- UER: An Open-Source Toolkit for Pre-training Models Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets. 10 authors · Sep 12, 2019
- HybVIO: Pushing the Limits of Real-time Visual-inertial Odometry We present HybVIO, a novel hybrid approach for combining filtering-based visual-inertial odometry (VIO) with optimization-based SLAM. The core of our method is highly robust, independent VIO with improved IMU bias modeling, outlier rejection, stationarity detection, and feature track selection, which is adjustable to run on embedded hardware. Long-term consistency is achieved with a loosely-coupled SLAM module. In academic benchmarks, our solution yields excellent performance in all categories, especially in the real-time use case, where we outperform the current state-of-the-art. We also demonstrate the feasibility of VIO for vehicular tracking on consumer-grade hardware using a custom dataset, and show good performance in comparison to current commercial VISLAM alternatives. An open-source implementation of the HybVIO method is available at https://github.com/SpectacularAI/HybVIO 6 authors · Jun 22, 2021
19 The Hydra Effect: Emergent Self-repair in Language Model Computations We investigate the internal structure of language model computations using causal analysis and demonstrate two motifs: (1) a form of adaptive computation where ablations of one attention layer of a language model cause another layer to compensate (which we term the Hydra effect) and (2) a counterbalancing function of late MLP layers that act to downregulate the maximum-likelihood token. Our ablation studies demonstrate that language model layers are typically relatively loosely coupled (ablations to one layer only affect a small number of downstream layers). Surprisingly, these effects occur even in language models trained without any form of dropout. We analyse these effects in the context of factual recall and consider their implications for circuit-level attribution in language models. 5 authors · Jul 28, 2023
- Exploring CLIP for Assessing the Look and Feel of Images Measuring the perception of visual content is a long-standing problem in computer vision. Many mathematical models have been developed to evaluate the look or quality of an image. Despite the effectiveness of such tools in quantifying degradations such as noise and blurriness levels, such quantification is loosely coupled with human language. When it comes to more abstract perception about the feel of visual content, existing methods can only rely on supervised models that are explicitly trained with labeled data collected via laborious user study. In this paper, we go beyond the conventional paradigms by exploring the rich visual language prior encapsulated in Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner. In particular, we discuss effective prompt designs and show an effective prompt pairing strategy to harness the prior. We also provide extensive experiments on controlled datasets and Image Quality Assessment (IQA) benchmarks. Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments. Code is avaliable at https://github.com/IceClear/CLIP-IQA. 3 authors · Jul 25, 2022