputs. Extensive experimentation demonstrates significant performance improvements across multiple benchmarks, advancing the state-of-the-art in multimodal conversational systems.
MINE: Mutual Information Neural Estimation
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
Differentiable Neural Input Search for Recommender Systems
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
Likelihood Landscapes: A Unifying Principle Behind Many Adversarial Defenses
Convolutional Neural Networks have been shown to be vulnerable to adversarial examples, which are known to locate in subspaces close to where normal data lies but are not naturally occurring and of low probability. In this work, we investigate the potential effect defense techniques have on the geometry of the likelihood landscape - likelihood of the input images under the trained model. We first propose a way to visualize the likelihood landscape leveraging an energy-based model interpretation of discriminative classifiers. Then we introduce a measure to quantify the flatness of the likelihood landscape. We observe that a subset of adversarial defense techniques results in a similar effect of flattening the likelihood landscape. We further explore directly regularizing towards a flat landscape for adversarial robustness.
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL.
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Recent research shows that when Gradient Descent (GD) is applied to neural networks, the loss almost never decreases monotonically. Instead, the loss oscillates as gradient descent converges to its ''Edge of Stability'' (EoS). Here, we find a quantity that does decrease monotonically throughout GD training: the sharpness attained by the gradient flow solution (GFS)-the solution that would be obtained if, from now until convergence, we train with an infinitesimal step size. Theoretically, we analyze scalar neural networks with the squared loss, perhaps the simplest setting where the EoS phenomena still occur. In this model, we prove that the GFS sharpness decreases monotonically. Using this result, we characterize settings where GD provably converges to the EoS in scalar networks. Empirically, we show that GD monotonically decreases the GFS sharpness in a squared regression model as well as practical neural network architectures.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples
Deep neural networks have been shown to suffer from a surprising weakness: their classification outputs can be changed by small, non-random perturbations of their inputs. This adversarial example phenomenon has been explained as originating from deep networks being "too linear" (Goodfellow et al., 2014). We show here that the linear explanation of adversarial examples presents a number of limitations: the formal argument is not convincing, linear classifiers do not always suffer from the phenomenon, and when they do their adversarial examples are different from the ones affecting deep networks. We propose a new perspective on the phenomenon. We argue that adversarial examples exist when the classification boundary lies close to the submanifold of sampled data, and present a mathematical analysis of this new perspective in the linear case. We define the notion of adversarial strength and show that it can be reduced to the deviation angle between the classifier considered and the nearest centroid classifier. Then, we show that the adversarial strength can be made arbitrarily high independently of the classification performance due to a mechanism that we call boundary tilting. This result leads us to defining a new taxonomy of adversarial examples. Finally, we show that the adversarial strength observed in practice is directly dependent on the level of regularisation used and the strongest adversarial examples, symptomatic of overfitting, can be avoided by using a proper level of regularisation.
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Despite their remarkable effectiveness and broad application, the drivers of success underlying ensembles of trees are still not fully understood. In this paper, we highlight how interpreting tree ensembles as adaptive and self-regularizing smoothers can provide new intuition and deeper insight to this topic. We use this perspective to show that, when studied as smoothers, randomized tree ensembles not only make predictions that are quantifiably more smooth than the predictions of the individual trees they consist of, but also further regulate their smoothness at test-time based on the dissimilarity between testing and training inputs. First, we use this insight to revisit, refine and reconcile two recent explanations of forest success by providing a new way of quantifying the conjectured behaviors of tree ensembles objectively by measuring the effective degree of smoothing they imply. Then, we move beyond existing explanations for the mechanisms by which tree ensembles improve upon individual trees and challenge the popular wisdom that the superior performance of forests should be understood as a consequence of variance reduction alone. We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles -- because the prevailing definition of bias does not capture differences in the expressivity of the hypothesis classes formed by trees and forests. Instead, we show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled. In particular, we demonstrate that the smoothing effect of ensembling can reduce variance in predictions due to noise in outcome generation, reduce variability in the quality of the learned function given fixed input data and reduce potential bias in learnable functions by enriching the available hypothesis space.
RewardBench: Evaluating Reward Models for Language Modeling
Reward models (RMs) are at the crux of successful RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those reward models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. To date, very few descriptors of capabilities, training methods, or open-source reward models exist. In this paper, we present RewardBench, a benchmark dataset and code-base for evaluation, to enhance scientific understanding of reward models. The RewardBench dataset is a collection of prompt-win-lose trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We created specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization (DPO), and on a spectrum of datasets. We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.
PersonalLLM: Tailoring LLMs to Individual Preferences
As LLMs become capable of complex tasks, there is growing potential for personalized interactions tailored to the subtle and idiosyncratic preferences of the user. We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user. Departing from existing alignment benchmarks that implicitly assume uniform preferences, we curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences. Instead of persona-prompting LLMs based on high-level attributes (e.g., user's race or response length), which yields homogeneous preferences relative to humans, we develop a method that can simulate a large user base with diverse preferences from a set of pre-trained reward models. Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms that grapple with continual data sparsity--few relevant feedback from the particular user--by leveraging historical data from other (similar) users. We explore basic in-context learning and meta-learning baselines to illustrate the utility of PersonalLLM and highlight the need for future methodological development. Our dataset is available at https://huggingface.co/datasets/namkoong-lab/PersonalLLM
Differentiable Multi-Target Causal Bayesian Experimental Design
We introduce a gradient-based approach for the problem of Bayesian optimal experimental design to learn causal models in a batch setting -- a critical component for causal discovery from finite data where interventions can be costly or risky. Existing methods rely on greedy approximations to construct a batch of experiments while using black-box methods to optimize over a single target-state pair to intervene with. In this work, we completely dispose of the black-box optimization techniques and greedy heuristics and instead propose a conceptually simple end-to-end gradient-based optimization procedure to acquire a set of optimal intervention target-state pairs. Such a procedure enables parameterization of the design space to efficiently optimize over a batch of multi-target-state interventions, a setting which has hitherto not been explored due to its complexity. We demonstrate that our proposed method outperforms baselines and existing acquisition strategies in both single-target and multi-target settings across a number of synthetic datasets.
Do Perceptually Aligned Gradients Imply Adversarial Robustness?
Adversarially robust classifiers possess a trait that non-robust models do not -- Perceptually Aligned Gradients (PAG). Their gradients with respect to the input align well with human perception. Several works have identified PAG as a byproduct of robust training, but none have considered it as a standalone phenomenon nor studied its own implications. In this work, we focus on this trait and test whether Perceptually Aligned Gradients imply Robustness. To this end, we develop a novel objective to directly promote PAG in training classifiers and examine whether models with such gradients are more robust to adversarial attacks. Extensive experiments on multiple datasets and architectures validate that models with aligned gradients exhibit significant robustness, exposing the surprising bidirectional connection between PAG and robustness. Lastly, we show that better gradient alignment leads to increased robustness and harness this observation to boost the robustness of existing adversarial training techniques.
Understanding the Role of Optimization in Double Descent
The phenomenon of model-wise double descent, where the test error peaks and then reduces as the model size increases, is an interesting topic that has attracted the attention of researchers due to the striking observed gap between theory and practice Belkin2018ReconcilingMM. Additionally, while double descent has been observed in various tasks and architectures, the peak of double descent can sometimes be noticeably absent or diminished, even without explicit regularization, such as weight decay and early stopping. In this paper, we investigate this intriguing phenomenon from the optimization perspective and propose a simple optimization-based explanation for why double descent sometimes occurs weakly or not at all. To the best of our knowledge, we are the first to demonstrate that many disparate factors contributing to model-wise double descent (initialization, normalization, batch size, learning rate, optimization algorithm) are unified from the viewpoint of optimization: model-wise double descent is observed if and only if the optimizer can find a sufficiently low-loss minimum. These factors directly affect the condition number of the optimization problem or the optimizer and thus affect the final minimum found by the optimizer, reducing or increasing the height of the double descent peak. We conduct a series of controlled experiments on random feature models and two-layer neural networks under various optimization settings, demonstrating this optimization-based unified view. Our results suggest the following implication: Double descent is unlikely to be a problem for real-world machine learning setups. Additionally, our results help explain the gap between weak double descent peaks in practice and strong peaks observable in carefully designed setups.
Data Factors for Better Compositional Generalization
Recent diagnostic datasets on compositional generalization, such as SCAN (Lake and Baroni, 2018) and COGS (Kim and Linzen, 2020), expose severe problems in models trained from scratch on these datasets. However, in contrast to this poor performance, state-of-the-art models trained on larger and more general datasets show better generalization ability. In this work, to reconcile this inconsistency, we conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors, including dataset scale, pattern complexity, example difficulty, etc. First, we show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges. To further understand this improvement, we show two axes of the benefit from more complex datasets: they provide more diverse examples so compositional understanding becomes more effective, and they also prevent ungeneralizable memorization of the examples due to reduced example repetition frequency. Finally, we explore how training examples of different difficulty levels influence generalization differently. On synthetic datasets, simple examples invoke stronger compositionality than hard examples do. On larger-scale real language datasets, while hard examples become more important potentially to ensure decent data coverage, a balanced mixture of simple and hard examples manages to induce the strongest generalizability. The code and data for this work are available at https://github.com/owenzx/data4comp
KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI
In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets.
Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features
For supervised learning with tabular data, decision tree ensembles produced via boosting techniques generally dominate real-world applications involving iid training/test sets. However for graph data where the iid assumption is violated due to structured relations between samples, it remains unclear how to best incorporate this structure within existing boosting pipelines. To this end, we propose a generalized framework for iterating boosting with graph propagation steps that share node/sample information across edges connecting related samples. Unlike previous efforts to integrate graph-based models with boosting, our approach is anchored in a principled meta loss function such that provable convergence can be guaranteed under relatively mild assumptions. Across a variety of non-iid graph datasets with tabular node features, our method achieves comparable or superior performance than both tabular and graph neural network models, as well as existing hybrid strategies that combine the two. Beyond producing better predictive performance than recently proposed graph models, our proposed techniques are easy to implement, computationally more efficient, and enjoy stronger theoretical guarantees (which make our results more reproducible).
Policy Gradient-Driven Noise Mask
Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers' ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
Understanding Diffusion Objectives as the ELBO with Simple Data Augmentation
To achieve the highest perceptual quality, state-of-the-art diffusion models are optimized with objectives that typically look very different from the maximum likelihood and the Evidence Lower Bound (ELBO) objectives. In this work, we reveal that diffusion model objectives are actually closely related to the ELBO. Specifically, we show that all commonly used diffusion model objectives equate to a weighted integral of ELBOs over different noise levels, where the weighting depends on the specific objective used. Under the condition of monotonic weighting, the connection is even closer: the diffusion objective then equals the ELBO, combined with simple data augmentation, namely Gaussian noise perturbation. We show that this condition holds for a number of state-of-the-art diffusion models. In experiments, we explore new monotonic weightings and demonstrate their effectiveness, achieving state-of-the-art FID scores on the high-resolution ImageNet benchmark.
Global Counterfactual Directions
Despite increasing progress in development of methods for generating visual counterfactual explanations, especially with the recent rise of Denoising Diffusion Probabilistic Models, previous works consider them as an entirely local technique. In this work, we take the first step at globalizing them. Specifically, we discover that the latent space of Diffusion Autoencoders encodes the inference process of a given classifier in the form of global directions. We propose a novel proxy-based approach that discovers two types of these directions with the use of only single image in an entirely black-box manner. Precisely, g-directions allow for flipping the decision of a given classifier on an entire dataset of images, while h-directions further increase the diversity of explanations. We refer to them in general as Global Counterfactual Directions (GCDs). Moreover, we show that GCDs can be naturally combined with Latent Integrated Gradients resulting in a new black-box attribution method, while simultaneously enhancing the understanding of counterfactual explanations. We validate our approach on existing benchmarks and show that it generalizes to real-world use-cases.
Theoretical Understanding of Learning from Adversarial Perturbations
It is not fully understood why adversarial examples can deceive neural networks and transfer between different networks. To elucidate this, several studies have hypothesized that adversarial perturbations, while appearing as noises, contain class features. This is supported by empirical evidence showing that networks trained on mislabeled adversarial examples can still generalize well to correctly labeled test samples. However, a theoretical understanding of how perturbations include class features and contribute to generalization is limited. In this study, we provide a theoretical framework for understanding learning from perturbations using a one-hidden-layer network trained on mutually orthogonal samples. Our results highlight that various adversarial perturbations, even perturbations of a few pixels, contain sufficient class features for generalization. Moreover, we reveal that the decision boundary when learning from perturbations matches that from standard samples except for specific regions under mild conditions. The code is available at https://github.com/s-kumano/learning-from-adversarial-perturbations.
Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
Self-Knowledge Distillation with Progressive Refinement of Targets
The generalization capability of deep neural networks has been substantially improved by applying a wide spectrum of regularization methods, e.g., restricting function space, injecting randomness during training, augmenting data, etc. In this work, we propose a simple yet effective regularization method named progressive self-knowledge distillation (PS-KD), which progressively distills a model's own knowledge to soften hard targets (i.e., one-hot vectors) during training. Hence, it can be interpreted within a framework of knowledge distillation as a student becomes a teacher itself. Specifically, targets are adjusted adaptively by combining the ground-truth and past predictions from the model itself. We show that PS-KD provides an effect of hard example mining by rescaling gradients according to difficulty in classifying examples. The proposed method is applicable to any supervised learning tasks with hard targets and can be easily combined with existing regularization methods to further enhance the generalization performance. Furthermore, it is confirmed that PS-KD achieves not only better accuracy, but also provides high quality of confidence estimates in terms of calibration as well as ordinal ranking. Extensive experimental results on three different tasks, image classification, object detection, and machine translation, demonstrate that our method consistently improves the performance of the state-of-the-art baselines. The code is available at https://github.com/lgcnsai/PS-KD-Pytorch.
Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization
We identify a new phenomenon in neural network optimization which arises from the interaction of depth and a particular heavy-tailed structure in natural data. Our result offers intuitive explanations for several previously reported observations about network training dynamics. In particular, it implies a conceptually new cause for progressive sharpening and the edge of stability; we also highlight connections to other concepts in optimization and generalization including grokking, simplicity bias, and Sharpness-Aware Minimization. Experimentally, we demonstrate the significant influence of paired groups of outliers in the training data with strong opposing signals: consistent, large magnitude features which dominate the network output throughout training and provide gradients which point in opposite directions. Due to these outliers, early optimization enters a narrow valley which carefully balances the opposing groups; subsequent sharpening causes their loss to rise rapidly, oscillating between high on one group and then the other, until the overall loss spikes. We describe how to identify these groups, explore what sets them apart, and carefully study their effect on the network's optimization and behavior. We complement these experiments with a mechanistic explanation on a toy example of opposing signals and a theoretical analysis of a two-layer linear network on a simple model. Our finding enables new qualitative predictions of training behavior which we confirm experimentally. It also provides a new lens through which to study and improve modern training practices for stochastic optimization, which we highlight via a case study of Adam versus SGD.
Estimator Meets Equilibrium Perspective: A Rectified Straight Through Estimator for Binary Neural Networks Training
Binarization of neural networks is a dominant paradigm in neural networks compression. The pioneering work BinaryConnect uses Straight Through Estimator (STE) to mimic the gradients of the sign function, but it also causes the crucial inconsistency problem. Most of the previous methods design different estimators instead of STE to mitigate it. However, they ignore the fact that when reducing the estimating error, the gradient stability will decrease concomitantly. These highly divergent gradients will harm the model training and increase the risk of gradient vanishing and gradient exploding. To fully take the gradient stability into consideration, we present a new perspective to the BNNs training, regarding it as the equilibrium between the estimating error and the gradient stability. In this view, we firstly design two indicators to quantitatively demonstrate the equilibrium phenomenon. In addition, in order to balance the estimating error and the gradient stability well, we revise the original straight through estimator and propose a power function based estimator, Rectified Straight Through Estimator (ReSTE for short). Comparing to other estimators, ReSTE is rational and capable of flexibly balancing the estimating error with the gradient stability. Extensive experiments on CIFAR-10 and ImageNet datasets show that ReSTE has excellent performance and surpasses the state-of-the-art methods without any auxiliary modules or losses.
Cross-Entropy Loss Functions: Theoretical Analysis and Applications
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss applied to the outputs of a neural network, when the softmax is used. But, what guarantees can we rely on when using cross-entropy as a surrogate loss? We present a theoretical analysis of a broad family of loss functions, comp-sum losses, that includes cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other cross-entropy-like loss functions. We give the first H-consistency bounds for these loss functions. These are non-asymptotic guarantees that upper bound the zero-one loss estimation error in terms of the estimation error of a surrogate loss, for the specific hypothesis set H used. We further show that our bounds are tight. These bounds depend on quantities called minimizability gaps. To make them more explicit, we give a specific analysis of these gaps for comp-sum losses. We also introduce a new family of loss functions, smooth adversarial comp-sum losses, that are derived from their comp-sum counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of minimizing a regularized smooth adversarial comp-sum loss. While our main purpose is a theoretical analysis, we also present an extensive empirical analysis comparing comp-sum losses. We further report the results of a series of experiments demonstrating that our adversarial robustness algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.
Grokking in Linear Estimators -- A Solvable Model that Groks without Understanding
Grokking is the intriguing phenomenon where a model learns to generalize long after it has fit the training data. We show both analytically and numerically that grokking can surprisingly occur in linear networks performing linear tasks in a simple teacher-student setup with Gaussian inputs. In this setting, the full training dynamics is derived in terms of the training and generalization data covariance matrix. We present exact predictions on how the grokking time depends on input and output dimensionality, train sample size, regularization, and network initialization. We demonstrate that the sharp increase in generalization accuracy may not imply a transition from "memorization" to "understanding", but can simply be an artifact of the accuracy measure. We provide empirical verification for our calculations, along with preliminary results indicating that some predictions also hold for deeper networks, with non-linear activations.