Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBreast Cancer Diagnosis Using Machine Learning Techniques
Breast cancer is one of the most threatening diseases in women's life; thus, the early and accurate diagnosis plays a key role in reducing the risk of death in a patient's life. Mammography stands as the reference technique for breast cancer screening; nevertheless, many countries still lack access to mammograms due to economic, social, and cultural issues. Latest advances in computational tools, infrared cameras and devices for bio-impedance quantification, have given a chance to emerge other reference techniques like thermography, infrared thermography, electrical impedance tomography and biomarkers found in blood tests, therefore being faster, reliable and cheaper than other methods. In the last two decades, the techniques mentioned above have been considered as parallel and extended approaches for breast cancer diagnosis, as well many authors concluded that false positives and false negatives rates are significantly reduced. Moreover, when a screening method works together with a computational technique, it generates a "computer-aided diagnosis" system. The present work aims to review the last breakthroughs about the three techniques mentioned earlier, suggested machine learning techniques to breast cancer diagnosis, thus, describing the benefits of some methods in relation with other ones, such as, logistic regression, decision trees, random forest, deep and convolutional neural networks. With this, we studied several hyperparameters optimization approaches with parzen tree optimizers to improve the performance of baseline models. An exploratory data analysis for each database and a benchmark of convolutional neural networks for the database of thermal images are presented. The benchmark process, reviews image classification techniques with convolutional neural networks, like, Resnet50, NasNetmobile, InceptionResnet and Xception.
The Power Of Simplicity: Why Simple Linear Models Outperform Complex Machine Learning Techniques -- Case Of Breast Cancer Diagnosis
This research paper investigates the effectiveness of simple linear models versus complex machine learning techniques in breast cancer diagnosis, emphasizing the importance of interpretability and computational efficiency in the medical domain. We focus on Logistic Regression (LR), Decision Trees (DT), and Support Vector Machines (SVM) and optimize their performance using the UCI Machine Learning Repository dataset. Our findings demonstrate that the simpler linear model, LR, outperforms the more complex DT and SVM techniques, with a test score mean of 97.28%, a standard deviation of 1.62%, and a computation time of 35.56 ms. In comparison, DT achieved a test score mean of 93.73%, and SVM had a test score mean of 96.44%. The superior performance of LR can be attributed to its simplicity and interpretability, which provide a clear understanding of the relationship between input features and the outcome. This is particularly valuable in the medical domain, where interpretability is crucial for decision-making. Moreover, the computational efficiency of LR offers advantages in terms of scalability and real-world applicability. The results of this study highlight the power of simplicity in the context of breast cancer diagnosis and suggest that simpler linear models like LR can be more effective, interpretable, and computationally efficient than their complex counterparts, making them a more suitable choice for medical applications.
Symmetry-invariant quantum machine learning force fields
Machine learning techniques are essential tools to compute efficient, yet accurate, force fields for atomistic simulations. This approach has recently been extended to incorporate quantum computational methods, making use of variational quantum learning models to predict potential energy surfaces and atomic forces from ab initio training data. However, the trainability and scalability of such models are still limited, due to both theoretical and practical barriers. Inspired by recent developments in geometric classical and quantum machine learning, here we design quantum neural networks that explicitly incorporate, as a data-inspired prior, an extensive set of physically relevant symmetries. We find that our invariant quantum learning models outperform their more generic counterparts on individual molecules of growing complexity. Furthermore, we study a water dimer as a minimal example of a system with multiple components, showcasing the versatility of our proposed approach and opening the way towards larger simulations. Our results suggest that molecular force fields generation can significantly profit from leveraging the framework of geometric quantum machine learning, and that chemical systems represent, in fact, an interesting and rich playground for the development and application of advanced quantum machine learning tools.
An Experience Report on Machine Learning Reproducibility: Guidance for Practitioners and TensorFlow Model Garden Contributors
Machine learning techniques are becoming a fundamental tool for scientific and engineering progress. These techniques are applied in contexts as diverse as astronomy and spam filtering. However, correctly applying these techniques requires careful engineering. Much attention has been paid to the technical potential; relatively little attention has been paid to the software engineering process required to bring research-based machine learning techniques into practical utility. Technology companies have supported the engineering community through machine learning frameworks such as TensorFLow and PyTorch, but the details of how to engineer complex machine learning models in these frameworks have remained hidden. To promote best practices within the engineering community, academic institutions and Google have partnered to launch a Special Interest Group on Machine Learning Models (SIGMODELS) whose goal is to develop exemplary implementations of prominent machine learning models in community locations such as the TensorFlow Model Garden (TFMG). The purpose of this report is to define a process for reproducing a state-of-the-art machine learning model at a level of quality suitable for inclusion in the TFMG. We define the engineering process and elaborate on each step, from paper analysis to model release. We report on our experiences implementing the YOLO model family with a team of 26 student researchers, share the tools we developed, and describe the lessons we learned along the way.
Taking Human out of Learning Applications: A Survey on Automated Machine Learning
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Who's a Good Boy? Reinforcing Canine Behavior in Real-Time using Machine Learning
In this paper we outline the development methodology for an automatic dog treat dispenser which combines machine learning and embedded hardware to identify and reward dog behaviors in real-time. Using machine learning techniques for training an image classification model we identify three behaviors of our canine companions: "sit", "stand", and "lie down" with up to 92% test accuracy and 39 frames per second. We evaluate a variety of neural network architectures, interpretability methods, model quantization and optimization techniques to develop a model specifically for an NVIDIA Jetson Nano. We detect the aforementioned behaviors in real-time and reinforce positive actions by making inference on the Jetson Nano and transmitting a signal to a servo motor to release rewards from a treat delivery apparatus.
An inclusive review on deep learning techniques and their scope in handwriting recognition
Deep learning expresses a category of machine learning algorithms that have the capability to combine raw inputs into intermediate features layers. These deep learning algorithms have demonstrated great results in different fields. Deep learning has particularly witnessed for a great achievement of human level performance across a number of domains in computer vision and pattern recognition. For the achievement of state-of-the-art performances in diverse domains, the deep learning used different architectures and these architectures used activation functions to perform various computations between hidden and output layers of any architecture. This paper presents a survey on the existing studies of deep learning in handwriting recognition field. Even though the recent progress indicates that the deep learning methods has provided valuable means for speeding up or proving accurate results in handwriting recognition, but following from the extensive literature survey, the present study finds that the deep learning has yet to revolutionize more and has to resolve many of the most pressing challenges in this field, but promising advances have been made on the prior state of the art. Additionally, an inadequate availability of labelled data to train presents problems in this domain. Nevertheless, the present handwriting recognition survey foresees deep learning enabling changes at both bench and bedside with the potential to transform several domains as image processing, speech recognition, computer vision, machine translation, robotics and control, medical imaging, medical information processing, bio-informatics, natural language processing, cyber security, and many others.
A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that primarily affects the aging population by impairing cognitive and motor functions. Early detection of AD through accessible methodologies like magnetic resonance imaging (MRI) is vital for developing effective interventions to halt or slow the disease's progression. This study aims to perform a comprehensive analysis of machine learning techniques for selecting MRI-based biomarkers and classifying individuals into healthy controls (HC) and unstable controls (uHC) who later show mild cognitive impairment within five years. The research utilizes MRI data from the Alzheimer's Disease Neuroinformatics Initiative (ADNI) and the Open Access Series of Imaging Studies 3 (OASIS-3), focusing on both HC and uHC participants. The study addresses the challenges of imbalanced data by testing classification methods on balanced and unbalanced datasets, and harmonizes data using polynomial regression to mitigate nuisance variables like age, gender, and intracranial volume. Results indicate that Gaussian Naive Bayes and RusBoost classifiers shows an optimal performance, achieving accuracies of up to 76.46% and 72.48% respectively on the ADNI dataset. For the OASIS-3 dataset, Kernel Naive Bayes and RusBoost yield accuracies ranging from 64.66% to 75.71%, improving further in age-matched datasets. Brain regions like the entorhinal cortex, hippocampus, lateral ventricle, and lateral orbitofrontal cortex are identified as significantly impacted during early cognitive decline. Despite limitations such as small sample sizes, the study's harmonization approach enhances the robustness of biomarker selection, suggesting the potential of this semi-automatic machine learning pipeline for early AD detection using MRI.
Sensing technologies and machine learning methods for emotion recognition in autism: Systematic review
Background: Human Emotion Recognition (HER) has been a popular field of study in the past years. Despite the great progresses made so far, relatively little attention has been paid to the use of HER in autism. People with autism are known to face problems with daily social communication and the prototypical interpretation of emotional responses, which are most frequently exerted via facial expressions. This poses significant practical challenges to the application of regular HER systems, which are normally developed for and by neurotypical people. Objective: This study reviews the literature on the use of HER systems in autism, particularly with respect to sensing technologies and machine learning methods, as to identify existing barriers and possible future directions. Methods: We conducted a systematic review of articles published between January 2011 and June 2023 according to the 2020 PRISMA guidelines. Manuscripts were identified through searching Web of Science and Scopus databases. Manuscripts were included when related to emotion recognition, used sensors and machine learning techniques, and involved children with autism, young, or adults. Results: The search yielded 346 articles. A total of 65 publications met the eligibility criteria and were included in the review. Conclusions: Studies predominantly used facial expression techniques as the emotion recognition method. Consequently, video cameras were the most widely used devices across studies, although a growing trend in the use of physiological sensors was observed lately. Happiness, sadness, anger, fear, disgust, and surprise were most frequently addressed. Classical supervised machine learning techniques were primarily used at the expense of unsupervised approaches or more recent deep learning models.
A Machine Learning-based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication
Semiconductor lasers, one of the key components for optical communication systems, have been rapidly evolving to meet the requirements of next generation optical networks with respect to high speed, low power consumption, small form factor etc. However, these demands have brought severe challenges to the semiconductor laser reliability. Therefore, a great deal of attention has been devoted to improving it and thereby ensuring reliable transmission. In this paper, a predictive maintenance framework using machine learning techniques is proposed for real-time heath monitoring and prognosis of semiconductor laser and thus enhancing its reliability. The proposed approach is composed of three stages: i) real-time performance degradation prediction, ii) degradation detection, and iii) remaining useful life (RUL) prediction. First of all, an attention based gated recurrent unit (GRU) model is adopted for real-time prediction of performance degradation. Then, a convolutional autoencoder is used to detect the degradation or abnormal behavior of a laser, given the predicted degradation performance values. Once an abnormal state is detected, a RUL prediction model based on attention-based deep learning is utilized. Afterwards, the estimated RUL is input for decision making and maintenance planning. The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers. The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
A Survey on Machine Learning Solutions for Graph Pattern Extraction
A subgraph is constructed by using a subset of vertices and edges of a given graph. There exist many graph properties that are hereditary for subgraphs. Hence, researchers from different communities have paid a great deal of attention in studying numerous subgraph problems, on top of the ordinary graph problems. Many algorithms are proposed in studying subgraph problems, where one common approach is by extracting the patterns and structures of a given graph. Due to the complex structures of certain types of graphs and to improve overall performances of the existing frameworks, machine learning techniques have recently been employed in dealing with various subgraph problems. In this article, we present a comprehensive review on five well known subgraph problems that have been tackled by using machine learning methods. They are subgraph isomorphism (both counting and matching), maximum common subgraph, community detection and community search problems. We provide an outline of each proposed method, and examine its designs and performances. We also explore non-learning-based algorithms for each problem and a brief discussion is given. We then suggest some promising research directions in this area, hoping that relevant subgraph problems can be tackled by using a similar strategy. Since there is a huge growth in employing machine learning techniques in recent years, we believe that this survey will serve as a good reference point to relevant research communities.
Robustness Evaluation of Machine Learning Models for Robot Arm Action Recognition in Noisy Environments
In the realm of robot action recognition, identifying distinct but spatially proximate arm movements using vision systems in noisy environments poses a significant challenge. This paper studies robot arm action recognition in noisy environments using machine learning techniques. Specifically, a vision system is used to track the robot's movements followed by a deep learning model to extract the arm's key points. Through a comparative analysis of machine learning methods, the effectiveness and robustness of this model are assessed in noisy environments. A case study was conducted using the Tic-Tac-Toe game in a 3-by-3 grid environment, where the focus is to accurately identify the actions of the arms in selecting specific locations within this constrained environment. Experimental results show that our approach can achieve precise key point detection and action classification despite the addition of noise and uncertainties to the dataset.
Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting
Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.
Automatic Classification of Object Code Using Machine Learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show that using simple byte-value histograms we retain enough information about the opcodes within a sample to classify the target architecture with high accuracy, and then discuss heuristic-based features that exploit information within the operands to determine endianess. We introduce a dataset with over 16000 code samples from 20 architectures and experimentally show that by using our features, classifiers can achieve very high accuracy with relatively small sample sizes.
Assessing Patient Eligibility for Inspire Therapy through Machine Learning and Deep Learning Models
Inspire therapy is an FDA-approved internal neurostimulation treatment for obstructive sleep apnea. However, not all patients respond to this therapy, posing a challenge even for experienced otolaryngologists to determine candidacy. This paper makes the first attempt to leverage both machine learning and deep learning techniques in discerning patient responsiveness to Inspire therapy using medical data and videos captured through Drug-Induced Sleep Endoscopy (DISE), an essential procedure for Inspire therapy. To achieve this, we gathered and annotated three datasets from 127 patients. Two of these datasets comprise endoscopic videos focused on the Base of the Tongue and Velopharynx. The third dataset composes the patient's clinical information. By utilizing these datasets, we benchmarked and compared the performance of six deep learning models and five classical machine learning algorithms. The results demonstrate the potential of employing machine learning and deep learning techniques to determine a patient's eligibility for Inspire therapy, paving the way for future advancements in this field.
Farmer's Assistant: A Machine Learning Based Application for Agricultural Solutions
Farmers face several challenges when growing crops like uncertain irrigation, poor soil quality, etc. Especially in India, a major fraction of farmers do not have the knowledge to select appropriate crops and fertilizers. Moreover, crop failure due to disease causes a significant loss to the farmers, as well as the consumers. While there have been recent developments in the automated detection of these diseases using Machine Learning techniques, the utilization of Deep Learning has not been fully explored. Additionally, such models are not easy to use because of the high-quality data used in their training, lack of computational power, and poor generalizability of the models. To this end, we create an open-source easy-to-use web application to address some of these issues which may help improve crop production. In particular, we support crop recommendation, fertilizer recommendation, plant disease prediction, and an interactive news-feed. In addition, we also use interpretability techniques in an attempt to explain the prediction made by our disease detection model.
Gendec: A Machine Learning-based Framework for Gender Detection from Japanese Names
Every human has their own name, a fundamental aspect of their identity and cultural heritage. The name often conveys a wealth of information, including details about an individual's background, ethnicity, and, especially, their gender. By detecting gender through the analysis of names, researchers can unlock valuable insights into linguistic patterns and cultural norms, which can be applied to practical applications. Hence, this work presents a novel dataset for Japanese name gender detection comprising 64,139 full names in romaji, hiragana, and kanji forms, along with their biological genders. Moreover, we propose Gendec, a framework for gender detection from Japanese names that leverages diverse approaches, including traditional machine learning techniques or cutting-edge transfer learning models, to predict the gender associated with Japanese names accurately. Through a thorough investigation, the proposed framework is expected to be effective and serve potential applications in various domains.
Accelerating Computer Architecture Simulation through Machine Learning
This paper presents our approach to accelerate computer architecture simulation by leveraging machine learning techniques. Traditional computer architecture simulations are time-consuming, making it challenging to explore different design choices efficiently. Our proposed model utilizes a combination of application features and micro-architectural features to predict the performance of an application. These features are derived from simulations of a small portion of the application. We demonstrate the effectiveness of our approach by building and evaluating a machine learning model that offers significant speedup in architectural exploration. This model demonstrates the ability to predict IPC values for the testing data with a root mean square error of less than 0.1.
Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.
Hypernuclear event detection in the nuclear emulsion with Monte Carlo simulation and machine learning
This study developed a novel method for detecting hypernuclear events recorded in nuclear emulsion sheets using machine learning techniques. The artificial neural network-based object detection model was trained on surrogate images created through Monte Carlo simulations and image-style transformations using generative adversarial networks. The performance of the proposed model was evaluated using alpha-decay events obtained from the J-PARC E07 emulsion data. The model achieved approximately twice the detection efficiency of conventional image processing and reduced the time spent on manual visual inspection by approximately 1/17. The established method was successfully applied to the detection of hypernuclear events. This approach is a state-of-the-art tool for discovering rare events recorded in nuclear emulsion sheets without any real data for training.
LEAP Hand: Low-Cost, Efficient, and Anthropomorphic Hand for Robot Learning
Dexterous manipulation has been a long-standing challenge in robotics. While machine learning techniques have shown some promise, results have largely been currently limited to simulation. This can be mostly attributed to the lack of suitable hardware. In this paper, we present LEAP Hand, a low-cost dexterous and anthropomorphic hand for machine learning research. In contrast to previous hands, LEAP Hand has a novel kinematic structure that allows maximal dexterity regardless of finger pose. LEAP Hand is low-cost and can be assembled in 4 hours at a cost of 2000 USD from readily available parts. It is capable of consistently exerting large torques over long durations of time. We show that LEAP Hand can be used to perform several manipulation tasks in the real world -- from visual teleoperation to learning from passive video data and sim2real. LEAP Hand significantly outperforms its closest competitor Allegro Hand in all our experiments while being 1/8th of the cost. We release detailed assembly instructions, the Sim2Real pipeline and a development platform with useful APIs on our website at https://leap-hand.github.io/
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit
Code intelligence leverages machine learning techniques to extract knowledge from extensive code corpora, with the aim of developing intelligent tools to improve the quality and productivity of computer programming. Currently, there is already a thriving research community focusing on code intelligence, with efforts ranging from software engineering, machine learning, data mining, natural language processing, and programming languages. In this paper, we conduct a comprehensive literature review on deep learning for code intelligence, from the aspects of code representation learning, deep learning techniques, and application tasks. We also benchmark several state-of-the-art neural models for code intelligence, and provide an open-source toolkit tailored for the rapid prototyping of deep-learning-based code intelligence models. In particular, we inspect the existing code intelligence models under the basis of code representation learning, and provide a comprehensive overview to enhance comprehension of the present state of code intelligence. Furthermore, we publicly release the source code and data resources to provide the community with a ready-to-use benchmark, which can facilitate the evaluation and comparison of existing and future code intelligence models (https://xcodemind.github.io). At last, we also point out several challenging and promising directions for future research.
Review of deep learning models for crypto price prediction: implementation and evaluation
There has been much interest in accurate cryptocurrency price forecast models by investors and researchers. Deep Learning models are prominent machine learning techniques that have transformed various fields and have shown potential for finance and economics. Although various deep learning models have been explored for cryptocurrency price forecasting, it is not clear which models are suitable due to high market volatility. In this study, we review the literature about deep learning for cryptocurrency price forecasting and evaluate novel deep learning models for cryptocurrency stock price prediction. Our deep learning models include variants of long short-term memory (LSTM) recurrent neural networks, variants of convolutional neural networks (CNNs), and the Transformer model. We evaluate univariate and multivariate approaches for multi-step ahead predicting of cryptocurrencies close-price. We also carry out volatility analysis on the four cryptocurrencies which reveals significant fluctuations in their prices throughout the COVID-19 pandemic. Additionally, we investigate the prediction accuracy of two scenarios identified by different training sets for the models. First, we use the pre-COVID-19 datasets to model cryptocurrency close-price forecasting during the early period of COVID-19. Secondly, we utilise data from the COVID-19 period to predict prices for 2023 to 2024. Our results show that the convolutional LSTM with a multivariate approach provides the best prediction accuracy in two major experimental settings. Our results also indicate that the multivariate deep learning models exhibit better performance in forecasting four different cryptocurrencies when compared to the univariate models.
A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
RLocator: Reinforcement Learning for Bug Localization
Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem.
If your data distribution shifts, use self-learning
We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.
Multimodal Deep Learning of Word-of-Mouth Text and Demographics to Predict Customer Rating: Handling Consumer Heterogeneity in Marketing
In the marketing field, understanding consumer heterogeneity, which is the internal or psychological difference among consumers that cannot be captured by behavioral logs, has long been a critical challenge. However, a number of consumers today usually post their evaluation on the specific product on the online platform, which can be the valuable source of such unobservable differences among consumers. Several previous studies have shown the validity of the analysis on text modality, but on the other hand, such analyses may not necessarily demonstrate sufficient predictive accuracy for text alone, as they may not include information readily available from cross-sectional data, such as consumer profile data. In addition, recent advances in machine learning techniques, such as large-scale language models (LLMs) and multimodal learning have made it possible to deal with the various kind of dataset simultaneously, including textual data and the traditional cross-sectional data, and the joint representations can be effectively obtained from multiple modalities. Therefore, this study constructs a product evaluation model that takes into account consumer heterogeneity by multimodal learning of online product reviews and consumer profile information. We also compare multiple models using different modalities or hyper-parameters to demonstrate the robustness of multimodal learning in marketing analysis.
Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning
Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
Wearable data from subjects playing Super Mario, sitting university exams, or performing physical exercise help detect acute mood episodes via self-supervised learning
Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of worldwide disease burden. However, collecting and annotating wearable data is very resource-intensive. Studies of this kind can thus typically afford to recruit only a couple dozens of patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MDs detection. In this paper, we overcome this data bottleneck and advance the detection of MDs acute episode vs stable state from wearables data on the back of recent advances in self-supervised learning (SSL). This leverages unlabelled data to learn representations during pre-training, subsequently exploited for a supervised task. First, we collected open-access datasets recording with an Empatica E4 spanning different, unrelated to MD monitoring, personal sensing tasks -- from emotion recognition in Super Mario players to stress detection in undergraduates -- and devised a pre-processing pipeline performing on-/off-body detection, sleep-wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduce E4SelfLearning, the largest to date open access collection, and its pre-processing pipeline. Second, we show that SSL confidently outperforms fully-supervised pipelines using either our novel E4-tailored Transformer architecture (E4mer) or classical baseline XGBoost: 81.23% against 75.35% (E4mer) and 72.02% (XGBoost) correctly classified recording segments from 64 (half acute, half stable) patients. Lastly, we illustrate that SSL performance is strongly associated with the specific surrogate task employed for pre-training as well as with unlabelled data availability.
Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures
Adapting to concept drift is a challenging task in machine learning, which is usually tackled using incremental learning techniques that periodically re-fit a learning model leveraging newly available data. A primary limitation of these techniques is their reliance on substantial amounts of data for retraining. The necessity of acquiring fresh data introduces temporal delays prior to retraining, potentially rendering the models inaccurate if a sudden concept drift occurs in-between two consecutive retrainings. In communication networks, such issue emerges when performing traffic forecasting following a~failure event: post-failure re-routing may induce a drastic shift in distribution and pattern of traffic data, thus requiring a timely model adaptation. In this work, we address this challenge for the problem of traffic forecasting and propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining. Through extensive simulations of failure scenarios, we compare the predictive performance of our proposed approach to that of a reference method based on incremental learning. Experimental results show that our proposed approach outperforms incremental learning-based methods in situations where the shifts in traffic patterns are drastic.
Learning and Evaluating Contextual Embedding of Source Code
Recent research has achieved impressive results on understanding and improving source code by building up on machine-learning techniques developed for natural languages. A significant advancement in natural-language understanding has come with the development of pre-trained contextual embeddings, such as BERT, which can be fine-tuned for downstream tasks with less labeled data and training budget, while achieving better accuracies. However, there is no attempt yet to obtain a high-quality contextual embedding of source code, and to evaluate it on multiple program-understanding tasks simultaneously; that is the gap that this paper aims to mitigate. Specifically, first, we curate a massive, deduplicated corpus of 7.4M Python files from GitHub, which we use to pre-train CuBERT, an open-sourced code-understanding BERT model; and, second, we create an open-sourced benchmark that comprises five classification tasks and one program-repair task, akin to code-understanding tasks proposed in the literature before. We fine-tune CuBERT on our benchmark tasks, and compare the resulting models to different variants of Word2Vec token embeddings, BiLSTM and Transformer models, as well as published state-of-the-art models, showing that CuBERT outperforms them all, even with shorter training, and with fewer labeled examples. Future work on source-code embedding can benefit from reusing our benchmark, and from comparing against CuBERT models as a strong baseline.
Supercompiler Code Optimization with Zero-Shot Reinforcement Learning
Effective code optimization in compilers plays a central role in computer and software engineering. While compilers can be made to automatically search the optimization space without the need for user interventions, this is not a standard practice since the search is slow and cumbersome. Here we present CodeZero, an artificial intelligence agent trained extensively on large data to produce effective optimization strategies instantly for each program in a single trial of the agent. To overcome the huge range of possible test programs, we prepare a large dataset of training programs that emphasize quality, naturalness, and diversity. To tackle the vast space of possible optimizations, we adapt deep reinforcement learning to train the agent in a sample-efficient manner through interacting with a world model of the compiler environment. Evaluation on both benchmark suites and production-level code optimization problems demonstrates our agent's supercompiler performances and zero-shot generalization abilities, outperforming built-in optimization options designed by compiler experts. Our methodology kindles the great potential of artificial intelligence for engineering and paves the way for scaling machine learning techniques in the realm of code optimization.
From Cities to Series: Complex Networks and Deep Learning for Improved Spatial and Temporal Analytics*
Graphs have often been used to answer questions about the interaction between real-world entities by taking advantage of their capacity to represent complex topologies. Complex networks are known to be graphs that capture such non-trivial topologies; they are able to represent human phenomena such as epidemic processes, the dynamics of populations, and the urbanization of cities. The investigation of complex networks has been extrapolated to many fields of science, with particular emphasis on computing techniques, including artificial intelligence. In such a case, the analysis of the interaction between entities of interest is transposed to the internal learning of algorithms, a paradigm whose investigation is able to expand the state of the art in Computer Science. By exploring this paradigm, this thesis puts together complex networks and machine learning techniques to improve the understanding of the human phenomena observed in pandemics, pendular migration, and street networks. Accordingly, we contribute with: (i) a new neural network architecture capable of modeling dynamic processes observed in spatial and temporal data with applications in epidemics propagation, weather forecasting, and patient monitoring in intensive care units; (ii) a machine-learning methodology for analyzing and predicting links in the scope of human mobility between all the cities of Brazil; and, (iii) techniques for identifying inconsistencies in the urban planning of cities while tracking the most influential vertices, with applications over Brazilian and worldwide cities. We obtained results sustained by sound evidence of advances to the state of the art in artificial intelligence, rigorous formalisms, and ample experimentation. Our findings rely upon real-world applications in a range of domains, demonstrating the applicability of our methodologies.
Urban morphology meets deep learning: Exploring urban forms in one million cities, town and villages across the planet
Study of urban form is an important area of research in urban planning/design that contributes to our understanding of how cities function and evolve. However, classical approaches are based on very limited observations and inconsistent methods. As an alternative, availability of massive urban data collections such as Open Street Map from the one hand and the recent advancements in machine learning methods such as deep learning techniques on the other have opened up new possibilities to automatically investigate urban forms at the global scale. In this work for the first time, by collecting a large data set of street networks in more than one million cities, towns and villages all over the world, we trained a deep convolutional auto-encoder, that automatically learns the hierarchical structures of urban forms and represents them via dense and comparable vectors. We showed how the learned urban vectors could be used for different investigations. Using the learned urban vectors, one is able to easily find and compare similar urban forms all over the world, considering their overall spatial structure and other factors such as orientation, graphical structure, and density and partial deformations. Further cluster analysis reveals the distribution of the main patterns of urban forms all over the planet.
Optimizing Inventory Routing: A Decision-Focused Learning Approach using Neural Networks
Inventory Routing Problem (IRP) is a crucial challenge in supply chain management as it involves optimizing efficient route selection while considering the uncertainty of inventory demand planning. To solve IRPs, usually a two-stage approach is employed, where demand is predicted using machine learning techniques first, and then an optimization algorithm is used to minimize routing costs. Our experiment shows machine learning models fall short of achieving perfect accuracy because inventory levels are influenced by the dynamic business environment, which, in turn, affects the optimization problem in the next stage, resulting in sub-optimal decisions. In this paper, we formulate and propose a decision-focused learning-based approach to solving real-world IRPs. This approach directly integrates inventory prediction and routing optimization within an end-to-end system potentially ensuring a robust supply chain strategy.
Keyword spotting -- Detecting commands in speech using deep learning
Speech recognition has become an important task in the development of machine learning and artificial intelligence. In this study, we explore the important task of keyword spotting using speech recognition machine learning and deep learning techniques. We implement feature engineering by converting raw waveforms to Mel Frequency Cepstral Coefficients (MFCCs), which we use as inputs to our models. We experiment with several different algorithms such as Hidden Markov Model with Gaussian Mixture, Convolutional Neural Networks and variants of Recurrent Neural Networks including Long Short-Term Memory and the Attention mechanism. In our experiments, RNN with BiLSTM and Attention achieves the best performance with an accuracy of 93.9 %
Data-Driven Goal Recognition in Transhumeral Prostheses Using Process Mining Techniques
A transhumeral prosthesis restores missing anatomical segments below the shoulder, including the hand. Active prostheses utilize real-valued, continuous sensor data to recognize patient target poses, or goals, and proactively move the artificial limb. Previous studies have examined how well the data collected in stationary poses, without considering the time steps, can help discriminate the goals. In this case study paper, we focus on using time series data from surface electromyography electrodes and kinematic sensors to sequentially recognize patients' goals. Our approach involves transforming the data into discrete events and training an existing process mining-based goal recognition system. Results from data collected in a virtual reality setting with ten subjects demonstrate the effectiveness of our proposed goal recognition approach, which achieves significantly better precision and recall than the state-of-the-art machine learning techniques and is less confident when wrong, which is beneficial when approximating smoother movements of prostheses.
Safe AI for health and beyond -- Monitoring to transform a health service
Machine learning techniques are effective for building predictive models because they identify patterns in large datasets. Development of a model for complex real-life problems often stop at the point of publication, proof of concept or when made accessible through some mode of deployment. However, a model in the medical domain risks becoming obsolete as patient demographics, systems and clinical practices change. The maintenance and monitoring of predictive model performance post-publication is crucial to enable their safe and effective long-term use. We will assess the infrastructure required to monitor the outputs of a machine learning algorithm, and present two scenarios with examples of monitoring and updates of models, firstly on a breast cancer prognosis model trained on public longitudinal data, and secondly on a neurodegenerative stratification algorithm that is currently being developed and tested in clinic.
JavaBERT: Training a transformer-based model for the Java programming language
Code quality is and will be a crucial factor while developing new software code, requiring appropriate tools to ensure functional and reliable code. Machine learning techniques are still rarely used for software engineering tools, missing out the potential benefits of its application. Natural language processing has shown the potential to process text data regarding a variety of tasks. We argue, that such models can also show similar benefits for software code processing. In this paper, we investigate how models used for natural language processing can be trained upon software code. We introduce a data retrieval pipeline for software code and train a model upon Java software code. The resulting model, JavaBERT, shows a high accuracy on the masked language modeling task showing its potential for software engineering tools.
A Framework for Scalable Ambient Air Pollution Concentration Estimation
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality. However, the current air pollution monitoring station network in the UK is characterized by spatial sparsity, heterogeneous placement, and frequent temporal data gaps, often due to issues such as power outages. We introduce a scalable data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements. This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution. Leveraging machine learning techniques and real-world data from the sparsely distributed monitoring stations, we generate 355,827 synthetic monitoring stations across the study area, yielding data valued at approximately \pounds70 billion. Validation was conducted to assess the model's performance in forecasting, estimating missing locations, and capturing peak concentrations. The resulting dataset is of particular interest to a diverse range of stakeholders engaged in downstream assessments supported by outdoor air pollution concentration data for NO2, O3, PM10, PM2.5, and SO2. This resource empowers stakeholders to conduct studies at a higher resolution than was previously possible.
MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.
NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep
Existing Machine Learning techniques yield close to human performance on text-based classification tasks. However, the presence of multi-modal noise in chat data such as emoticons, slang, spelling mistakes, code-mixed data, etc. makes existing deep-learning solutions perform poorly. The inability of deep-learning systems to robustly capture these covariates puts a cap on their performance. We propose NELEC: Neural and Lexical Combiner, a system which elegantly combines textual and deep-learning based methods for sentiment classification. We evaluate our system as part of the third task of 'Contextual Emotion Detection in Text' as part of SemEval-2019. Our system performs significantly better than the baseline, as well as our deep-learning model benchmarks. It achieved a micro-averaged F1 score of 0.7765, ranking 3rd on the test-set leader-board. Our code is available at https://github.com/iamgroot42/nelec
An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction
Data of sequential nature arise in many application domains in forms of, e.g. textual data, DNA sequences, and software execution traces. Different research disciplines have developed methods to learn sequence models from such datasets: (i) in the machine learning field methods such as (hidden) Markov models and recurrent neural networks have been developed and successfully applied to a wide-range of tasks, (ii) in process mining process discovery techniques aim to generate human-interpretable descriptive models, and (iii) in the grammar inference field the focus is on finding descriptive models in the form of formal grammars. Despite their different focuses, these fields share a common goal - learning a model that accurately describes the behavior in the underlying data. Those sequence models are generative, i.e, they can predict what elements are likely to occur after a given unfinished sequence. So far, these fields have developed mainly in isolation from each other and no comparison exists. This paper presents an interdisciplinary experimental evaluation that compares sequence modeling techniques on the task of next-element prediction on four real-life sequence datasets. The results indicate that machine learning techniques that generally have no aim at interpretability in terms of accuracy outperform techniques from the process mining and grammar inference fields that aim to yield interpretable models.
Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing
An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
Detection and Forecasting of Parkinson Disease Progression from Speech Signal Features Using MultiLayer Perceptron and LSTM
Accurate diagnosis of Parkinson disease, especially in its early stages, can be a challenging task. The application of machine learning techniques helps improve the diagnostic accuracy of Parkinson disease detection but only few studies have presented work towards the prediction of disease progression. In this research work, Long Short Term Memory LSTM was trained using the diagnostic features on Parkinson patients speech signals, to predict the disease progression while a Multilayer Perceptron MLP was trained on the same diagnostic features to detect the disease. Diagnostic features selected using two well-known feature selection methods named Relief-F and Sequential Forward Selection and applied on LSTM and MLP have shown to accurately predict the disease progression as stage 2 and 3 and its existence respectively.
NeuroSynth: MRI-Derived Neuroanatomical Generative Models and Associated Dataset of 18,000 Samples
Availability of large and diverse medical datasets is often challenged by privacy and data sharing restrictions. For successful application of machine learning techniques for disease diagnosis, prognosis, and precision medicine, large amounts of data are necessary for model building and optimization. To help overcome such limitations in the context of brain MRI, we present NeuroSynth: a collection of generative models of normative regional volumetric features derived from structural brain imaging. NeuroSynth models are trained on real brain imaging regional volumetric measures from the iSTAGING consortium, which encompasses over 40,000 MRI scans across 13 studies, incorporating covariates such as age, sex, and race. Leveraging NeuroSynth, we produce and offer 18,000 synthetic samples spanning the adult lifespan (ages 22-90 years), alongside the model's capability to generate unlimited data. Experimental results indicate that samples generated from NeuroSynth agree with the distributions obtained from real data. Most importantly, the generated normative data significantly enhance the accuracy of downstream machine learning models on tasks such as disease classification. Data and models are available at: https://huggingface.co/spaces/rongguangw/neuro-synth.
PathoLM: Identifying pathogenicity from the DNA sequence through the Genome Foundation Model
Pathogen identification is pivotal in diagnosing, treating, and preventing diseases, crucial for controlling infections and safeguarding public health. Traditional alignment-based methods, though widely used, are computationally intense and reliant on extensive reference databases, often failing to detect novel pathogens due to their low sensitivity and specificity. Similarly, conventional machine learning techniques, while promising, require large annotated datasets and extensive feature engineering and are prone to overfitting. Addressing these challenges, we introduce PathoLM, a cutting-edge pathogen language model optimized for the identification of pathogenicity in bacterial and viral sequences. Leveraging the strengths of pre-trained DNA models such as the Nucleotide Transformer, PathoLM requires minimal data for fine-tuning, thereby enhancing pathogen detection capabilities. It effectively captures a broader genomic context, significantly improving the identification of novel and divergent pathogens. We developed a comprehensive data set comprising approximately 30 species of viruses and bacteria, including ESKAPEE pathogens, seven notably virulent bacterial strains resistant to antibiotics. Additionally, we curated a species classification dataset centered specifically on the ESKAPEE group. In comparative assessments, PathoLM dramatically outperforms existing models like DciPatho, demonstrating robust zero-shot and few-shot capabilities. Furthermore, we expanded PathoLM-Sp for ESKAPEE species classification, where it showed superior performance compared to other advanced deep learning methods, despite the complexities of the task.
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
Transformers Can Do Bayesian Inference
Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.
Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.
Pricing European Options with Google AutoML, TensorFlow, and XGBoost
Researchers have been using Neural Networks and other related machine-learning techniques to price options since the early 1990s. After three decades of improvements in machine learning techniques, computational processing power, cloud computing, and data availability, this paper is able to provide a comparison of using Google Cloud's AutoML Regressor, TensorFlow Neural Networks, and XGBoost Gradient Boosting Decision Trees for pricing European Options. All three types of models were able to outperform the Black Scholes Model in terms of mean absolute error. These results showcase the potential of using historical data from an option's underlying asset for pricing European options, especially when using machine learning algorithms that learn complex patterns that traditional parametric models do not take into account.
Node-Level Differentially Private Graph Neural Networks
Graph Neural Networks (GNNs) are a popular technique for modelling graph-structured data and computing node-level representations via aggregation of information from the neighborhood of each node. However, this aggregation implies an increased risk of revealing sensitive information, as a node can participate in the inference for multiple nodes. This implies that standard privacy-preserving machine learning techniques, such as differentially private stochastic gradient descent (DP-SGD) - which are designed for situations where each data point participates in the inference for one point only - either do not apply, or lead to inaccurate models. In this work, we formally define the problem of learning GNN parameters with node-level privacy, and provide an algorithmic solution with a strong differential privacy guarantee. We employ a careful sensitivity analysis and provide a non-trivial extension of the privacy-by-amplification technique to the GNN setting. An empirical evaluation on standard benchmark datasets demonstrates that our method is indeed able to learn accurate privacy-preserving GNNs which outperform both private and non-private methods that completely ignore graph information.
Gmail Smart Compose: Real-Time Assisted Writing
In this paper, we present Smart Compose, a novel system for generating interactive, real-time suggestions in Gmail that assists users in writing mails by reducing repetitive typing. In the design and deployment of such a large-scale and complicated system, we faced several challenges including model selection, performance evaluation, serving and other practical issues. At the core of Smart Compose is a large-scale neural language model. We leveraged state-of-the-art machine learning techniques for language model training which enabled high-quality suggestion prediction, and constructed novel serving infrastructure for high-throughput and real-time inference. Experimental results show the effectiveness of our proposed system design and deployment approach. This system is currently being served in Gmail.
Design-o-meter: Towards Evaluating and Refining Graphic Designs
Graphic designs are an effective medium for visual communication. They range from greeting cards to corporate flyers and beyond. Off-late, machine learning techniques are able to generate such designs, which accelerates the rate of content production. An automated way of evaluating their quality becomes critical. Towards this end, we introduce Design-o-meter, a data-driven methodology to quantify the goodness of graphic designs. Further, our approach can suggest modifications to these designs to improve its visual appeal. To the best of our knowledge, Design-o-meter is the first approach that scores and refines designs in a unified framework despite the inherent subjectivity and ambiguity of the setting. Our exhaustive quantitative and qualitative analysis of our approach against baselines adapted for the task (including recent Multimodal LLM-based approaches) brings out the efficacy of our methodology. We hope our work will usher more interest in this important and pragmatic problem setting.
DNA Sequence Classification with Compressors
Recent studies in DNA sequence classification have leveraged sophisticated machine learning techniques, achieving notable accuracy in categorizing complex genomic data. Among these, methods such as k-mer counting have proven effective in distinguishing sequences from varied species like chimpanzees, dogs, and humans, becoming a staple in contemporary genomic research. However, these approaches often demand extensive computational resources, posing a challenge in terms of scalability and efficiency. Addressing this issue, our study introduces a novel adaptation of Jiang et al.'s compressor-based, parameter-free classification method, specifically tailored for DNA sequence analysis. This innovative approach utilizes a variety of compression algorithms, such as Gzip, Brotli, and LZMA, to efficiently process and classify genomic sequences. Not only does this method align with the current state-of-the-art in terms of accuracy, but it also offers a more resource-efficient alternative to traditional machine learning methods. Our comprehensive evaluation demonstrates the proposed method's effectiveness in accurately classifying DNA sequences from multiple species. We present a detailed analysis of the performance of each algorithm used, highlighting the strengths and limitations of our approach in various genomic contexts. Furthermore, we discuss the broader implications of our findings for bioinformatics, particularly in genomic data processing and analysis. The results of our study pave the way for more efficient and scalable DNA sequence classification methods, offering significant potential for advancements in genomic research and applications.
CHORDONOMICON: A Dataset of 666,000 Songs and their Chord Progressions
Chord progressions encapsulate important information about music, pertaining to its structure and conveyed emotions. They serve as the backbone of musical composition, and in many cases, they are the sole information required for a musician to play along and follow the music. Despite their importance, chord progressions as a data domain remain underexplored. There is a lack of large-scale datasets suitable for deep learning applications, and limited research exploring chord progressions as an input modality. In this work, we present Chordonomicon, a dataset of over 666,000 songs and their chord progressions, annotated with structural parts, genre, and release date - created by scraping various sources of user-generated progressions and associated metadata. We demonstrate the practical utility of the Chordonomicon dataset for classification and generation tasks, and discuss its potential to provide valuable insights to the research community. Chord progressions are unique in their ability to be represented in multiple formats (e.g. text, graph) and the wealth of information chords convey in given contexts, such as their harmonic function . These characteristics make the Chordonomicon an ideal testbed for exploring advanced machine learning techniques, including transformers, graph machine learning, and hybrid systems that combine knowledge representation and machine learning.
POLygraph: Polish Fake News Dataset
This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
User Story Tutor (UST) to Support Agile Software Developers
User Stories record what must be built in projects that use agile practices. User Stories serve both to estimate effort, generally measured in Story Points, and to plan what should be done in a Sprint. Therefore, it is essential to train software engineers on how to create simple, easily readable, and comprehensive User Stories. For that reason, we designed, implemented, applied, and evaluated a web application called User Story Tutor (UST). UST checks the description of a given User Story for readability, and if needed, recommends appropriate practices for improvement. UST also estimates a User Story effort in Story Points using Machine Learning techniques. As such UST may support the continuing education of agile development teams when writing and reviewing User Stories. UST's ease of use was evaluated by 40 agile practitioners according to the Technology Acceptance Model (TAM) and AttrakDiff. The TAM evaluation averages were good in almost all considered variables. Application of the AttrakDiff evaluation framework produced similar good results. Apparently, UST can be used with good reliability. Applying UST to assist in the construction of User Stories is a viable technique that, at the very least, can be used by agile developments to complement and enhance current User Story creation.
Spam-T5: Benchmarking Large Language Models for Few-Shot Email Spam Detection
This paper investigates the effectiveness of large language models (LLMs) in email spam detection by comparing prominent models from three distinct families: BERT-like, Sentence Transformers, and Seq2Seq. Additionally, we examine well-established machine learning techniques for spam detection, such as Na\"ive Bayes and LightGBM, as baseline methods. We assess the performance of these models across four public datasets, utilizing different numbers of training samples (full training set and few-shot settings). Our findings reveal that, in the majority of cases, LLMs surpass the performance of the popular baseline techniques, particularly in few-shot scenarios. This adaptability renders LLMs uniquely suited to spam detection tasks, where labeled samples are limited in number and models require frequent updates. Additionally, we introduce Spam-T5, a Flan-T5 model that has been specifically adapted and fine-tuned for the purpose of detecting email spam. Our results demonstrate that Spam-T5 surpasses baseline models and other LLMs in the majority of scenarios, particularly when there are a limited number of training samples available. Our code is publicly available at https://github.com/jpmorganchase/emailspamdetection.
Predicting city safety perception based on visual image content
Safety perception measurement has been a subject of interest in many cities of the world. This is due to its social relevance, and to its effect on some local economic activities. Even though people safety perception is a subjective topic, sometimes it is possible to find out common patterns given a restricted geographical and sociocultural context. This paper presents an approach that makes use of image processing and machine learning techniques to detect with high accuracy urban environment patterns that could affect citizen's safety perception.
Automating the Detection of Code Vulnerabilities by Analyzing GitHub Issues
In today's digital landscape, the importance of timely and accurate vulnerability detection has significantly increased. This paper presents a novel approach that leverages transformer-based models and machine learning techniques to automate the identification of software vulnerabilities by analyzing GitHub issues. We introduce a new dataset specifically designed for classifying GitHub issues relevant to vulnerability detection. We then examine various classification techniques to determine their effectiveness. The results demonstrate the potential of this approach for real-world application in early vulnerability detection, which could substantially reduce the window of exploitation for software vulnerabilities. This research makes a key contribution to the field by providing a scalable and computationally efficient framework for automated detection, enabling the prevention of compromised software usage before official notifications. This work has the potential to enhance the security of open-source software ecosystems.
A Computational Analysis of Oral Argument in the Supreme Court
As the most public component of the Supreme Court's decision-making process, oral argument receives an out-sized share of attention in the popular media. Despite its prominence, however, the basic function and operation of oral argument as an institution remains poorly understood, as political scientists and legal scholars continue to debate even the most fundamental questions about its role. Past study of oral argument has tended to focus on discrete, quantifiable attributes of oral argument, such as the number of questions asked to each advocate, the party of the Justices' appointing president, or the ideological implications of the case on appeal. Such studies allow broad generalizations about oral argument and judicial decision making: Justices tend to vote in accordance with their ideological preferences, and they tend to ask more questions when they are skeptical of a party's position. But they tell us little about the actual goings on at oral argument -- the running dialog between Justice and advocate that is the heart of the institution. This Article fills that void, using machine learning techniques to, for the first time, construct predictive models of judicial decision making based not on oral argument's superficial features or on factors external to oral argument, such as where the case falls on a liberal-conservative spectrum, but on the actual content of the oral argument itself -- the Justices' questions to each side. The resultant models offer an important new window into aspects of oral argument that have long resisted empirical study, including the Justices' individual questioning styles, how each expresses skepticism, and which of the Justices' questions are most central to oral argument dialog.
Stock Market Prediction using Natural Language Processing -- A Survey
The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas.
A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams
With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.
Yunshan Cup 2020: Overview of the Part-of-Speech Tagging Task for Low-resourced Languages
The Yunshan Cup 2020 track focused on creating a framework for evaluating different methods of part-of-speech (POS). There were two tasks for this track: (1) POS tagging for the Indonesian language, and (2) POS tagging for the Lao tagging. The Indonesian dataset is comprised of 10000 sentences from Indonesian news within 29 tags. And the Lao dataset consists of 8000 sentences within 27 tags. 25 teams registered for the task. The methods of participants ranged from feature-based to neural networks using either classical machine learning techniques or ensemble methods. The best performing results achieve an accuracy of 95.82% for Indonesian and 93.03%, showing that neural sequence labeling models significantly outperform classic feature-based methods and rule-based methods.
Coswara -- A Database of Breathing, Cough, and Voice Sounds for COVID-19 Diagnosis
The COVID-19 pandemic presents global challenges transcending boundaries of country, race, religion, and economy. The current gold standard method for COVID-19 detection is the reverse transcription polymerase chain reaction (RT-PCR) testing. However, this method is expensive, time-consuming, and violates social distancing. Also, as the pandemic is expected to stay for a while, there is a need for an alternate diagnosis tool which overcomes these limitations, and is deployable at a large scale. The prominent symptoms of COVID-19 include cough and breathing difficulties. We foresee that respiratory sounds, when analyzed using machine learning techniques, can provide useful insights, enabling the design of a diagnostic tool. Towards this, the paper presents an early effort in creating (and analyzing) a database, called Coswara, of respiratory sounds, namely, cough, breath, and voice. The sound samples are collected via worldwide crowdsourcing using a website application. The curated dataset is released as open access. As the pandemic is evolving, the data collection and analysis is a work in progress. We believe that insights from analysis of Coswara can be effective in enabling sound based technology solutions for point-of-care diagnosis of respiratory infection, and in the near future this can help to diagnose COVID-19.
Cueless EEG imagined speech for subject identification: dataset and benchmarks
Electroencephalogram (EEG) signals have emerged as a promising modality for biometric identification. While previous studies have explored the use of imagined speech with semantically meaningful words for subject identification, most have relied on additional visual or auditory cues. In this study, we introduce a cueless EEG-based imagined speech paradigm, where subjects imagine the pronunciation of semantically meaningful words without any external cues. This innovative approach addresses the limitations of prior methods by requiring subjects to select and imagine words from a predefined list naturally. The dataset comprises over 4,350 trials from 11 subjects across five sessions. We assess a variety of classification methods, including traditional machine learning techniques such as Support Vector Machines (SVM) and XGBoost, as well as time-series foundation models and deep learning architectures specifically designed for EEG classification, such as EEG Conformer and Shallow ConvNet. A session-based hold-out validation strategy was employed to ensure reliable evaluation and prevent data leakage. Our results demonstrate outstanding classification accuracy, reaching 97.93%. These findings highlight the potential of cueless EEG paradigms for secure and reliable subject identification in real-world applications, such as brain-computer interfaces (BCIs).
Developing an Explainable Artificial Intelligent (XAI) Model for Predicting Pile Driving Vibrations in Bangkok's Subsoil
This study presents an explainable artificial intelligent (XAI) model for predicting pile driving vibrations in Bangkok's soft clay subsoil. A deep neural network was developed using a dataset of 1,018 real-world pile driving measurements, encompassing variations in pile dimensions, hammer characteristics, sensor locations, and vibration measurement axes. The model achieved a mean absolute error (MAE) of 0.276, outperforming traditional empirical methods and other machine learning approaches such as XGBoost and CatBoost. SHapley Additive exPlanations (SHAP) analysis was employed to interpret the model's predictions, revealing complex relationships between input features and peak particle velocity (PPV). Distance from the pile driving location emerged as the most influential factor, followed by hammer weight and pile size. Non-linear relationships and threshold effects were observed, providing new insights into vibration propagation in soft clay. A web-based application was developed to facilitate adoption by practicing engineers, bridging the gap between advanced machine learning techniques and practical engineering applications. This research contributes to the field of geotechnical engineering by offering a more accurate and nuanced approach to predicting pile driving vibrations, with implications for optimizing construction practices and mitigating environmental impacts in urban areas. The model and its source code are publicly available, promoting transparency and reproducibility in geotechnical research.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
Comprehensive Movie Recommendation System
A recommender system, also known as a recommendation system, is a type of information filtering system that attempts to forecast a user's rating or preference for an item. This article designs and implements a complete movie recommendation system prototype based on the Genre, Pearson Correlation Coefficient, Cosine Similarity, KNN-Based, Content-Based Filtering using TFIDF and SVD, Collaborative Filtering using TFIDF and SVD, Surprise Library based recommendation system technology. Apart from that in this paper, we present a novel idea that applies machine learning techniques to construct a cluster for the movie based on genres and then observes the inertia value number of clusters were defined. The constraints of the approaches discussed in this work have been described, as well as how one strategy overcomes the disadvantages of another. The whole work has been done on the dataset Movie Lens present at the group lens website which contains 100836 ratings and 3683 tag applications across 9742 movies. These data were created by 610 users between March 29, 1996, and September 24, 2018.
Computer-Aided Clinical Skin Disease Diagnosis Using CNN and Object Detection Models
Skin disease is one of the most common types of human diseases, which may happen to everyone regardless of age, gender or race. Due to the high visual diversity, human diagnosis highly relies on personal experience; and there is a serious shortage of experienced dermatologists in many countries. To alleviate this problem, computer-aided diagnosis with state-of-the-art (SOTA) machine learning techniques would be a promising solution. In this paper, we aim at understanding the performance of convolutional neural network (CNN) based approaches. We first build two versions of skin disease datasets from Internet images: (a) Skin-10, which contains 10 common classes of skin disease with a total of 10,218 images; (b) Skin-100, which is a larger dataset that consists of 19,807 images of 100 skin disease classes. Based on these datasets, we benchmark several SOTA CNN models and show that the accuracy of skin-100 is much lower than the accuracy of skin-10. We then implement an ensemble method based on several CNN models and achieve the best accuracy of 79.01\% for Skin-10 and 53.54\% for Skin-100. We also present an object detection based approach by introducing bounding boxes into the Skin-10 dataset. Our results show that object detection can help improve the accuracy of some skin disease classes.
CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain
The field of cybersecurity is evolving fast. Experts need to be informed about past, current and - in the best case - upcoming threats, because attacks are becoming more advanced, targets bigger and systems more complex. As this cannot be addressed manually, cybersecurity experts need to rely on machine learning techniques. In the texutual domain, pre-trained language models like BERT have shown to be helpful, by providing a good baseline for further fine-tuning. However, due to the domain-knowledge and many technical terms in cybersecurity general language models might miss the gist of textual information, hence doing more harm than good. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain, which can serve as a basic building block for cybersecurity systems that deal with natural language. The model is compared with other models based on 15 different domain-dependent extrinsic and intrinsic tasks as well as general tasks from the SuperGLUE benchmark. On the one hand, the results of the intrinsic tasks show that our model improves the internal representation space of words compared to the other models. On the other hand, the extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model is best in specific application scenarios, in contrast to the others. Furthermore, we show that our approach against catastrophic forgetting works, as the model is able to retrieve the previously trained domain-independent knowledge. The used dataset and trained model are made publicly available
REACCEPT: Automated Co-evolution of Production and Test Code Based on Dynamic Validation and Large Language Models
Synchronizing production and test code, known as PT co-evolution, is critical for software quality in the software development lifecycle. Existing methods for automatic PT co-evolution either utilize predefined heuristic rules or rely on simple application of machine learning techniques. Due to the limitations of underlying techniques, existing methods either only partially automate PT co-evolution (e.g., only automate obsolete test code identification) or result in low accuracy. In this paper, we propose REACCEPT, a novel approach that leverages large language models and dynamic validation to fully automate PT co-evolution (i.e., capable of both identifying and updating obsolete test cases). REACCEPT relies on experience-based prompt template generation, dynamic validation, and retrieval-augmented generation techniques to accomplish automated PT co-evolution. To evaluate REACCEPT's effectiveness, we extensive experiments with a dataset of 537 Java projects and compared REACCEPT's performance with several state-of-the-art methods. Results show that REACCEPT achieved an update accuracy of 60.16% on correctly identified obsolete test code, surpassing the state-of-the-art technique CEPROT by 90%. This confirms that REACCEPT can effectively assist developers in maintaining test code, improving overall software quality and reducing maintenance effort.
Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data
In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.
MAD: A Scalable Dataset for Language Grounding in Videos from Movie Audio Descriptions
The recent and increasing interest in video-language research has driven the development of large-scale datasets that enable data-intensive machine learning techniques. In comparison, limited effort has been made at assessing the fitness of these datasets for the video-language grounding task. Recent works have begun to discover significant limitations in these datasets, suggesting that state-of-the-art techniques commonly overfit to hidden dataset biases. In this work, we present MAD (Movie Audio Descriptions), a novel benchmark that departs from the paradigm of augmenting existing video datasets with text annotations and focuses on crawling and aligning available audio descriptions of mainstream movies. MAD contains over 384,000 natural language sentences grounded in over 1,200 hours of videos and exhibits a significant reduction in the currently diagnosed biases for video-language grounding datasets. MAD's collection strategy enables a novel and more challenging version of video-language grounding, where short temporal moments (typically seconds long) must be accurately grounded in diverse long-form videos that can last up to three hours. We have released MAD's data and baselines code at https://github.com/Soldelli/MAD.
Robust Detection of LLM-Generated Text: A Comparative Analysis
The ability of large language models to generate complex texts allows them to be widely integrated into many aspects of life, and their output can quickly fill all network resources. As the impact of LLMs grows, it becomes increasingly important to develop powerful detectors for the generated text. This detector is essential to prevent the potential misuse of these technologies and to protect areas such as social media from the negative effects of false content generated by LLMS. The main goal of LLM-generated text detection is to determine whether text is generated by an LLM, which is a basic binary classification task. In our work, we mainly use three different classification methods based on open source datasets: traditional machine learning techniques such as logistic regression, k-means clustering, Gaussian Naive Bayes, support vector machines, and methods based on converters such as BERT, and finally algorithms that use LLMs to detect LLM-generated text. We focus on model generalization, potential adversarial attacks, and accuracy of model evaluation. Finally, the possible research direction in the future is proposed, and the current experimental results are summarized.
Baybayin Character Instance Detection
The Philippine Government recently passed the "National Writing System Act," which promotes using Baybayin in Philippine texts. In support of this effort to promote the use of Baybayin, we present a computer vision system which can aid individuals who cannot easily read Baybayin script. In this paper, we survey the existing methods of identifying Baybayin scripts using computer vision and machine learning techniques and discuss their capabilities and limitations. Further, we propose a Baybayin Optical Character Instance Segmentation and Classification model using state-of-the-art Convolutional Neural Networks (CNNs) that detect Baybayin character instances in an image then outputs the Latin alphabet counterparts of each character instance in the image. Most existing systems are limited to character-level image classification and often misclassify or not natively support characters with diacritics. In addition, these existing models often have specific input requirements that limit it to classifying Baybayin text in a controlled setting, such as limitations in clarity and contrast, among others. To our knowledge, our proposed method is the first end-to-end character instance detection model for Baybayin, achieving a mAP50 score of 93.30%, mAP50-95 score of 80.50%, and F1-Score of 84.84%.
CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking
Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available.
Automatically Extracting Web API Specifications from HTML Documentation
Web API specifications are machine-readable descriptions of APIs. These specifications, in combination with related tooling, simplify and support the consumption of APIs. However, despite the increased distribution of web APIs, specifications are rare and their creation and maintenance heavily relies on manual efforts by third parties. In this paper, we propose an automatic approach and an associated tool called D2Spec for extracting specifications from web API documentation pages. Given a seed online documentation page on an API, D2Spec first crawls all documentation pages on the API, and then uses a set of machine learning techniques to extract the base URL, path templates, and HTTP methods, which collectively describe the endpoints of an API. We evaluated whether D2Spec can accurately extract endpoints from documentation on 120 web APIs. The results showed that D2Spec achieved a precision of 87.5% in identifying base URLs, a precision of 81.3% and a recall of 80.6% in generating path templates, and a precision of 84.4% and a recall of 76.2% in extracting HTTP methods. In addition, we found that D2Spec was useful when applied to APIs with pre-existing API specifications: D2Spec revealed many inconsistencies between web API documentation and their corresponding publicly available specifications. Thus, D2Spec can be used by web API providers to keep documentation and specifications in synchronization.
LangProp: A code optimization framework using Language Models applied to driving
LangProp is a framework for iteratively optimizing code generated by large language models (LLMs) in a supervised/reinforcement learning setting. While LLMs can generate sensible solutions zero-shot, the solutions are often sub-optimal. Especially for code generation tasks, it is likely that the initial code will fail on certain edge cases. LangProp automatically evaluates the code performance on a dataset of input-output pairs, as well as catches any exceptions, and feeds the results back to the LLM in the training loop, so that the LLM can iteratively improve the code it generates. By adopting a metric- and data-driven training paradigm for this code optimization procedure, one could easily adapt findings from traditional machine learning techniques such as imitation learning, DAgger, and reinforcement learning. We demonstrate the first proof of concept of automated code optimization for autonomous driving in CARLA, showing that LangProp can generate interpretable and transparent driving policies that can be verified and improved in a metric- and data-driven way. Our code will be open-sourced and is available at https://github.com/shuishida/LangProp.
What Makes Digital Support Effective? How Therapeutic Skills Affect Clinical Well-Being
Online mental health support communities have grown in recent years for providing accessible mental and emotional health support through volunteer counselors. Despite millions of people participating in chat support on these platforms, the clinical effectiveness of these communities on mental health symptoms remains unknown. Furthermore, although volunteers receive some training based on established therapeutic skills studied in face-to-face environments such as active listening and motivational interviewing, it remains understudied how the usage of these skills in this online context affects people's mental health status. In our work, we collaborate with one of the largest online peer support platforms and use both natural language processing and machine learning techniques to measure how one-on-one support chats affect depression and anxiety symptoms. We measure how the techniques and characteristics of support providers, such as using affirmation, empathy, and past experience on the platform, affect support-seekers' mental health changes. We find that online peer support chats improve both depression and anxiety symptoms with a statistically significant but relatively small effect size. Additionally, support providers' techniques such as emphasizing the autonomy of the client lead to better mental health outcomes. However, we also found that some behaviors (e.g. persuading) are actually harmful to depression and anxiety outcomes. Our work provides key understanding for mental health care in the online setting and designing training systems for online support providers.
An ensemble-based framework for mispronunciation detection of Arabic phonemes
Determination of mispronunciations and ensuring feedback to users are maintained by computer-assisted language learning (CALL) systems. In this work, we introduce an ensemble model that defines the mispronunciation of Arabic phonemes and assists learning of Arabic, effectively. To the best of our knowledge, this is the very first attempt to determine the mispronunciations of Arabic phonemes employing ensemble learning techniques and conventional machine learning models, comprehensively. In order to observe the effect of feature extraction techniques, mel-frequency cepstrum coefficients (MFCC), and Mel spectrogram are blended with each learning algorithm. To show the success of proposed model, 29 letters in the Arabic phonemes, 8 of which are hafiz, are voiced by a total of 11 different person. The amount of data set has been enhanced employing the methods of adding noise, time shifting, time stretching, pitch shifting. Extensive experiment results demonstrate that the utilization of voting classifier as an ensemble algorithm with Mel spectrogram feature extraction technique exhibits remarkable classification result with 95.9% of accuracy.
Levin Tree Search with Context Models
Levin Tree Search (LTS) is a search algorithm that makes use of a policy (a probability distribution over actions) and comes with a theoretical guarantee on the number of expansions before reaching a goal node, depending on the quality of the policy. This guarantee can be used as a loss function, which we call the LTS loss, to optimize neural networks representing the policy (LTS+NN). In this work we show that the neural network can be substituted with parameterized context models originating from the online compression literature (LTS+CM). We show that the LTS loss is convex under this new model, which allows for using standard convex optimization tools, and obtain convergence guarantees to the optimal parameters in an online setting for a given set of solution trajectories -- guarantees that cannot be provided for neural networks. The new LTS+CM algorithm compares favorably against LTS+NN on several benchmarks: Sokoban (Boxoban), The Witness, and the 24-Sliding Tile puzzle (STP). The difference is particularly large on STP, where LTS+NN fails to solve most of the test instances while LTS+CM solves each test instance in a fraction of a second. Furthermore, we show that LTS+CM is able to learn a policy that solves the Rubik's cube in only a few hundred expansions, which considerably improves upon previous machine learning techniques.
Fairness in Matching under Uncertainty
The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques.
So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification
Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named "So2Sat LCZ42," which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from http://doi.org/10.14459/2018mp1483140.
DomainGAN: Generating Adversarial Examples to Attack Domain Generation Algorithm Classifiers
Domain Generation Algorithms (DGAs) are frequently used to generate numerous domains for use by botnets. These domains are often utilized as rendezvous points for servers that malware has command and control over. There are many algorithms that are used to generate domains, however many of these algorithms are simplistic and easily detected by traditional machine learning techniques. In this paper, three variants of Generative Adversarial Networks (GANs) are optimized to generate domains which have similar characteristics of benign domains, resulting in domains which greatly evade several state-of-the-art deep learning based DGA classifiers. We additionally provide a detailed analysis into offensive usability for each variant with respect to repeated and existing domain collisions. Finally, we fine-tune the state-of-the-art DGA classifiers by adding GAN generated samples to their original training datasets and analyze the changes in performance. Our results conclude that GAN based DGAs are superior in evading DGA classifiers in comparison to traditional DGAs, and of the variants, the Wasserstein GAN with Gradient Penalty (WGANGP) is the highest performing DGA for uses both offensively and defensively.
An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning
The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.
Application of Machine Learning in Forecasting International Trade Trends
International trade policies have recently garnered attention for limiting cross-border exchange of essential goods (e.g. steel, aluminum, soybeans, and beef). Since trade critically affects employment and wages, predicting future patterns of trade is a high-priority for policy makers around the world. While traditional economic models aim to be reliable predictors, we consider the possibility that Machine Learning (ML) techniques allow for better predictions to inform policy decisions. Open-government data provide the fuel to power the algorithms that can explain and forecast trade flows to inform policies. Data collected in this article describe international trade transactions and commonly associated economic factors. Machine learning (ML) models deployed include: ARIMA, GBoosting, XGBoosting, and LightGBM for predicting future trade patterns, and K-Means clustering of countries according to economic factors. Unlike short-term and subjective (straight-line) projections and medium-term (aggre-gated) projections, ML methods provide a range of data-driven and interpretable projections for individual commodities. Models, their results, and policies are introduced and evaluated for prediction quality.
Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies
This paper presents a comprehensive study on stock price prediction, leveragingadvanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy. The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), and attention-based models. These models are assessed for their ability to capture complex temporal dependencies inherent in stock market data. Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies. This study contributes valuable insights into AI-driven financial forecasting, offering practical guidance for developing more accurate and efficient trading systems.
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine Learning and XAI
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted historical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evolution of knowledge within the `Sacrobosco Collection' -- a digitized collection of 359 early modern printed editions of textbooks on astronomy used at European universities between 1472 and 1650 -- roughly 76,000 pages, many of which contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught at European universities.
CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning
Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.
Deep learning for prediction of complex geology ahead of drilling
During a geosteering operation the well path is intentionally adjusted in response to the new data acquired while drilling. To achieve consistent high-quality decisions, especially when drilling in complex environments, decision support systems can help cope with high volumes of data and interpretation complexities. They can assimilate the real-time measurements into a probabilistic earth model and use the updated model for decision recommendations. Recently, machine learning (ML) techniques have enabled a wide range of methods that redistribute computational cost from on-line to off-line calculations. In this paper, we introduce two ML techniques into the geosteering decision support framework. Firstly, a complex earth model representation is generated using a Generative Adversarial Network (GAN). Secondly, a commercial extra-deep electromagnetic simulator is represented using a Forward Deep Neural Network (FDNN). The numerical experiments demonstrate that the combination of the GAN and the FDNN in an ensemble randomized maximum likelihood data assimilation scheme provides real-time estimates of complex geological uncertainty. This yields reduction of geological uncertainty ahead of the drill-bit from the measurements gathered behind and around the well bore.
Graph Neural Network for Stress Predictions in Stiffened Panels Under Uniform Loading
Machine learning (ML) and deep learning (DL) techniques have gained significant attention as reduced order models (ROMs) to computationally expensive structural analysis methods, such as finite element analysis (FEA). Graph neural network (GNN) is a particular type of neural network which processes data that can be represented as graphs. This allows for efficient representation of complex geometries that can change during conceptual design of a structure or a product. In this study, we propose a novel graph embedding technique for efficient representation of 3D stiffened panels by considering separate plate domains as vertices. This approach is considered using Graph Sampling and Aggregation (GraphSAGE) to predict stress distributions in stiffened panels with varying geometries. A comparison between a finite-element-vertex graph representation is conducted to demonstrate the effectiveness of the proposed approach. A comprehensive parametric study is performed to examine the effect of structural geometry on the prediction performance. Our results demonstrate the immense potential of graph neural networks with the proposed graph embedding method as robust reduced-order models for 3D structures.
StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact Context-encoding Variational Autoencoder
Expert interpretation of anatomical images of the human brain is the central part of neuro-radiology. Several machine learning-based techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously, which renders representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example, brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which is more robust on clinical data, and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed pipeline achieved a Dice score of 0.642pm0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859pm0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522pm0.135 and 0.783pm0.111, respectively.
Automated Code-centric Software Vulnerability Assessment: How Far Are We? An Empirical Study in C/C++
Background: The C and C++ languages hold significant importance in Software Engineering research because of their widespread use in practice. Numerous studies have utilized Machine Learning (ML) and Deep Learning (DL) techniques to detect software vulnerabilities (SVs) in the source code written in these languages. However, the application of these techniques in function-level SV assessment has been largely unexplored. SV assessment is increasingly crucial as it provides detailed information on the exploitability, impacts, and severity of security defects, thereby aiding in their prioritization and remediation. Aims: We conduct the first empirical study to investigate and compare the performance of ML and DL models, many of which have been used for SV detection, for function-level SV assessment in C/C++. Method: Using 9,993 vulnerable C/C++ functions, we evaluated the performance of six multi-class ML models and five multi-class DL models for the SV assessment at the function level based on the Common Vulnerability Scoring System (CVSS). We further explore multi-task learning, which can leverage common vulnerable code to predict all SV assessment outputs simultaneously in a single model, and compare the effectiveness and efficiency of this model type with those of the original multi-class models. Results: We show that ML has matching or even better performance compared to the multi-class DL models for function-level SV assessment with significantly less training time. Employing multi-task learning allows the DL models to perform significantly better, with an average of 8-22% increase in Matthews Correlation Coefficient (MCC). Conclusions: We distill the practices of using data-driven techniques for function-level SV assessment in C/C++, including the use of multi-task DL to balance efficiency and effectiveness. This can establish a strong foundation for future work in this area.
FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections
In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.
An Android Robot Head as Embodied Conversational Agent
This paper describes, how current Machine Learning (ML) techniques combined with simple rule-based animation routines make an android robot head an embodied conversational agent with ChatGPT as its core component. The android robot head is described, technical details are given of how lip-sync animation is being achieved, and general software design decisions are presented. A public presentation of the system revealed improvement opportunities that are reported and that lead our iterative implementation approach.
A Comparative Study on Automatic Coding of Medical Letters with Explainability
This study aims to explore the implementation of Natural Language Processing (NLP) and machine learning (ML) techniques to automate the coding of medical letters with visualised explainability and light-weighted local computer settings. Currently in clinical settings, coding is a manual process that involves assigning codes to each condition, procedure, and medication in a patient's paperwork (e.g., 56265001 heart disease using SNOMED CT code). There are preliminary research on automatic coding in this field using state-of-the-art ML models; however, due to the complexity and size of the models, the real-world deployment is not achieved. To further facilitate the possibility of automatic coding practice, we explore some solutions in a local computer setting; in addition, we explore the function of explainability for transparency of AI models. We used the publicly available MIMIC-III database and the HAN/HLAN network models for ICD code prediction purposes. We also experimented with the mapping between ICD and SNOMED CT knowledge bases. In our experiments, the models provided useful information for 97.98\% of codes. The result of this investigation can shed some light on implementing automatic clinical coding in practice, such as in hospital settings, on the local computers used by clinicians , project page https://github.com/Glenj01/Medical-Coding.
Introducing Three New Benchmark Datasets for Hierarchical Text Classification
Hierarchical Text Classification (HTC) is a natural language processing task with the objective to classify text documents into a set of classes from a structured class hierarchy. Many HTC approaches have been proposed which attempt to leverage the class hierarchy information in various ways to improve classification performance. Machine learning-based classification approaches require large amounts of training data and are most-commonly compared through three established benchmark datasets, which include the Web Of Science (WOS), Reuters Corpus Volume 1 Version 2 (RCV1-V2) and New York Times (NYT) datasets. However, apart from the RCV1-V2 dataset which is well-documented, these datasets are not accompanied with detailed description methodologies. In this paper, we introduce three new HTC benchmark datasets in the domain of research publications which comprise the titles and abstracts of papers from the Web of Science publication database. We first create two baseline datasets which use existing journal-and citation-based classification schemas. Due to the respective shortcomings of these two existing schemas, we propose an approach which combines their classifications to improve the reliability and robustness of the dataset. We evaluate the three created datasets with a clustering-based analysis and show that our proposed approach results in a higher quality dataset where documents that belong to the same class are semantically more similar compared to the other datasets. Finally, we provide the classification performance of four state-of-the-art HTC approaches on these three new datasets to provide baselines for future studies on machine learning-based techniques for scientific publication classification.
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Machine learning (ML) interpretability techniques can reveal undesirable patterns in data that models exploit to make predictions--potentially causing harms once deployed. However, how to take action to address these patterns is not always clear. In a collaboration between ML and human-computer interaction researchers, physicians, and data scientists, we develop GAM Changer, the first interactive system to help domain experts and data scientists easily and responsibly edit Generalized Additive Models (GAMs) and fix problematic patterns. With novel interaction techniques, our tool puts interpretability into action--empowering users to analyze, validate, and align model behaviors with their knowledge and values. Physicians have started to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an evaluation with 7 data scientists working in diverse domains highlights that our tool is easy to use, meets their model editing needs, and fits into their current workflows. Built with modern web technologies, our tool runs locally in users' web browsers or computational notebooks, lowering the barrier to use. GAM Changer is available at the following public demo link: https://interpret.ml/gam-changer.
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning
Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks.
Real-Time Boiler Control Optimization with Machine Learning
In coal-fired power plants, it is critical to improve the operational efficiency of boilers for sustainability. In this work, we formulate real-time boiler control as an optimization problem that looks for the best distribution of temperature in different zones and oxygen content from the flue to improve the boiler's stability and energy efficiency. We employ an efficient algorithm by integrating appropriate machine learning and optimization techniques. We obtain a large dataset collected from a real boiler for more than two months from our industry partner, and conduct extensive experiments to demonstrate the effectiveness and efficiency of the proposed algorithm.
Empirical and Experimental Insights into Machine Learning-Based Defect Classification in Semiconductor Wafers
This survey paper offers a comprehensive review of methodologies utilizing machine learning (ML) classification techniques for identifying wafer defects in semiconductor manufacturing. Despite the growing body of research demonstrating the effectiveness of ML in wafer defect identification, there is a noticeable absence of comprehensive reviews on this subject. This survey attempts to fill this void by amalgamating available literature and providing an in-depth analysis of the advantages, limitations, and potential applications of various ML classification algorithms in the realm of wafer defect detection. An innovative taxonomy of methodologies that we present provides a detailed classification of algorithms into more refined categories and techniques. This taxonomy follows a three-tier structure, starting from broad methodology categories and ending with specific techniques. It aids researchers in comprehending the complex relationships between different algorithms and their techniques. We employ a rigorous empirical and experimental evaluation to rank these varying techniques. For the empirical evaluation, we assess techniques based on a set of five criteria. The experimental evaluation ranks the algorithms employing the same techniques, sub-categories, and categories. Also the paper illuminates the future prospects of ML classification techniques for wafer defect identification, underscoring potential advancements and opportunities for further research in this field
Defeating Proactive Jammers Using Deep Reinforcement Learning for Resource-Constrained IoT Networks
Traditional anti-jamming techniques like spread spectrum, adaptive power/rate control, and cognitive radio, have demonstrated effectiveness in mitigating jamming attacks. However, their robustness against the growing complexity of internet-of-thing (IoT) networks and diverse jamming attacks is still limited. To address these challenges, machine learning (ML)-based techniques have emerged as promising solutions. By offering adaptive and intelligent anti-jamming capabilities, ML-based approaches can effectively adapt to dynamic attack scenarios and overcome the limitations of traditional methods. In this paper, we propose a deep reinforcement learning (DRL)-based approach that utilizes state input from realistic wireless network interface cards. We train five different variants of deep Q-network (DQN) agents to mitigate the effects of jamming with the aim of identifying the most sample-efficient, lightweight, robust, and least complex agent that is tailored for power-constrained devices. The simulation results demonstrate the effectiveness of the proposed DRL-based anti-jamming approach against proactive jammers, regardless of their jamming strategy which eliminates the need for a pattern recognition or jamming strategy detection step. Our findings present a promising solution for securing IoT networks against jamming attacks and highlights substantial opportunities for continued investigation and advancement within this field.
GAM Coach: Towards Interactive and User-centered Algorithmic Recourse
Machine learning (ML) recourse techniques are increasingly used in high-stakes domains, providing end users with actions to alter ML predictions, but they assume ML developers understand what input variables can be changed. However, a recourse plan's actionability is subjective and unlikely to match developers' expectations completely. We present GAM Coach, a novel open-source system that adapts integer linear programming to generate customizable counterfactual explanations for Generalized Additive Models (GAMs), and leverages interactive visualizations to enable end users to iteratively generate recourse plans meeting their needs. A quantitative user study with 41 participants shows our tool is usable and useful, and users prefer personalized recourse plans over generic plans. Through a log analysis, we explore how users discover satisfactory recourse plans, and provide empirical evidence that transparency can lead to more opportunities for everyday users to discover counterintuitive patterns in ML models. GAM Coach is available at: https://poloclub.github.io/gam-coach/.
Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems
Bayesian Optimization (BO) is a foundational strategy in the field of engineering design optimization for efficiently handling black-box functions with many constraints and expensive evaluations. This paper introduces a fast and accurate BO framework that leverages Pre-trained Transformers for Bayesian Optimization (PFN4sBO) to address constrained optimization problems in engineering. Unlike traditional BO methods that rely heavily on Gaussian Processes (GPs), our approach utilizes Prior-data Fitted Networks (PFNs), a type of pre-trained transformer, to infer constraints and optimal solutions without requiring any iterative retraining. We demonstrate the effectiveness of PFN-based BO through a comprehensive benchmark consisting of fifteen test problems, encompassing synthetic, structural, and engineering design challenges. Our findings reveal that PFN-based BO significantly outperforms Constrained Expected Improvement and Penalty-based GP methods by an order of magnitude in speed while also outperforming them in accuracy in identifying feasible, optimal solutions. This work showcases the potential of integrating machine learning with optimization techniques in solving complex engineering challenges, heralding a significant leap forward for optimization methodologies, opening up the path to using PFN-based BO to solve other challenging problems, such as enabling user-guided interactive BO, adaptive experiment design, or multi-objective design optimization. Additionally, we establish a benchmark for evaluating BO algorithms in engineering design, offering a robust platform for future research and development in the field. This benchmark framework for evaluating new BO algorithms in engineering design will be published at https://github.com/rosenyu304/BOEngineeringBenchmark.
To BERT or Not To BERT: Comparing Speech and Language-based Approaches for Alzheimer's Disease Detection
Research related to automatically detecting Alzheimer's disease (AD) is important, given the high prevalence of AD and the high cost of traditional methods. Since AD significantly affects the content and acoustics of spontaneous speech, natural language processing and machine learning provide promising techniques for reliably detecting AD. We compare and contrast the performance of two such approaches for AD detection on the recent ADReSS challenge dataset: 1) using domain knowledge-based hand-crafted features that capture linguistic and acoustic phenomena, and 2) fine-tuning Bidirectional Encoder Representations from Transformer (BERT)-based sequence classification models. We also compare multiple feature-based regression models for a neuropsychological score task in the challenge. We observe that fine-tuned BERT models, given the relative importance of linguistics in cognitive impairment detection, outperform feature-based approaches on the AD detection task.
Analysis of the Evolution of Advanced Transformer-Based Language Models: Experiments on Opinion Mining
Opinion mining, also known as sentiment analysis, is a subfield of natural language processing (NLP) that focuses on identifying and extracting subjective information in textual material. This can include determining the overall sentiment of a piece of text (e.g., positive or negative), as well as identifying specific emotions or opinions expressed in the text, that involves the use of advanced machine and deep learning techniques. Recently, transformer-based language models make this task of human emotion analysis intuitive, thanks to the attention mechanism and parallel computation. These advantages make such models very powerful on linguistic tasks, unlike recurrent neural networks that spend a lot of time on sequential processing, making them prone to fail when it comes to processing long text. The scope of our paper aims to study the behaviour of the cutting-edge Transformer-based language models on opinion mining and provide a high-level comparison between them to highlight their key particularities. Additionally, our comparative study shows leads and paves the way for production engineers regarding the approach to focus on and is useful for researchers as it provides guidelines for future research subjects.
Applications of machine Learning to improve the efficiency and range of microbial biosynthesis: a review of state-of-art techniques
In the modern world, technology is at its peak. Different avenues in programming and technology have been explored for data analysis, automation, and robotics. Machine learning is key to optimize data analysis, make accurate predictions, and hasten/improve existing functions. Thus, presently, the field of machine learning in artificial intelligence is being developed and its uses in varying fields are being explored. One field in which its uses stand out is that of microbial biosynthesis. In this paper, a comprehensive overview of the differing machine learning programs used in biosynthesis is provided, alongside brief descriptions of the fields of machine learning and microbial biosynthesis separately. This information includes past trends, modern developments, future improvements, explanations of processes, and current problems they face. Thus, this paper's main contribution is to distill developments in, and provide a holistic explanation of, 2 key fields and their applicability to improve industry/research. It also highlights challenges and research directions, acting to instigate more research and development in the growing fields. Finally, the paper aims to act as a reference for academics performing research, industry professionals improving their processes, and students looking to understand the concept of machine learning in biosynthesis.
Applications and Techniques for Fast Machine Learning in Science
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.
Machine Learning approach for Credit Scoring
In this work we build a stack of machine learning models aimed at composing a state-of-the-art credit rating and default prediction system, obtaining excellent out-of-sample performances. Our approach is an excursion through the most recent ML / AI concepts, starting from natural language processes (NLP) applied to economic sectors' (textual) descriptions using embedding and autoencoders (AE), going through the classification of defaultable firms on the base of a wide range of economic features using gradient boosting machines (GBM) and calibrating their probabilities paying due attention to the treatment of unbalanced samples. Finally we assign credit ratings through genetic algorithms (differential evolution, DE). Model interpretability is achieved by implementing recent techniques such as SHAP and LIME, which explain predictions locally in features' space.
Automated Machine Learning: State-of-The-Art and Open Challenges
With the continuous and vast increase in the amount of data in our digital world, it has been acknowledged that the number of knowledgeable data scientists can not scale to address these challenges. Thus, there was a crucial need for automating the process of building good machine learning models. In the last few years, several techniques and frameworks have been introduced to tackle the challenge of automating the process of Combined Algorithm Selection and Hyper-parameter tuning (CASH) in the machine learning domain. The main aim of these techniques is to reduce the role of the human in the loop and fill the gap for non-expert machine learning users by playing the role of the domain expert. In this paper, we present a comprehensive survey for the state-of-the-art efforts in tackling the CASH problem. In addition, we highlight the research work of automating the other steps of the full complex machine learning pipeline (AutoML) from data understanding till model deployment. Furthermore, we provide comprehensive coverage for the various tools and frameworks that have been introduced in this domain. Finally, we discuss some of the research directions and open challenges that need to be addressed in order to achieve the vision and goals of the AutoML process.
Training Machine Learning models at the Edge: A Survey
Edge Computing (EC) has gained significant traction in recent years, promising enhanced efficiency by integrating Artificial Intelligence (AI) capabilities at the edge. While the focus has primarily been on the deployment and inference of Machine Learning (ML) models at the edge, the training aspect remains less explored. This survey delves into Edge Learning (EL), specifically the optimization of ML model training at the edge. The objective is to comprehensively explore diverse approaches and methodologies in EL, synthesize existing knowledge, identify challenges, and highlight future trends. Utilizing Scopus' advanced search, relevant literature on EL was identified, revealing a concentration of research efforts in distributed learning methods, particularly Federated Learning (FL). This survey further provides a guideline for comparing techniques used to optimize ML for edge learning, along with an exploration of different frameworks, libraries, and simulation tools available for EL. In doing so, the paper contributes to a holistic understanding of the current landscape and future directions in the intersection of edge computing and machine learning, paving the way for informed comparisons between optimization methods and techniques designed for edge learning.
Machine learning for cloud resources management -- An overview
Nowadays, an important topic that is considered a lot is how to integrate Machine Learning(ML) to cloud resources management. In this study, our goal is to explore the most important cloud resources management issues that have been combined with ML and which present many promising results. To accomplish this, we used chronological charts based on some keywords that we considered important and tried to answer the question: is ML suitable for resources management problems in the cloud? Furthermore, a short discussion takes place on the data that are available and the open challenges on it. A big collection of researches is used to make sensible comparisons between the ML techniques that are used in the different kinds of cloud resources management fields and we propose the most suitable ML model for each field. 1
Understanding The Effectiveness of Lossy Compression in Machine Learning Training Sets
Learning and Artificial Intelligence (ML/AI) techniques have become increasingly prevalent in high performance computing (HPC). However, these methods depend on vast volumes of floating point data for training and validation which need methods to share the data on a wide area network (WAN) or to transfer it from edge devices to data centers. Data compression can be a solution to these problems, but an in-depth understanding of how lossy compression affects model quality is needed. Prior work largely considers a single application or compression method. We designed a systematic methodology for evaluating data reduction techniques for ML/AI, and we use it to perform a very comprehensive evaluation with 17 data reduction methods on 7 ML/AI applications to show modern lossy compression methods can achieve a 50-100x compression ratio improvement for a 1% or less loss in quality. We identify critical insights that guide the future use and design of lossy compressors for ML/AI.
Advances in Set Function Learning: A Survey of Techniques and Applications
Set function learning has emerged as a crucial area in machine learning, addressing the challenge of modeling functions that take sets as inputs. Unlike traditional machine learning that involves fixed-size input vectors where the order of features matters, set function learning demands methods that are invariant to permutations of the input set, presenting a unique and complex problem. This survey provides a comprehensive overview of the current development in set function learning, covering foundational theories, key methodologies, and diverse applications. We categorize and discuss existing approaches, focusing on deep learning approaches, such as DeepSets and Set Transformer based methods, as well as other notable alternative methods beyond deep learning, offering a complete view of current models. We also introduce various applications and relevant datasets, such as point cloud processing and multi-label classification, highlighting the significant progress achieved by set function learning methods in these domains. Finally, we conclude by summarizing the current state of set function learning approaches and identifying promising future research directions, aiming to guide and inspire further advancements in this promising field.
Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective
Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning
The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality visio-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.
Machine Translation Advancements of Low-Resource Indian Languages by Transfer Learning
This paper introduces the submission by Huawei Translation Center (HW-TSC) to the WMT24 Indian Languages Machine Translation (MT) Shared Task. To develop a reliable machine translation system for low-resource Indian languages, we employed two distinct knowledge transfer strategies, taking into account the characteristics of the language scripts and the support available from existing open-source models for Indian languages. For Assamese(as) and Manipuri(mn), we fine-tuned the existing IndicTrans2 open-source model to enable bidirectional translation between English and these languages. For Khasi (kh) and Mizo (mz), We trained a multilingual model as a baseline using bilingual data from these four language pairs, along with an additional about 8kw English-Bengali bilingual data, all of which share certain linguistic features. This was followed by fine-tuning to achieve bidirectional translation between English and Khasi, as well as English and Mizo. Our transfer learning experiments produced impressive results: 23.5 BLEU for en-as, 31.8 BLEU for en-mn, 36.2 BLEU for as-en, and 47.9 BLEU for mn-en on their respective test sets. Similarly, the multilingual model transfer learning experiments yielded impressive outcomes, achieving 19.7 BLEU for en-kh, 32.8 BLEU for en-mz, 16.1 BLEU for kh-en, and 33.9 BLEU for mz-en on their respective test sets. These results not only highlight the effectiveness of transfer learning techniques for low-resource languages but also contribute to advancing machine translation capabilities for low-resource Indian languages.
Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech
In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.
WebSHAP: Towards Explaining Any Machine Learning Models Anywhere
As machine learning (ML) is increasingly integrated into our everyday Web experience, there is a call for transparent and explainable web-based ML. However, existing explainability techniques often require dedicated backend servers, which limit their usefulness as the Web community moves toward in-browser ML for lower latency and greater privacy. To address the pressing need for a client-side explainability solution, we present WebSHAP, the first in-browser tool that adapts the state-of-the-art model-agnostic explainability technique SHAP to the Web environment. Our open-source tool is developed with modern Web technologies such as WebGL that leverage client-side hardware capabilities and make it easy to integrate into existing Web ML applications. We demonstrate WebSHAP in a usage scenario of explaining ML-based loan approval decisions to loan applicants. Reflecting on our work, we discuss the opportunities and challenges for future research on transparent Web ML. WebSHAP is available at https://github.com/poloclub/webshap.
Taxonomy of Machine Learning Safety: A Survey and Primer
The open-world deployment of Machine Learning (ML) algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities such as interpretability, verifiability, and performance limitations. Research explores different approaches to improve ML dependability by proposing new models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks. However, there is a missing connection between ongoing ML research and well-established safety principles. In this paper, we present a structured and comprehensive review of ML techniques to improve the dependability of ML algorithms in uncontrolled open-world settings. From this review, we propose the Taxonomy of ML Safety that maps state-of-the-art ML techniques to key engineering safety strategies. Our taxonomy of ML safety presents a safety-oriented categorization of ML techniques to provide guidance for improving dependability of the ML design and development. The proposed taxonomy can serve as a safety checklist to aid designers in improving coverage and diversity of safety strategies employed in any given ML system.
Automated Machine Learning on Graphs: A Survey
Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Machine learning research has advanced in multiple aspects, including model structures and learning methods. The effort to automate such research, known as AutoML, has also made significant progress. However, this progress has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed layers as building blocks---or similarly restrictive search spaces. Our goal is to show that AutoML can go further: it is possible today to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space. Despite the vastness of this space, evolutionary search can still discover two-layer neural networks trained by backpropagation. These simple neural networks can then be surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction for the field.
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
Machine Learning (ML) models are increasingly used to make critical decisions in real-world applications, yet they have become more complex, making them harder to understand. To this end, researchers have proposed several techniques to explain model predictions. However, practitioners struggle to use these explainability techniques because they often do not know which one to choose and how to interpret the results of the explanations. In this work, we address these challenges by introducing TalkToModel: an interactive dialogue system for explaining machine learning models through conversations. Specifically, TalkToModel comprises of three key components: 1) a natural language interface for engaging in conversations, making ML model explainability highly accessible, 2) a dialogue engine that adapts to any tabular model and dataset, interprets natural language, maps it to appropriate explanations, and generates text responses, and 3) an execution component that constructs the explanations. We carried out extensive quantitative and human subject evaluations of TalkToModel. Overall, we found the conversational system understands user inputs on novel datasets and models with high accuracy, demonstrating the system's capacity to generalize to new situations. In real-world evaluations with humans, 73% of healthcare workers (e.g., doctors and nurses) agreed they would use TalkToModel over baseline point-and-click systems for explainability in a disease prediction task, and 85% of ML professionals agreed TalkToModel was easier to use for computing explanations. Our findings demonstrate that TalkToModel is more effective for model explainability than existing systems, introducing a new category of explainability tools for practitioners. Code & demo released here: https://github.com/dylan-slack/TalkToModel.
WAVE: Machine Learning for Full-Waveform Time-Of-Flight Detectors
We propose a WAveform Vector Exploitation (WAVE) deep neural network for full-waveform Time-Of-Flight (TOF) physics detectors, and evaluate its performance against traditional reconstruction techniques via Monte Carlo study of a small plastic-scintillator scatter camera. Ultralytics LLC (www.ultralytics.com) provides WAVE freely under the open source GPL-3.0 license at https://github.com/ultralytics/wave.
Making Machine Learning Datasets and Models FAIR for HPC: A Methodology and Case Study
The FAIR Guiding Principles aim to improve the findability, accessibility, interoperability, and reusability of digital content by making them both human and machine actionable. However, these principles have not yet been broadly adopted in the domain of machine learning-based program analyses and optimizations for High-Performance Computing (HPC). In this paper, we design a methodology to make HPC datasets and machine learning models FAIR after investigating existing FAIRness assessment and improvement techniques. Our methodology includes a comprehensive, quantitative assessment for elected data, followed by concrete, actionable suggestions to improve FAIRness with respect to common issues related to persistent identifiers, rich metadata descriptions, license and provenance information. Moreover, we select a representative training dataset to evaluate our methodology. The experiment shows the methodology can effectively improve the dataset and model's FAIRness from an initial score of 19.1% to the final score of 83.0%.
Matrix Calculus (for Machine Learning and Beyond)
This course, intended for undergraduates familiar with elementary calculus and linear algebra, introduces the extension of differential calculus to functions on more general vector spaces, such as functions that take as input a matrix and return a matrix inverse or factorization, derivatives of ODE solutions, and even stochastic derivatives of random functions. It emphasizes practical computational applications, such as large-scale optimization and machine learning, where derivatives must be re-imagined in order to be propagated through complicated calculations. The class also discusses efficiency concerns leading to "adjoint" or "reverse-mode" differentiation (a.k.a. "backpropagation"), and gives a gentle introduction to modern automatic differentiation (AD) techniques.
Adaptation Strategies for Automated Machine Learning on Evolving Data
Automated Machine Learning (AutoML) systems have been shown to efficiently build good models for new datasets. However, it is often not clear how well they can adapt when the data evolves over time. The main goal of this study is to understand the effect of data stream challenges such as concept drift on the performance of AutoML methods, and which adaptation strategies can be employed to make them more robust. To that end, we propose 6 concept drift adaptation strategies and evaluate their effectiveness on different AutoML approaches. We do this for a variety of AutoML approaches for building machine learning pipelines, including those that leverage Bayesian optimization, genetic programming, and random search with automated stacking. These are evaluated empirically on real-world and synthetic data streams with different types of concept drift. Based on this analysis, we propose ways to develop more sophisticated and robust AutoML techniques.
Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations
We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.
Experimentation, deployment and monitoring Machine Learning models: Approaches for applying MLOps
In recent years, Data Science has become increasingly relevant as a support tool for industry, significantly enhancing decision-making in a way never seen before. In this context, the MLOps discipline emerges as a solution to automate the life cycle of Machine Learning models, ranging from experimentation to monitoring in productive environments. Research results shows MLOps is a constantly evolving discipline, with challenges and solutions for integrating development and production environments, publishing models in production environments, and monitoring models throughout the end to end development lifecycle. This paper contributes to the understanding of MLOps techniques and their most diverse applications.
On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
We introduce new differentially private (DP) mechanisms for gradient-based machine learning (ML) with multiple passes (epochs) over a dataset, substantially improving the achievable privacy-utility-computation tradeoffs. We formalize the problem of DP mechanisms for adaptive streams with multiple participations and introduce a non-trivial extension of online matrix factorization DP mechanisms to our setting. This includes establishing the necessary theory for sensitivity calculations and efficient computation of optimal matrices. For some applications like >!! 10,000 SGD steps, applying these optimal techniques becomes computationally expensive. We thus design an efficient Fourier-transform-based mechanism with only a minor utility loss. Extensive empirical evaluation on both example-level DP for image classification and user-level DP for language modeling demonstrate substantial improvements over all previous methods, including the widely-used DP-SGD . Though our primary application is to ML, our main DP results are applicable to arbitrary linear queries and hence may have much broader applicability.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
Unified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
Improving Drone Imagery For Computer Vision/Machine Learning in Wilderness Search and Rescue
This paper describes gaps in acquisition of drone imagery that impair the use with computer vision/machine learning (CV/ML) models and makes five recommendations to maximize image suitability for CV/ML post-processing. It describes a notional work process for the use of drones in wilderness search and rescue incidents. The large volume of data from the wide area search phase offers the greatest opportunity for CV/ML techniques because of the large number of images that would otherwise have to be manually inspected. The 2023 Wu-Murad search in Japan, one of the largest missing person searches conducted in that area, serves as a case study. Although drone teams conducting wide area searches may not know in advance if the data they collect is going to be used for CV/ML post-processing, there are data collection procedures that can improve the search in general with automated collection software. If the drone teams do expect to use CV/ML, then they can exploit knowledge about the model to further optimize flights.
Impact of Missing Values in Machine Learning: A Comprehensive Analysis
Machine learning (ML) has become a ubiquitous tool across various domains of data mining and big data analysis. The efficacy of ML models depends heavily on high-quality datasets, which are often complicated by the presence of missing values. Consequently, the performance and generalization of ML models are at risk in the face of such datasets. This paper aims to examine the nuanced impact of missing values on ML workflows, including their types, causes, and consequences. Our analysis focuses on the challenges posed by missing values, including biased inferences, reduced predictive power, and increased computational burdens. The paper further explores strategies for handling missing values, including imputation techniques and removal strategies, and investigates how missing values affect model evaluation metrics and introduces complexities in cross-validation and model selection. The study employs case studies and real-world examples to illustrate the practical implications of addressing missing values. Finally, the discussion extends to future research directions, emphasizing the need for handling missing values ethically and transparently. The primary goal of this paper is to provide insights into the pervasive impact of missing values on ML models and guide practitioners toward effective strategies for achieving robust and reliable model outcomes.
Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss
About 90% of the computing resources available to the LHCb experiment has been spent to produce simulated data samples for Run 2 of the Large Hadron Collider at CERN. The upgraded LHCb detector will be able to collect larger data samples, requiring many more simulated events to analyze the data to be collected in Run 3. Simulation is a key necessity of analysis to interpret signal, reject background and measure efficiencies. The needed simulation will far exceed the pledged resources, requiring an evolution in technologies and techniques to produce these simulated data samples. In this contribution, we discuss Lamarr, a Gaudi-based framework to speed-up the simulation production parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment. Deep Generative Models powered by several algorithms and strategies are employed to effectively parameterize the high-level response of the single components of the LHCb detector, encoding within neural networks the experimental errors and uncertainties introduced in the detection and reconstruction phases. Where possible, models are trained directly on real data, statistically subtracting any background components by applying appropriate reweighing procedures. Embedding Lamarr in the general LHCb Gauss Simulation framework allows to combine its execution with any of the available generators in a seamless way. The resulting software package enables a simulation process independent of the detailed simulation used to date.
Advantages and Bottlenecks of Quantum Machine Learning for Remote Sensing
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, so focusing on remote sensing applications, and discuss the bottlenecks of performing these algorithms on currently available open source platforms. Initial results demonstrate feasibility. Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
We develop techniques to quantify the degree to which a given (training or testing) example is an outlier in the underlying distribution. We evaluate five methods to score examples in a dataset by how well-represented the examples are, for different plausible definitions of "well-represented", and apply these to four common datasets: MNIST, Fashion-MNIST, CIFAR-10, and ImageNet. Despite being independent approaches, we find all five are highly correlated, suggesting that the notion of being well-represented can be quantified. Among other uses, we find these methods can be combined to identify (a) prototypical examples (that match human expectations); (b) memorized training examples; and, (c) uncommon submodes of the dataset. Further, we show how we can utilize our metrics to determine an improved ordering for curriculum learning, and impact adversarial robustness. We release all metric values on training and test sets we studied.
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Machine learning models for medical image analysis often suffer from poor performance on important subsets of a population that are not identified during training or testing. For example, overall performance of a cancer detection model may be high, but the model still consistently misses a rare but aggressive cancer subtype. We refer to this problem as hidden stratification, and observe that it results from incompletely describing the meaningful variation in a dataset. While hidden stratification can substantially reduce the clinical efficacy of machine learning models, its effects remain difficult to measure. In this work, we assess the utility of several possible techniques for measuring and describing hidden stratification effects, and characterize these effects on multiple medical imaging datasets. We find evidence that hidden stratification can occur in unidentified imaging subsets with low prevalence, low label quality, subtle distinguishing features, or spurious correlates, and that it can result in relative performance differences of over 20% on clinically important subsets. Finally, we explore the clinical implications of our findings, and suggest that evaluation of hidden stratification should be a critical component of any machine learning deployment in medical imaging.
A Three-Phase Analysis of Synergistic Effects During Co-pyrolysis of Algae and Wood for Biochar Yield Using Machine Learning
Pyrolysis techniques have served to be a groundbreaking technique for effectively utilising natural and man-made biomass products like plastics, wood, crop residue, fruit peels etc. Recent advancements have shown a greater yield of essential products like biochar, bio-oil and other non-condensable gases by blending different biomasses in a certain ratio. This synergy effect of combining two pyrolytic raw materials i.e co-pyrolysis of algae and wood biomass has been systematically studied and grouped into 3 phases in this research paper-kinetic analysis of co-pyrolysis, correlation among proximate and ultimate analysis with bio-char yield and lastly grouping of different weight ratios based on biochar yield up to a certain percentage. Different ML and DL algorithms have been utilized for regression and classification techniques to give a comprehensive overview of the effect of the synergy of two different biomass materials on biochar yield. For the first phase, the best prediction of biochar yield was obtained by using a decision tree regressor with a perfect MSE score of 0.00, followed by a gradient-boosting regressor. The second phase was analyzed using both ML and DL techniques. Within ML, SVR proved to be the most convenient model with an accuracy score of 0.972 with DNN employed for deep learning technique. Finally, for the third phase, binary classification was applied to biochar yield with and without heating rate for biochar yield percentage above and below 40%. The best technique for ML was Support Vector followed by Random forest while ANN was the most suitable Deep Learning Technique.
Forecasting Patient Demand at Urgent Care Clinics using Machine Learning
Urgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to inadequate staffing levels. These delays have been linked with adverse clinical outcomes. Previous research into forecasting demand this domain has mostly used a collection of statistical techniques, with machine learning approaches only now beginning to emerge in recent literature. The forecasting problem for this domain is difficult and has also been complicated by the COVID-19 pandemic which has introduced an additional complexity to this estimation due to typical demand patterns being disrupted. This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand. A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance. The study also performed an in-depth analysis into the model behaviour in respect to the exploration of which features are most effective at predicting demand and which features are capable of adaptation to the volatility caused by the COVID-19 pandemic lockdowns. The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.
InterpretML: A Unified Framework for Machine Learning Interpretability
InterpretML is an open-source Python package which exposes machine learning interpretability algorithms to practitioners and researchers. InterpretML exposes two types of interpretability - glassbox models, which are machine learning models designed for interpretability (ex: linear models, rule lists, generalized additive models), and blackbox explainability techniques for explaining existing systems (ex: Partial Dependence, LIME). The package enables practitioners to easily compare interpretability algorithms by exposing multiple methods under a unified API, and by having a built-in, extensible visualization platform. InterpretML also includes the first implementation of the Explainable Boosting Machine, a powerful, interpretable, glassbox model that can be as accurate as many blackbox models. The MIT licensed source code can be downloaded from github.com/microsoft/interpret.
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.
Deep Aramaic: Towards a Synthetic Data Paradigm Enabling Machine Learning in Epigraphy
Epigraphy increasingly turns to modern artificial intelligence (AI) technologies such as machine learning (ML) for extracting insights from ancient inscriptions. However, scarce labeled data for training ML algorithms severely limits current techniques, especially for ancient scripts like Old Aramaic. Our research pioneers an innovative methodology for generating synthetic training data tailored to Old Aramaic letters. Our pipeline synthesizes photo-realistic Aramaic letter datasets, incorporating textural features, lighting, damage, and augmentations to mimic real-world inscription diversity. Despite minimal real examples, we engineer a dataset of 250,000 training and 25,000 validation images covering the 22 letter classes in the Aramaic alphabet. This comprehensive corpus provides a robust volume of data for training a residual neural network (ResNet) to classify highly degraded Aramaic letters. The ResNet model demonstrates high accuracy in classifying real images from the 8th century BCE Hadad statue inscription. Additional experiments validate performance on varying materials and styles, proving effective generalization. Our results validate the model's capabilities in handling diverse real-world scenarios, proving the viability of our synthetic data approach and avoiding the dependence on scarce training data that has constrained epigraphic analysis. Our innovative framework elevates interpretation accuracy on damaged inscriptions, thus enhancing knowledge extraction from these historical resources.
DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps
In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.
Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning
High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement.
Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems
Decision-based adversarial attacks construct inputs that fool a machine-learning model into making targeted mispredictions by making only hard-label queries. For the most part, these attacks have been applied directly to isolated neural network models. However, in practice, machine learning models are just a component of a much larger system. By adding just a single preprocessor in front of a classifier, we find that state-of-the-art query-based attacks are as much as seven times less effective at attacking a prediction pipeline than attacking the machine learning model alone. Hence, attacks that are unaware of this invariance inevitably waste a large number of queries to re-discover or overcome it. We, therefore, develop techniques to first reverse-engineer the preprocessor and then use this extracted information to attack the end-to-end system. Our extraction method requires only a few hundred queries to learn the preprocessors used by most publicly available model pipelines, and our preprocessor-aware attacks recover the same efficacy as just attacking the model alone. The code can be found at https://github.com/google-research/preprocessor-aware-black-box-attack.
Building Flexible, Scalable, and Machine Learning-ready Multimodal Oncology Datasets
The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS) - a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines' scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.
asanAI: In-Browser, No-Code, Offline-First Machine Learning Toolkit
Machine learning (ML) has become crucial in modern life, with growing interest from researchers and the public. Despite its potential, a significant entry barrier prevents widespread adoption, making it challenging for non-experts to understand and implement ML techniques. The increasing desire to leverage ML is counterbalanced by its technical complexity, creating a gap between potential and practical application. This work introduces asanAI, an offline-first, open-source, no-code machine learning toolkit designed for users of all skill levels. It allows individuals to design, debug, train, and test ML models directly in a web browser, eliminating the need for software installations and coding. The toolkit runs on any device with a modern web browser, including smartphones, and ensures user privacy through local computations while utilizing WebGL for enhanced GPU performance. Users can quickly experiment with neural networks and train custom models using various data sources, supported by intuitive visualizations of network structures and data flows. asanAI simplifies the teaching of ML concepts in educational settings and is released under an open-source MIT license, encouraging modifications. It also supports exporting models in industry-ready formats, empowering a diverse range of users to effectively learn and apply machine learning in their projects. The proposed toolkit is successfully utilized by researchers of ScaDS.AI to swiftly draft and test machine learning ideas, by trainers to effectively educate enthusiasts, and by teachers to introduce contemporary ML topics in classrooms with minimal effort and high clarity.
Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning
Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are some limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, data driven machine learning-based methods such as neural networks provide a faster, fairly accurate alternative, and have certain advantages such as discretization invariance and resolution invariance. This article aims to provide a comprehensive insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems, while also noting some of the major pitfalls of machine learning-based approaches. Furthermore, we highlight, a novel and fast machine learning-based approach (~1000x) to learning the solution operator of a PDE operator learning. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.
Multi-stage Neural Networks: Function Approximator of Machine Precision
Deep learning techniques are increasingly applied to scientific problems, where the precision of networks is crucial. Despite being deemed as universal function approximators, neural networks, in practice, struggle to reduce the prediction errors below O(10^{-5}) even with large network size and extended training iterations. To address this issue, we developed the multi-stage neural networks that divides the training process into different stages, with each stage using a new network that is optimized to fit the residue from the previous stage. Across successive stages, the residue magnitudes decreases substantially and follows an inverse power-law relationship with the residue frequencies. The multi-stage neural networks effectively mitigate the spectral biases associated with regular neural networks, enabling them to capture the high frequency feature of target functions. We demonstrate that the prediction error from the multi-stage training for both regression problems and physics-informed neural networks can nearly reach the machine-precision O(10^{-16}) of double-floating point within a finite number of iterations. Such levels of accuracy are rarely attainable using single neural networks alone.
Learning Type Inference for Enhanced Dataflow Analysis
Statically analyzing dynamically-typed code is a challenging endeavor, as even seemingly trivial tasks such as determining the targets of procedure calls are non-trivial without knowing the types of objects at compile time. Addressing this challenge, gradual typing is increasingly added to dynamically-typed languages, a prominent example being TypeScript that introduces static typing to JavaScript. Gradual typing improves the developer's ability to verify program behavior, contributing to robust, secure and debuggable programs. In practice, however, users only sparsely annotate types directly. At the same time, conventional type inference faces performance-related challenges as program size grows. Statistical techniques based on machine learning offer faster inference, but although recent approaches demonstrate overall improved accuracy, they still perform significantly worse on user-defined types than on the most common built-in types. Limiting their real-world usefulness even more, they rarely integrate with user-facing applications. We propose CodeTIDAL5, a Transformer-based model trained to reliably predict type annotations. For effective result retrieval and re-integration, we extract usage slices from a program's code property graph. Comparing our approach against recent neural type inference systems, our model outperforms the current state-of-the-art by 7.85% on the ManyTypes4TypeScript benchmark, achieving 71.27% accuracy overall. Furthermore, we present JoernTI, an integration of our approach into Joern, an open source static analysis tool, and demonstrate that the analysis benefits from the additional type information. As our model allows for fast inference times even on commodity CPUs, making our system available through Joern leads to high accessibility and facilitates security research.
Transfer Learning for Low-Resource Sentiment Analysis
Sentiment analysis is the process of identifying and extracting subjective information from text. Despite the advances to employ cross-lingual approaches in an automatic way, the implementation and evaluation of sentiment analysis systems require language-specific data to consider various sociocultural and linguistic peculiarities. In this paper, the collection and annotation of a dataset are described for sentiment analysis of Central Kurdish. We explore a few classical machine learning and neural network-based techniques for this task. Additionally, we employ an approach in transfer learning to leverage pretrained models for data augmentation. We demonstrate that data augmentation achieves a high F_1 score and accuracy despite the difficulty of the task.
LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset
An Overview of Violence Detection Techniques: Current Challenges and Future Directions
The Big Video Data generated in today's smart cities has raised concerns from its purposeful usage perspective, where surveillance cameras, among many others are the most prominent resources to contribute to the huge volumes of data, making its automated analysis a difficult task in terms of computation and preciseness. Violence Detection (VD), broadly plunging under Action and Activity recognition domain, is used to analyze Big Video data for anomalous actions incurred due to humans. The VD literature is traditionally based on manually engineered features, though advancements to deep learning based standalone models are developed for real-time VD analysis. This paper focuses on overview of deep sequence learning approaches along with localization strategies of the detected violence. This overview also dives into the initial image processing and machine learning-based VD literature and their possible advantages such as efficiency against the current complex models. Furthermore,the datasets are discussed, to provide an analysis of the current models, explaining their pros and cons with future directions in VD domain derived from an in-depth analysis of the previous methods.
Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning in a framework designed to tackle the challenges posed by small-sample data. Recognizing the critical limitations of traditional machine learning models that require large datasets-especially in fields such as drug discovery, target recognition, and malicious traffic detection-this study proposes a novel strategy that leverages Generative Adversarial Networks (GANs) and advanced optimization techniques to improve model performance with limited data. Specifically, the paper addresses the noise and bias issues introduced by data augmentation methods, contrasting them with model-based approaches, such as fine-tuning and metric learning, which rely heavily on related datasets. By combining Markov Chain Monte Carlo (MCMC) sampling and discriminative model ensemble strategies within a GAN framework, the proposed model adjusts generative and discriminative distributions to simulate a broader range of relevant data. Furthermore, it employs MHLoss and a reparameterized GAN ensemble to enhance stability and accelerate convergence, ultimately leading to improved classification performance on small-sample images and structured datasets. Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning, offering a practical solution that bridges data scarcity with high-performing model adaptability and generalization.
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks
Over the last several decades, software has been woven into the fabric of every aspect of our society. As software development surges and code infrastructure of enterprise applications ages, it is now more critical than ever to increase software development productivity and modernize legacy applications. Advances in deep learning and machine learning algorithms have enabled numerous breakthroughs, motivating researchers to leverage AI techniques to improve software development efficiency. Thus, the fast-emerging research area of AI for Code has garnered new interest and gathered momentum. In this paper, we present a large-scale dataset CodeNet, consisting of over 14 million code samples and about 500 million lines of code in 55 different programming languages, which is aimed at teaching AI to code. In addition to its large scale, CodeNet has a rich set of high-quality annotations to benchmark and help accelerate research in AI techniques for a variety of critical coding tasks, including code similarity and classification, code translation between a large variety of programming languages, and code performance (runtime and memory) improvement techniques. Additionally, CodeNet provides sample input and output test sets for 98.5% of the code samples, which can be used as an oracle for determining code correctness and potentially guide reinforcement learning for code quality improvements. As a usability feature, we provide several pre-processing tools in CodeNet to transform source code into representations that can be readily used as inputs into machine learning models. Results of code classification and code similarity experiments using the CodeNet dataset are provided as a reference. We hope that the scale, diversity and rich, high-quality annotations of CodeNet will offer unprecedented research opportunities at the intersection of AI and Software Engineering.
Leveraging Reinforcement Learning and Large Language Models for Code Optimization
Code optimization is a daunting task that requires a significant level of expertise from experienced programmers. This level of expertise is not sufficient when compared to the rapid development of new hardware architectures. Towards advancing the whole code optimization process, recent approaches rely on machine learning and artificial intelligence techniques. This paper introduces a new framework to decrease the complexity of code optimization. The proposed framework builds on large language models (LLMs) and reinforcement learning (RL) and enables LLMs to receive feedback from their environment (i.e., unit tests) during the fine-tuning process. We compare our framework with existing state-of-the-art models and show that it is more efficient with respect to speed and computational usage, as a result of the decrement in training steps and its applicability to models with fewer parameters. Additionally, our framework reduces the possibility of logical and syntactical errors. Toward evaluating our approach, we run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm. We adopt a variety of evaluation metrics with regards to optimization quality, and speedup. The evaluation results demonstrate that the proposed framework has similar results in comparison with existing models using shorter training times and smaller pre-trained models. In particular, we accomplish an increase of 5.6% and 2.2 over the baseline models concerning the %OP T and SP metrics.
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
A Classical Approach to Handcrafted Feature Extraction Techniques for Bangla Handwritten Digit Recognition
Bangla Handwritten Digit recognition is a significant step forward in the development of Bangla OCR. However, intricate shape, structural likeness and distinctive composition style of Bangla digits makes it relatively challenging to distinguish. Thus, in this paper, we benchmarked four rigorous classifiers to recognize Bangla Handwritten Digit: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Gradient-Boosted Decision Trees (GBDT) based on three handcrafted feature extraction techniques: Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP), and Gabor filter on four publicly available Bangla handwriting digits datasets: NumtaDB, CMARTdb, Ekush and BDRW. Here, handcrafted feature extraction methods are used to extract features from the dataset image, which are then utilized to train machine learning classifiers to identify Bangla handwritten digits. We further fine-tuned the hyperparameters of the classification algorithms in order to acquire the finest Bangla handwritten digits recognition performance from these algorithms, and among all the models we employed, the HOG features combined with SVM model (HOG+SVM) attained the best performance metrics across all datasets. The recognition accuracy of the HOG+SVM method on the NumtaDB, CMARTdb, Ekush and BDRW datasets reached 93.32%, 98.08%, 95.68% and 89.68%, respectively as well as we compared the model performance with recent state-of-art methods.
AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks
Automated machine learning (AutoML) is a collection of techniques designed to automate the machine learning development process. While traditional AutoML approaches have been successfully applied in several critical steps of model development (e.g. hyperparameter optimization), there lacks a AutoML system that automates the entire end-to-end model production workflow. To fill this blank, we present AutoMMLab, a general-purpose LLM-empowered AutoML system that follows user's language instructions to automate the whole model production workflow for computer vision tasks. The proposed AutoMMLab system effectively employs LLMs as the bridge to connect AutoML and OpenMMLab community, empowering non-expert individuals to easily build task-specific models via a user-friendly language interface. Specifically, we propose RU-LLaMA to understand users' request and schedule the whole pipeline, and propose a novel LLM-based hyperparameter optimizer called HPO-LLaMA to effectively search for the optimal hyperparameters. Experiments show that our AutoMMLab system is versatile and covers a wide range of mainstream tasks, including classification, detection, segmentation and keypoint estimation. We further develop a new benchmark, called LAMP, for studying key components in the end-to-end prompt-based model training pipeline. Code, model, and data will be released.
Design and Development of Rule-based open-domain Question-Answering System on SQuAD v2.0 Dataset
Human mind is the palace of curious questions that seek answers. Computational resolution of this challenge is possible through Natural Language Processing techniques. Statistical techniques like machine learning and deep learning require a lot of data to train and despite that they fail to tap into the nuances of language. Such systems usually perform best on close-domain datasets. We have proposed development of a rule-based open-domain question-answering system which is capable of answering questions of any domain from a corresponding context passage. We have used 1000 questions from SQuAD 2.0 dataset for testing the developed system and it gives satisfactory results. In this paper, we have described the structure of the developed system and have analyzed the performance.
What Happens When Small Is Made Smaller? Exploring the Impact of Compression on Small Data Pretrained Language Models
Compression techniques have been crucial in advancing machine learning by enabling efficient training and deployment of large-scale language models. However, these techniques have received limited attention in the context of low-resource language models, which are trained on even smaller amounts of data and under computational constraints, a scenario known as the "low-resource double-bind." This paper investigates the effectiveness of pruning, knowledge distillation, and quantization on an exclusively low-resourced, small-data language model, AfriBERTa. Through a battery of experiments, we assess the effects of compression on performance across several metrics beyond accuracy. Our study provides evidence that compression techniques significantly improve the efficiency and effectiveness of small-data language models, confirming that the prevailing beliefs regarding the effects of compression on large, heavily parameterized models hold true for less-parameterized, small-data models.
Guiding Generative Language Models for Data Augmentation in Few-Shot Text Classification
Data augmentation techniques are widely used for enhancing the performance of machine learning models by tackling class imbalance issues and data sparsity. State-of-the-art generative language models have been shown to provide significant gains across different NLP tasks. However, their applicability to data augmentation for text classification tasks in few-shot settings have not been fully explored, especially for specialised domains. In this paper, we leverage GPT-2 (Radford A et al, 2019) for generating artificial training instances in order to improve classification performance. Our aim is to analyse the impact the selection process of seed training examples have over the quality of GPT-generated samples and consequently the classifier performance. We perform experiments with several seed selection strategies that, among others, exploit class hierarchical structures and domain expert selection. Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements and outperform competitive baselines. Finally, we show that guiding this process through domain expert selection can lead to further improvements, which opens up interesting research avenues for combining generative models and active learning.
Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review
Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.
Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
Heart Disease Detection using Vision-Based Transformer Models from ECG Images
Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.
Gradients are Not All You Need
Differentiable programming techniques are widely used in the community and are responsible for the machine learning renaissance of the past several decades. While these methods are powerful, they have limits. In this short report, we discuss a common chaos based failure mode which appears in a variety of differentiable circumstances, ranging from recurrent neural networks and numerical physics simulation to training learned optimizers. We trace this failure to the spectrum of the Jacobian of the system under study, and provide criteria for when a practitioner might expect this failure to spoil their differentiation based optimization algorithms.
Self-Distillation for Gaussian Process Regression and Classification
We propose two approaches to extend the notion of knowledge distillation to Gaussian Process Regression (GPR) and Gaussian Process Classification (GPC); data-centric and distribution-centric. The data-centric approach resembles most current distillation techniques for machine learning, and refits a model on deterministic predictions from the teacher, while the distribution-centric approach, re-uses the full probabilistic posterior for the next iteration. By analyzing the properties of these approaches, we show that the data-centric approach for GPR closely relates to known results for self-distillation of kernel ridge regression and that the distribution-centric approach for GPR corresponds to ordinary GPR with a very particular choice of hyperparameters. Furthermore, we demonstrate that the distribution-centric approach for GPC approximately corresponds to data duplication and a particular scaling of the covariance and that the data-centric approach for GPC requires redefining the model from a Binomial likelihood to a continuous Bernoulli likelihood to be well-specified. To the best of our knowledge, our proposed approaches are the first to formulate knowledge distillation specifically for Gaussian Process models.
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation
Magnetic resonance imaging (MRI) is a cornerstone of modern medical imaging. However, long image acquisition times, the need for qualitative expert analysis, and the lack of (and difficulty extracting) quantitative indicators that are sensitive to tissue health have curtailed widespread clinical and research studies. While recent machine learning methods for MRI reconstruction and analysis have shown promise for reducing this burden, these techniques are primarily validated with imperfect image quality metrics, which are discordant with clinically-relevant measures that ultimately hamper clinical deployment and clinician trust. To mitigate this challenge, we present the Stanford Knee MRI with Multi-Task Evaluation (SKM-TEA) dataset, a collection of quantitative knee MRI (qMRI) scans that enables end-to-end, clinically-relevant evaluation of MRI reconstruction and analysis tools. This 1.6TB dataset consists of raw-data measurements of ~25,000 slices (155 patients) of anonymized patient MRI scans, the corresponding scanner-generated DICOM images, manual segmentations of four tissues, and bounding box annotations for sixteen clinically relevant pathologies. We provide a framework for using qMRI parameter maps, along with image reconstructions and dense image labels, for measuring the quality of qMRI biomarker estimates extracted from MRI reconstruction, segmentation, and detection techniques. Finally, we use this framework to benchmark state-of-the-art baselines on this dataset. We hope our SKM-TEA dataset and code can enable a broad spectrum of research for modular image reconstruction and image analysis in a clinically informed manner. Dataset access, code, and benchmarks are available at https://github.com/StanfordMIMI/skm-tea.
Uncertainty quantification in a mechanical submodel driven by a Wasserstein-GAN
The analysis of parametric and non-parametric uncertainties of very large dynamical systems requires the construction of a stochastic model of said system. Linear approaches relying on random matrix theory and principal componant analysis can be used when systems undergo low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a random generator of boundary conditions for fast submodels by using machine learning. We show that the use of non-linear techniques in machine learning and data-driven methods is highly relevant. Physics-informed neural networks is a possible choice for a data-driven method to replace linear modal analysis. An architecture that support a random component is necessary for the construction of the stochastic model of the physical system for non-parametric uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in the data. Generative Adversarial Networks (GANs) are suited for such applications, where the Wasserstein-GAN with gradient penalty variant offers improved convergence results for our problem. The objective of our approach is to train a GAN on data from a finite element method code (Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on a submodel. The submodel and the training data have both the same geometrical support. It is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the exploitation phase, the framework can be viewed as a randomized and parametrized simulation generator on the submodel, which can be used as a Monte Carlo estimator.
Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need
The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach.
AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting
We introduce AutoGluon-TimeSeries - an open-source AutoML library for probabilistic time series forecasting. Focused on ease of use and robustness, AutoGluon-TimeSeries enables users to generate accurate point and quantile forecasts with just 3 lines of Python code. Built on the design philosophy of AutoGluon, AutoGluon-TimeSeries leverages ensembles of diverse forecasting models to deliver high accuracy within a short training time. AutoGluon-TimeSeries combines both conventional statistical models, machine-learning based forecasting approaches, and ensembling techniques. In our evaluation on 29 benchmark datasets, AutoGluon-TimeSeries demonstrates strong empirical performance, outperforming a range of forecasting methods in terms of both point and quantile forecast accuracy, and often even improving upon the best-in-hindsight combination of prior methods.
Words are all you need? Language as an approximation for human similarity judgments
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.
ChroniclingAmericaQA: A Large-scale Question Answering Dataset based on Historical American Newspaper Pages
Question answering (QA) and Machine Reading Comprehension (MRC) tasks have significantly advanced in recent years due to the rapid development of deep learning techniques and, more recently, large language models. At the same time, many benchmark datasets have become available for QA and MRC tasks. However, most existing large-scale benchmark datasets have been created predominantly using synchronous document collections like Wikipedia or the Web. Archival document collections, such as historical newspapers, contain valuable information from the past that is still not widely used to train large language models. To further contribute to advancing QA and MRC tasks and to overcome the limitation of previous datasets, we introduce ChroniclingAmericaQA, a large-scale dataset with 485K question-answer pairs created based on the historical newspaper collection Chronicling America. Our dataset is constructed from a subset of the Chronicling America newspaper collection spanning 120 years. One of the significant challenges for utilizing digitized historical newspaper collections is the low quality of OCR text. Therefore, to enable realistic testing of QA models, our dataset can be used in three different ways: answering questions from raw and noisy content, answering questions from cleaner, corrected version of the content, as well as answering questions from scanned images of newspaper pages. This and the fact that ChroniclingAmericaQA spans the longest time period among available QA datasets make it quite a unique and useful resource.
FPIC: A Novel Semantic Dataset for Optical PCB Assurance
Outsourced printed circuit board (PCB) fabrication necessitates increased hardware assurance capabilities. Several assurance techniques based on automated optical inspection (AOI) have been proposed that leverage PCB images acquired using digital cameras. We review state-of-the-art AOI techniques and observe a strong, rapid trend toward machine learning (ML) solutions. These require significant amounts of labeled ground truth data, which is lacking in the publicly available PCB data space. We contribute the FICS PCB Image Collection (FPIC) dataset to address this need. Additionally, we outline new hardware security methodologies enabled by our data set.
NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba
Network traffic classification is a crucial research area aiming to enhance service quality, streamline network management, and bolster cybersecurity. To address the growing complexity of transmission encryption techniques, various machine learning and deep learning methods have been proposed. However, existing approaches face two main challenges. Firstly, they struggle with model inefficiency due to the quadratic complexity of the widely used Transformer architecture. Secondly, they suffer from inadequate traffic representation because of discarding important byte information while retaining unwanted biases. To address these challenges, we propose NetMamba, an efficient linear-time state space model equipped with a comprehensive traffic representation scheme. We adopt a specially selected and improved unidirectional Mamba architecture for the networking field, instead of the Transformer, to address efficiency issues. In addition, we design a traffic representation scheme to extract valid information from massive traffic data while removing biased information. Evaluation experiments on six public datasets encompassing three main classification tasks showcase NetMamba's superior classification performance compared to state-of-the-art baselines. It achieves an accuracy rate of nearly 99% (some over 99%) in all tasks. Additionally, NetMamba demonstrates excellent efficiency, improving inference speed by up to 60 times while maintaining comparably low memory usage. Furthermore, NetMamba exhibits superior few-shot learning abilities, achieving better classification performance with fewer labeled data. To the best of our knowledge, NetMamba is the first model to tailor the Mamba architecture for networking.
Pursuing Counterfactual Fairness via Sequential Autoencoder Across Domains
Recognizing the prevalence of domain shift as a common challenge in machine learning, various domain generalization (DG) techniques have been developed to enhance the performance of machine learning systems when dealing with out-of-distribution (OOD) data. Furthermore, in real-world scenarios, data distributions can gradually change across a sequence of sequential domains. While current methodologies primarily focus on improving model effectiveness within these new domains, they often overlook fairness issues throughout the learning process. In response, we introduce an innovative framework called Counterfactual Fairness-Aware Domain Generalization with Sequential Autoencoder (CDSAE). This approach effectively separates environmental information and sensitive attributes from the embedded representation of classification features. This concurrent separation not only greatly improves model generalization across diverse and unfamiliar domains but also effectively addresses challenges related to unfair classification. Our strategy is rooted in the principles of causal inference to tackle these dual issues. To examine the intricate relationship between semantic information, sensitive attributes, and environmental cues, we systematically categorize exogenous uncertainty factors into four latent variables: 1) semantic information influenced by sensitive attributes, 2) semantic information unaffected by sensitive attributes, 3) environmental cues influenced by sensitive attributes, and 4) environmental cues unaffected by sensitive attributes. By incorporating fairness regularization, we exclusively employ semantic information for classification purposes. Empirical validation on synthetic and real-world datasets substantiates the effectiveness of our approach, demonstrating improved accuracy levels while ensuring the preservation of fairness in the evolving landscape of continuous domains.
DynamicISP: Dynamically Controlled Image Signal Processor for Image Recognition
Image Signal Processors (ISPs) play important roles in image recognition tasks as well as in the perceptual quality of captured images. In most cases, experts make a lot of effort to manually tune many parameters of ISPs, but the parameters are sub-optimal. In the literature, two types of techniques have been actively studied: a machine learning-based parameter tuning technique and a DNN-based ISP technique. The former is lightweight but lacks expressive power. The latter has expressive power, but the computational cost is too heavy on edge devices. To solve these problems, we propose "DynamicISP," which consists of multiple classical ISP functions and dynamically controls the parameters of each frame according to the recognition result of the previous frame. We show our method successfully controls the parameters of multiple ISP functions and achieves state-of-the-art accuracy with low computational cost in single and multi-category object detection tasks.
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
EXAdam: The Power of Adaptive Cross-Moments
This paper introduces EXAdam (EXtended Adam), a novel optimization algorithm that builds upon the widely-used Adam optimizer. EXAdam incorporates three key enhancements: (1) new debiasing terms for improved moment estimation, (2) a gradient-based acceleration mechanism for increased responsiveness to the current loss landscape, and (3) a dynamic step size formula that allows for continuous growth of the learning rate throughout training. These innovations work synergistically to address limitations of the original Adam algorithm, potentially offering improved convergence properties, enhanced ability to escape saddle points, and greater robustness to hyperparameter choices. I provide a theoretical analysis of EXAdam's components and their interactions, highlighting the algorithm's potential advantages in navigating complex optimization landscapes. Empirical evaluations demonstrate EXAdam's superiority over Adam, achieving 48.07% faster convergence and yielding improvements of 4.6%, 4.13%, and 2.39% in training, validation, and testing accuracies, respectively, when applied to a CNN trained on the CIFAR-10 dataset. While these results are promising, further empirical validation across diverse tasks is essential to fully gauge EXAdam's efficacy. Nevertheless, EXAdam represents a significant advancement in adaptive optimization techniques, with promising implications for a wide range of machine learning applications. This work aims to contribute to the ongoing development of more efficient, adaptive, and universally applicable optimization methods in the field of machine learning and artificial intelligence.
Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and 10+ machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
Universal Neural-Cracking-Machines: Self-Configurable Password Models from Auxiliary Data
We introduce the concept of "universal password model" -- a password model that, once pre-trained, can automatically adapt its guessing strategy based on the target system. To achieve this, the model does not need to access any plaintext passwords from the target credentials. Instead, it exploits users' auxiliary information, such as email addresses, as a proxy signal to predict the underlying password distribution. Specifically, the model uses deep learning to capture the correlation between the auxiliary data of a group of users (e.g., users of a web application) and their passwords. It then exploits those patterns to create a tailored password model for the target system at inference time. No further training steps, targeted data collection, or prior knowledge of the community's password distribution is required. Besides improving over current password strength estimation techniques and attacks, the model enables any end-user (e.g., system administrators) to autonomously generate tailored password models for their systems without the often unworkable requirements of collecting suitable training data and fitting the underlying machine learning model. Ultimately, our framework enables the democratization of well-calibrated password models to the community, addressing a major challenge in the deployment of password security solutions at scale.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Boundary Unlearning
The practical needs of the ``right to be forgotten'' and poisoned data removal call for efficient machine unlearning techniques, which enable machine learning models to unlearn, or to forget a fraction of training data and its lineage. Recent studies on machine unlearning for deep neural networks (DNNs) attempt to destroy the influence of the forgetting data by scrubbing the model parameters. However, it is prohibitively expensive due to the large dimension of the parameter space. In this paper, we refocus our attention from the parameter space to the decision space of the DNN model, and propose Boundary Unlearning, a rapid yet effective way to unlearn an entire class from a trained DNN model. The key idea is to shift the decision boundary of the original DNN model to imitate the decision behavior of the model retrained from scratch. We develop two novel boundary shift methods, namely Boundary Shrink and Boundary Expanding, both of which can rapidly achieve the utility and privacy guarantees. We extensively evaluate Boundary Unlearning on CIFAR-10 and Vggface2 datasets, and the results show that Boundary Unlearning can effectively forget the forgetting class on image classification and face recognition tasks, with an expected speed-up of 17times and 19times, respectively, compared with retraining from the scratch.
PCB Component Detection using Computer Vision for Hardware Assurance
Printed Circuit Board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods, however they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduce the number of trainable ML parameters and thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection using semantic data. Results of this study indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities.
A Survey on Cross-Architectural IoT Malware Threat Hunting
In recent years, the increase in non-Windows malware threats had turned the focus of the cybersecurity community. Research works on hunting Windows PE-based malwares are maturing, whereas the developments on Linux malware threat hunting are relatively scarce. With the advent of the Internet of Things (IoT) era, smart devices that are getting integrated into human life have become a hackers highway for their malicious activities. The IoT devices employ various Unix-based architectures that follow ELF (Executable and Linkable Format) as their standard binary file specification. This study aims at providing a comprehensive survey on the latest developments in cross-architectural IoT malware detection and classification approaches. Aided by a modern taxonomy, we discuss the feature representations, feature extraction techniques, and machine learning models employed in the surveyed works. We further provide more insights on the practical challenges involved in cross-architectural IoT malware threat hunting and discuss various avenues to instill potential future research.
On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the fundamental limits of MSFDA. In particular, we develop an information-theoretic bound on the generalization error of the resulting target model, which illustrates an inherent bias-variance trade-off. We then provide insights on how to balance this trade-off from three perspectives, including domain aggregation, selective pseudo-labeling, and joint feature alignment, which leads to the design of novel algorithms. Experiments on multiple datasets validate our theoretical analysis and demonstrate the state-of-art performance of the proposed algorithm, especially on some of the most challenging datasets, including Office-Home and DomainNet.
A Systematic Literature Review of Automated ICD Coding and Classification Systems using Discharge Summaries
Codification of free-text clinical narratives have long been recognised to be beneficial for secondary uses such as funding, insurance claim processing and research. The current scenario of assigning codes is a manual process which is very expensive, time-consuming and error prone. In recent years, many researchers have studied the use of Natural Language Processing (NLP), related Machine Learning (ML) and Deep Learning (DL) methods and techniques to resolve the problem of manual coding of clinical narratives and to assist human coders to assign clinical codes more accurately and efficiently. This systematic literature review provides a comprehensive overview of automated clinical coding systems that utilises appropriate NLP, ML and DL methods and techniques to assign ICD codes to discharge summaries. We have followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines and conducted a comprehensive search of publications from January, 2010 to December 2020 in four academic databases- PubMed, ScienceDirect, Association for Computing Machinery(ACM) Digital Library, and the Association for Computational Linguistics(ACL) Anthology. We reviewed 7,556 publications; 38 met the inclusion criteria. This review identified: datasets having discharge summaries; NLP techniques along with some other data extraction processes, different feature extraction and embedding techniques. To measure the performance of classification methods, different evaluation metrics are used. Lastly, future research directions are provided to scholars who are interested in automated ICD code assignment. Efforts are still required to improve ICD code prediction accuracy, availability of large-scale de-identified clinical corpora with the latest version of the classification system. This can be a platform to guide and share knowledge with the less experienced coders and researchers.
Awareness in Practice: Tensions in Access to Sensitive Attribute Data for Antidiscrimination
Organizations cannot address demographic disparities that they cannot see. Recent research on machine learning and fairness has emphasized that awareness of sensitive attributes, such as race and sex, is critical to the development of interventions. However, on the ground, the existence of these data cannot be taken for granted. This paper uses the domains of employment, credit, and healthcare in the United States to surface conditions that have shaped the availability of sensitive attribute data. For each domain, we describe how and when private companies collect or infer sensitive attribute data for antidiscrimination purposes. An inconsistent story emerges: Some companies are required by law to collect sensitive attribute data, while others are prohibited from doing so. Still others, in the absence of legal mandates, have determined that collection and imputation of these data are appropriate to address disparities. This story has important implications for fairness research and its future applications. If companies that mediate access to life opportunities are unable or hesitant to collect or infer sensitive attribute data, then proposed techniques to detect and mitigate bias in machine learning models might never be implemented outside the lab. We conclude that today's legal requirements and corporate practices, while highly inconsistent across domains, offer lessons for how to approach the collection and inference of sensitive data in appropriate circumstances. We urge stakeholders, including machine learning practitioners, to actively help chart a path forward that takes both policy goals and technical needs into account.
On Learning Meaningful Code Changes via Neural Machine Translation
Recent years have seen the rise of Deep Learning (DL) techniques applied to source code. Researchers have exploited DL to automate several development and maintenance tasks, such as writing commit messages, generating comments and detecting vulnerabilities among others. One of the long lasting dreams of applying DL to source code is the possibility to automate non-trivial coding activities. While some steps in this direction have been taken (e.g., learning how to fix bugs), there is still a glaring lack of empirical evidence on the types of code changes that can be learned and automatically applied by DL. Our goal is to make this first important step by quantitatively and qualitatively investigating the ability of a Neural Machine Translation (NMT) model to learn how to automatically apply code changes implemented by developers during pull requests. We train and experiment with the NMT model on a set of 236k pairs of code components before and after the implementation of the changes provided in the pull requests. We show that, when applied in a narrow enough context (i.e., small/medium-sized pairs of methods before/after the pull request changes), NMT can automatically replicate the changes implemented by developers during pull requests in up to 36% of the cases. Moreover, our qualitative analysis shows that the model is capable of learning and replicating a wide variety of meaningful code changes, especially refactorings and bug-fixing activities. Our results pave the way for novel research in the area of DL on code, such as the automatic learning and applications of refactoring.
A Survey of Learning-based Automated Program Repair
Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely-adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at https://github.com/QuanjunZhang/AwesomeLearningAPR.
An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation
Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation of software development histories can be leveraged to learn how to fix common programming bugs. To explore such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and generate candidate patches in a split second.
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation
Existing multilingual machine translation approaches mainly focus on English-centric directions, while the non-English directions still lag behind. In this work, we aim to build a many-to-many translation system with an emphasis on the quality of non-English language directions. Our intuition is based on the hypothesis that a universal cross-language representation leads to better multilingual translation performance. To this end, we propose mRASP2, a training method to obtain a single unified multilingual translation model. mRASP2 is empowered by two techniques: a) a contrastive learning scheme to close the gap among representations of different languages, and b) data augmentation on both multiple parallel and monolingual data to further align token representations. For English-centric directions, mRASP2 outperforms existing best unified model and achieves competitive or even better performance than the pre-trained and fine-tuned model mBART on tens of WMT's translation directions. For non-English directions, mRASP2 achieves an improvement of average 10+ BLEU compared with the multilingual Transformer baseline. Code, data and trained models are available at https://github.com/PANXiao1994/mRASP2.
ENCORE: Ensemble Learning using Convolution Neural Machine Translation for Automatic Program Repair
Automated generate-and-validate (G&V) program repair techniques typically rely on hard-coded rules, only fix bugs following specific patterns, and are hard to adapt to different programming languages. We propose ENCORE, a new G&V technique, which uses ensemble learning on convolutional neural machine translation (NMT) models to automatically fix bugs in multiple programming languages. We take advantage of the randomness in hyper-parameter tuning to build multiple models that fix different bugs and combine them using ensemble learning. This new convolutional NMT approach outperforms the standard long short-term memory (LSTM) approach used in previous work, as it better captures both local and long-distance connections between tokens. Our evaluation on two popular benchmarks, Defects4J and QuixBugs, shows that ENCORE fixed 42 bugs, including 16 that have not been fixed by existing techniques. In addition, ENCORE is the first G&V repair technique to be applied to four popular programming languages (Java, C++, Python, and JavaScript), fixing a total of 67 bugs across five benchmarks.
Target-Agnostic Gender-Aware Contrastive Learning for Mitigating Bias in Multilingual Machine Translation
Gender bias is a significant issue in machine translation, leading to ongoing research efforts in developing bias mitigation techniques. However, most works focus on debiasing bilingual models without much consideration for multilingual systems. In this paper, we specifically target the gender bias issue of multilingual machine translation models for unambiguous cases where there is a single correct translation, and propose a bias mitigation method based on a novel approach. Specifically, we propose Gender-Aware Contrastive Learning, GACL, which encodes contextual gender information into the representations of non-explicit gender words. Our method is target language-agnostic and is applicable to pre-trained multilingual machine translation models via fine-tuning. Through multilingual evaluation, we show that our approach improves gender accuracy by a wide margin without hampering translation performance. We also observe that incorporated gender information transfers and benefits other target languages regarding gender accuracy. Finally, we demonstrate that our method is applicable and beneficial to models of various sizes.
GERNERMED++: Transfer Learning in German Medical NLP
We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp
Efficiently Upgrading Multilingual Machine Translation Models to Support More Languages
With multilingual machine translation (MMT) models continuing to grow in size and number of supported languages, it is natural to reuse and upgrade existing models to save computation as data becomes available in more languages. However, adding new languages requires updating the vocabulary, which complicates the reuse of embeddings. The question of how to reuse existing models while also making architectural changes to provide capacity for both old and new languages has also not been closely studied. In this work, we introduce three techniques that help speed up effective learning of the new languages and alleviate catastrophic forgetting despite vocabulary and architecture mismatches. Our results show that by (1) carefully initializing the network, (2) applying learning rate scaling, and (3) performing data up-sampling, it is possible to exceed the performance of a same-sized baseline model with 30% computation and recover the performance of a larger model trained from scratch with over 50% reduction in computation. Furthermore, our analysis reveals that the introduced techniques help learn the new directions more effectively and alleviate catastrophic forgetting at the same time. We hope our work will guide research into more efficient approaches to growing languages for these MMT models and ultimately maximize the reuse of existing models.
MixSpeech: Cross-Modality Self-Learning with Audio-Visual Stream Mixup for Visual Speech Translation and Recognition
Multi-media communications facilitate global interaction among people. However, despite researchers exploring cross-lingual translation techniques such as machine translation and audio speech translation to overcome language barriers, there is still a shortage of cross-lingual studies on visual speech. This lack of research is mainly due to the absence of datasets containing visual speech and translated text pairs. In this paper, we present AVMuST-TED, the first dataset for Audio-Visual Multilingual Speech Translation, derived from TED talks. Nonetheless, visual speech is not as distinguishable as audio speech, making it difficult to develop a mapping from source speech phonemes to the target language text. To address this issue, we propose MixSpeech, a cross-modality self-learning framework that utilizes audio speech to regularize the training of visual speech tasks. To further minimize the cross-modality gap and its impact on knowledge transfer, we suggest adopting mixed speech, which is created by interpolating audio and visual streams, along with a curriculum learning strategy to adjust the mixing ratio as needed. MixSpeech enhances speech translation in noisy environments, improving BLEU scores for four languages on AVMuST-TED by +1.4 to +4.2. Moreover, it achieves state-of-the-art performance in lip reading on CMLR (11.1\%), LRS2 (25.5\%), and LRS3 (28.0\%).
Approaching Neural Chinese Word Segmentation as a Low-Resource Machine Translation Task
Chinese word segmentation has entered the deep learning era which greatly reduces the hassle of feature engineering. Recently, some researchers attempted to treat it as character-level translation, which further simplified model designing, but there is a performance gap between the translation-based approach and other methods. This motivates our work, in which we apply the best practices from low-resource neural machine translation to supervised Chinese segmentation. We examine a series of techniques including regularization, data augmentation, objective weighting, transfer learning, and ensembling. Compared to previous works, our low-resource translation-based method maintains the effortless model design, yet achieves the same result as state of the art in the constrained evaluation without using additional data.
Fixing MoE Over-Fitting on Low-Resource Languages in Multilingual Machine Translation
Sparsely gated Mixture of Experts (MoE) models have been shown to be a compute-efficient method to scale model capacity for multilingual machine translation. However, for low-resource tasks, MoE models severely over-fit. We show effective regularization strategies, namely dropout techniques for MoE layers in EOM and FOM, Conditional MoE Routing and Curriculum Learning methods that prevent over-fitting and improve the performance of MoE models on low-resource tasks without adversely affecting high-resource tasks. On a massively multilingual machine translation benchmark, our strategies result in about +1 chrF++ improvement in very low resource language pairs. We perform an extensive analysis of the learned MoE routing to better understand the impact of our regularization methods and how we can improve them.
Personalized Federated Learning with Moreau Envelopes
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
Anomaly Detection using Autoencoders in High Performance Computing Systems
Anomaly detection in supercomputers is a very difficult problem due to the big scale of the systems and the high number of components. The current state of the art for automated anomaly detection employs Machine Learning methods or statistical regression models in a supervised fashion, meaning that the detection tool is trained to distinguish among a fixed set of behaviour classes (healthy and unhealthy states). We propose a novel approach for anomaly detection in High Performance Computing systems based on a Machine (Deep) Learning technique, namely a type of neural network called autoencoder. The key idea is to train a set of autoencoders to learn the normal (healthy) behaviour of the supercomputer nodes and, after training, use them to identify abnormal conditions. This is different from previous approaches which where based on learning the abnormal condition, for which there are much smaller datasets (since it is very hard to identify them to begin with). We test our approach on a real supercomputer equipped with a fine-grained, scalable monitoring infrastructure that can provide large amount of data to characterize the system behaviour. The results are extremely promising: after the training phase to learn the normal system behaviour, our method is capable of detecting anomalies that have never been seen before with a very good accuracy (values ranging between 88% and 96%).
Machine learning approach for segmenting glands in colon histology images using local intensity and texture features
Colon Cancer is one of the most common types of cancer. The treatment is planned to depend on the grade or stage of cancer. One of the preconditions for grading of colon cancer is to segment the glandular structures of tissues. Manual segmentation method is very time-consuming, and it leads to life risk for the patients. The principal objective of this project is to assist the pathologist to accurate detection of colon cancer. In this paper, the authors have proposed an algorithm for an automatic segmentation of glands in colon histology using local intensity and texture features. Here the dataset images are cropped into patches with different window sizes and taken the intensity of those patches, and also calculated texture-based features. Random forest classifier has been used to classify this patch into different labels. A multilevel random forest technique in a hierarchical way is proposed. This solution is fast, accurate and it is very much applicable in a clinical setup.
Accelerating Machine Learning Primitives on Commodity Hardware
Sliding Window Sum algorithms have been successfully used for training and inference of Deep Neural Networks. We have shown before how both pooling and convolution 1-D primitives could be expressed as sliding sums and evaluated by the compute kernels with a shared structure. In this paper, we present an extensive study of the Sliding Window convolution technique as a more efficient alternative to the commonly used General Matrix Multiplication (GEMM) based convolution in Deep Neural Networks (DNNs). The Sliding Window technique addresses the memory bloating problem and demonstrates a significant speedup in 2-D convolution. We explore the performance of this technique on a range of implementations, including custom kernels for specific filter sizes. Our results suggest that the Sliding Window computation kernels can outperform GEMM-based convolution on a CPU and even on dedicated hardware accelerators. This could promote a wider adoption of AI on low-power and low-memory devices without the need for specialized hardware. We also discuss the compatibility of model compression methods and optimized network architectures with the Sliding Window technique, encouraging further research in these areas.
Python Fuzzing for Trustworthy Machine Learning Frameworks
Ensuring the security and reliability of machine learning frameworks is crucial for building trustworthy AI-based systems. Fuzzing, a popular technique in secure software development lifecycle (SSDLC), can be used to develop secure and robust software. Popular machine learning frameworks such as PyTorch and TensorFlow are complex and written in multiple programming languages including C/C++ and Python. We propose a dynamic analysis pipeline for Python projects using the Sydr-Fuzz toolset. Our pipeline includes fuzzing, corpus minimization, crash triaging, and coverage collection. Crash triaging and severity estimation are important steps to ensure that the most critical vulnerabilities are addressed promptly. Furthermore, the proposed pipeline is integrated in GitLab CI. To identify the most vulnerable parts of the machine learning frameworks, we analyze their potential attack surfaces and develop fuzz targets for PyTorch, TensorFlow, and related projects such as h5py. Applying our dynamic analysis pipeline to these targets, we were able to discover 3 new bugs and propose fixes for them.
FuzzDistill: Intelligent Fuzzing Target Selection using Compile-Time Analysis and Machine Learning
Fuzz testing is a fundamental technique employed to identify vulnerabilities within software systems. However, the process can be protracted and resource-intensive, especially when confronted with extensive codebases. In this work, I present FuzzDistill, an approach that harnesses compile-time data and machine learning to refine fuzzing targets. By analyzing compile-time information, such as function call graphs' features, loop information, and memory operations, FuzzDistill identifies high-priority areas of the codebase that are more probable to contain vulnerabilities. I demonstrate the efficacy of my approach through experiments conducted on real-world software, demonstrating substantial reductions in testing time.
Modeling the Machine Learning Multiverse
Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the multiverse analysis. Our framework builds upon the multiverse analysis (Steegen et al., 2016) introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the multiverse analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility.
A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference
The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.
Predicting tacrolimus exposure in kidney transplanted patients using machine learning
Tacrolimus is one of the cornerstone immunosuppressive drugs in most transplantation centers worldwide following solid organ transplantation. Therapeutic drug monitoring of tacrolimus is necessary in order to avoid rejection of the transplanted organ or severe side effects. However, finding the right dose for a given patient is challenging, even for experienced clinicians. Consequently, a tool that can accurately estimate the drug exposure for individual dose adaptions would be of high clinical value. In this work, we propose a new technique using machine learning to estimate the tacrolimus exposure in kidney transplant recipients. Our models achieve predictive errors that are at the same level as an established population pharmacokinetic model, but are faster to develop and require less knowledge about the pharmacokinetic properties of the drug.
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
The growing capability and accessibility of machine learning has led to its application to many real-world domains and data about people. Despite the benefits algorithmic systems may bring, models can reflect, inject, or exacerbate implicit and explicit societal biases into their outputs, disadvantaging certain demographic subgroups. Discovering which biases a machine learning model has introduced is a great challenge, due to the numerous definitions of fairness and the large number of potentially impacted subgroups. We present FairVis, a mixed-initiative visual analytics system that integrates a novel subgroup discovery technique for users to audit the fairness of machine learning models. Through FairVis, users can apply domain knowledge to generate and investigate known subgroups, and explore suggested and similar subgroups. FairVis' coordinated views enable users to explore a high-level overview of subgroup performance and subsequently drill down into detailed investigation of specific subgroups. We show how FairVis helps to discover biases in two real datasets used in predicting income and recidivism. As a visual analytics system devoted to discovering bias in machine learning, FairVis demonstrates how interactive visualization may help data scientists and the general public understand and create more equitable algorithmic systems.
The Good, the Bad, and the Missing: Neural Code Generation for Machine Learning Tasks
Machine learning (ML) has been increasingly used in a variety of domains, while solving ML programming tasks poses unique challenges because of the fundamentally different nature and construction from general programming tasks, especially for developers who do not have ML backgrounds. Automatic code generation that produces a code snippet from a natural language description can be a promising technique to accelerate ML programming tasks. In recent years, although many deep learning-based neural code generation models have been proposed with high accuracy, the fact that most of them are mainly evaluated on general programming tasks calls into question their effectiveness and usefulness in ML programming tasks. In this paper, we set out to investigate the effectiveness of existing neural code generation models on ML programming tasks. For our analysis, we select six state-of-the-art neural code generation models, and evaluate their performance on four widely used ML libraries, with newly-created 83K pairs of natural-language described ML programming tasks. Our empirical study reveals some good, bad, and missing aspects of neural code generation models on ML tasks, with a few major ones listed below. (Good) Neural code generation models perform significantly better on ML tasks than on non-ML tasks. (Bad) Most of the generated code is semantically incorrect. (Bad) Code generation models cannot significantly improve developers' completion time. (Good) The generated code can help developers write more correct code by providing developers with clues for using correct APIs. (Missing) The observation from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code generation for divide-and-conquer into two tasks: API sequence identification and API usage generation.
Towards Computationally Feasible Deep Active Learning
Active learning (AL) is a prominent technique for reducing the annotation effort required for training machine learning models. Deep learning offers a solution for several essential obstacles to deploying AL in practice but introduces many others. One of such problems is the excessive computational resources required to train an acquisition model and estimate its uncertainty on instances in the unlabeled pool. We propose two techniques that tackle this issue for text classification and tagging tasks, offering a substantial reduction of AL iteration duration and the computational overhead introduced by deep acquisition models in AL. We also demonstrate that our algorithm that leverages pseudo-labeling and distilled models overcomes one of the essential obstacles revealed previously in the literature. Namely, it was shown that due to differences between an acquisition model used to select instances during AL and a successor model trained on the labeled data, the benefits of AL can diminish. We show that our algorithm, despite using a smaller and faster acquisition model, is capable of training a more expressive successor model with higher performance.
FedSyn: Synthetic Data Generation using Federated Learning
As Deep Learning algorithms continue to evolve and become more sophisticated, they require massive datasets for model training and efficacy of models. Some of those data requirements can be met with the help of existing datasets within the organizations. Current Machine Learning practices can be leveraged to generate synthetic data from an existing dataset. Further, it is well established that diversity in generated synthetic data relies on (and is perhaps limited by) statistical properties of available dataset within a single organization or entity. The more diverse an existing dataset is, the more expressive and generic synthetic data can be. However, given the scarcity of underlying data, it is challenging to collate big data in one organization. The diverse, non-overlapping dataset across distinct organizations provides an opportunity for them to contribute their limited distinct data to a larger pool that can be leveraged to further synthesize. Unfortunately, this raises data privacy concerns that some institutions may not be comfortable with. This paper proposes a novel approach to generate synthetic data - FedSyn. FedSyn is a collaborative, privacy preserving approach to generate synthetic data among multiple participants in a federated and collaborative network. FedSyn creates a synthetic data generation model, which can generate synthetic data consisting of statistical distribution of almost all the participants in the network. FedSyn does not require access to the data of an individual participant, hence protecting the privacy of participant's data. The proposed technique in this paper leverages federated machine learning and generative adversarial network (GAN) as neural network architecture for synthetic data generation. The proposed method can be extended to many machine learning problem classes in finance, health, governance, technology and many more.
Landscape Learning for Neural Network Inversion
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
Masked Momentum Contrastive Learning for Zero-shot Semantic Understanding
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data. In the realm of computer vision, pretrained vision transformers (ViTs) have played a pivotal role in advancing transfer learning. Nonetheless, the escalating cost of finetuning these large models has posed a challenge due to the explosion of model size. This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks, obviating the need for finetuning, with the intention of emulating human-like capabilities in generalisation and recognition of unseen objects. To this end, we propose an evaluation protocol for zero-shot segmentation based on a prompting patch. Given a point on the target object as a prompt, the algorithm calculates the similarity map between the selected patch and other patches, upon that, a simple thresholding is applied to segment the target. Another evaluation is intra-object and inter-object similarity to gauge discriminatory ability of SSP ViTs. Insights from zero-shot segmentation from prompting and discriminatory abilities of SSP led to the design of a simple SSP approach, termed MMC. This approaches combines Masked image modelling for encouraging similarity of local features, Momentum based self-distillation for transferring semantics from global to local features, and global Contrast for promoting semantics of global features, to enhance discriminative representations of SSP ViTs. Consequently, our proposed method significantly reduces the overlap of intra-object and inter-object similarities, thereby facilitating effective object segmentation within an image. Our experiments reveal that MMC delivers top-tier results in zero-shot semantic segmentation across various datasets.
Towards Constituting Mathematical Structures for Learning to Optimize
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.
Flower: A Friendly Federated Learning Research Framework
Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared prediction model, while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store the data in the cloud. However, FL is difficult to implement realistically, both in terms of scale and systems heterogeneity. Although there are a number of research frameworks available to simulate FL algorithms, they do not support the study of scalable FL workloads on heterogeneous edge devices. In this paper, we present Flower -- a comprehensive FL framework that distinguishes itself from existing platforms by offering new facilities to execute large-scale FL experiments and consider richly heterogeneous FL device scenarios. Our experiments show Flower can perform FL experiments up to 15M in client size using only a pair of high-end GPUs. Researchers can then seamlessly migrate experiments to real devices to examine other parts of the design space. We believe Flower provides the community with a critical new tool for FL study and development.
Parallel Learning by Multitasking Neural Networks
A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).
Data Augmentation using LLMs: Data Perspectives, Learning Paradigms and Challenges
In the rapidly evolving field of machine learning (ML), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of Large Language Models (LLMs) on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From a data perspective and a learning perspective, we examine various strategies that utilize Large Language Models for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for further training. Additionally, this paper delineates the primary challenges faced in this domain, ranging from controllable data augmentation to multi modal data augmentation. This survey highlights the paradigm shift introduced by LLMs in DA, aims to serve as a foundational guide for researchers and practitioners in this field.
Bagging Provides Assumption-free Stability
Bagging is an important technique for stabilizing machine learning models. In this paper, we derive a finite-sample guarantee on the stability of bagging for any model. Our result places no assumptions on the distribution of the data, on the properties of the base algorithm, or on the dimensionality of the covariates. Our guarantee applies to many variants of bagging and is optimal up to a constant. Empirical results validate our findings, showing that bagging successfully stabilizes even highly unstable base algorithms.
BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language Generation
Recent advances in deep learning techniques have enabled machines to generate cohesive open-ended text when prompted with a sequence of words as context. While these models now empower many downstream applications from conversation bots to automatic storytelling, they have been shown to generate texts that exhibit social biases. To systematically study and benchmark social biases in open-ended language generation, we introduce the Bias in Open-Ended Language Generation Dataset (BOLD), a large-scale dataset that consists of 23,679 English text generation prompts for bias benchmarking across five domains: profession, gender, race, religion, and political ideology. We also propose new automated metrics for toxicity, psycholinguistic norms, and text gender polarity to measure social biases in open-ended text generation from multiple angles. An examination of text generated from three popular language models reveals that the majority of these models exhibit a larger social bias than human-written Wikipedia text across all domains. With these results we highlight the need to benchmark biases in open-ended language generation and caution users of language generation models on downstream tasks to be cognizant of these embedded prejudices.
Iterative Mask Filling: An Effective Text Augmentation Method Using Masked Language Modeling
Data augmentation is an effective technique for improving the performance of machine learning models. However, it has not been explored as extensively in natural language processing (NLP) as it has in computer vision. In this paper, we propose a novel text augmentation method that leverages the Fill-Mask feature of the transformer-based BERT model. Our method involves iteratively masking words in a sentence and replacing them with language model predictions. We have tested our proposed method on various NLP tasks and found it to be effective in many cases. Our results are presented along with a comparison to existing augmentation methods. Experimental results show that our proposed method significantly improves performance, especially on topic classification datasets.
GraphXAIN: Narratives to Explain Graph Neural Networks
Graph Neural Networks (GNNs) are a powerful technique for machine learning on graph-structured data, yet they pose challenges in interpretability. Existing GNN explanation methods usually yield technical outputs, such as subgraphs and feature importance scores, that are difficult for non-data scientists to understand and thereby violate the purpose of explanations. Motivated by recent Explainable AI (XAI) research, we propose GraphXAIN, a method that generates natural language narratives explaining GNN predictions. GraphXAIN is a model- and explainer-agnostic method that uses Large Language Models (LLMs) to translate explanatory subgraphs and feature importance scores into coherent, story-like explanations of GNN decision-making processes. Evaluations on real-world datasets demonstrate GraphXAIN's ability to improve graph explanations. A survey of machine learning researchers and practitioners reveals that GraphXAIN enhances four explainability dimensions: understandability, satisfaction, convincingness, and suitability for communicating model predictions. When combined with another graph explainer method, GraphXAIN further improves trustworthiness, insightfulness, confidence, and usability. Notably, 95% of participants found GraphXAIN to be a valuable addition to the GNN explanation method. By incorporating natural language narratives, our approach serves both graph practitioners and non-expert users by providing clearer and more effective explanations.
DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training
Zeroth-order (ZO) optimization has become a popular technique for solving machine learning (ML) problems when first-order (FO) information is difficult or impossible to obtain. However, the scalability of ZO optimization remains an open problem: Its use has primarily been limited to relatively small-scale ML problems, such as sample-wise adversarial attack generation. To our best knowledge, no prior work has demonstrated the effectiveness of ZO optimization in training deep neural networks (DNNs) without a significant decrease in performance. To overcome this roadblock, we develop DeepZero, a principled ZO deep learning (DL) framework that can scale ZO optimization to DNN training from scratch through three primary innovations. First, we demonstrate the advantages of coordinatewise gradient estimation (CGE) over randomized vector-wise gradient estimation in training accuracy and computational efficiency. Second, we propose a sparsityinduced ZO training protocol that extends the model pruning methodology using only finite differences to explore and exploit the sparse DL prior in CGE. Third, we develop the methods of feature reuse and forward parallelization to advance the practical implementations of ZO training. Our extensive experiments show that DeepZero achieves state-of-the-art (SOTA) accuracy on ResNet-20 trained on CIFAR-10, approaching FO training performance for the first time. Furthermore, we show the practical utility of DeepZero in applications of certified adversarial defense and DL-based partial differential equation error correction, achieving 10-20% improvement over SOTA. We believe our results will inspire future research on scalable ZO optimization and contribute to advancing DL with black box. Codes are available at https://github.com/OPTML-Group/DeepZero.
Living-off-The-Land Reverse-Shell Detection by Informed Data Augmentation
The living-off-the-land (LOTL) offensive methodologies rely on the perpetration of malicious actions through chains of commands executed by legitimate applications, identifiable exclusively by analysis of system logs. LOTL techniques are well hidden inside the stream of events generated by common legitimate activities, moreover threat actors often camouflage activity through obfuscation, making them particularly difficult to detect without incurring in plenty of false alarms, even using machine learning. To improve the performance of models in such an harsh environment, we propose an augmentation framework to enhance and diversify the presence of LOTL malicious activity inside legitimate logs. Guided by threat intelligence, we generate a dataset by injecting attack templates known to be employed in the wild, further enriched by malleable patterns of legitimate activities to replicate the behavior of evasive threat actors. We conduct an extensive ablation study to understand which models better handle our augmented dataset, also manipulated to mimic the presence of model-agnostic evasion and poisoning attacks. Our results suggest that augmentation is needed to maintain high-predictive capabilities, robustness to attack is achieved through specific hardening techniques like adversarial training, and it is possible to deploy near-real-time models with almost-zero false alarms.
Low-Rank Approximation, Adaptation, and Other Tales
Low-rank approximation is a fundamental technique in modern data analysis, widely utilized across various fields such as signal processing, machine learning, and natural language processing. Despite its ubiquity, the mechanics of low-rank approximation and its application in adaptation can sometimes be obscure, leaving practitioners and researchers with questions about its true capabilities and limitations. This paper seeks to clarify low-rank approximation and adaptation by offering a comprehensive guide that reveals their inner workings and explains their utility in a clear and accessible way. Our focus here is to develop a solid intuition for how low-rank approximation and adaptation operate, and why they are so effective. We begin with basic concepts and gradually build up to the mathematical underpinnings, ensuring that readers of all backgrounds can gain a deeper understanding of low-rank approximation and adaptation. We strive to strike a balance between informal explanations and rigorous mathematics, ensuring that both newcomers and experienced experts can benefit from this survey. Additionally, we introduce new low-rank decomposition and adaptation algorithms that have not yet been explored in the field, hoping that future researchers will investigate their potential applicability.
Lightweight Fish Classification Model for Sustainable Marine Management: Indonesian Case
The enormous demand for seafood products has led to exploitation of marine resources and near-extinction of some species. In particular, overfishing is one the main issues in sustainable marine development. In alignment with the protection of marine resources and sustainable fishing, this study proposes to advance fish classification techniques that support identifying protected fish species using state-of-the-art machine learning. We use a custom modification of the MobileNet model to design a lightweight classifier called M-MobileNet that is capable of running on limited hardware. As part of the study, we compiled a labeled dataset of 37,462 images of fish found in the waters of the Indonesian archipelago. The proposed model is trained on the dataset to classify images of the captured fish into their species and give recommendations on whether they are consumable or not. Our modified MobileNet model uses only 50\% of the top layer parameters with about 42% GTX 860M utility and achieves up to 97% accuracy in fish classification and determining its consumability. Given the limited computing capacity available on many fishing vessels, the proposed model provides a practical solution to on-site fish classification. In addition, synchronized implementation of the proposed model on multiple vessels can supply valuable information about the movement and location of different species of fish.
Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap
Monitoring machine learning models once they are deployed is challenging. It is even more challenging to decide when to retrain models in real-case scenarios when labeled data is beyond reach, and monitoring performance metrics becomes unfeasible. In this work, we use non-parametric bootstrapped uncertainty estimates and SHAP values to provide explainable uncertainty estimation as a technique that aims to monitor the deterioration of machine learning models in deployment environments, as well as determine the source of model deterioration when target labels are not available. Classical methods are purely aimed at detecting distribution shift, which can lead to false positives in the sense that the model has not deteriorated despite a shift in the data distribution. To estimate model uncertainty we construct prediction intervals using a novel bootstrap method, which improves upon the work of Kumar & Srivastava (2012). We show that both our model deterioration detection system as well as our uncertainty estimation method achieve better performance than the current state-of-the-art. Finally, we use explainable AI techniques to gain an understanding of the drivers of model deterioration. We release an open source Python package, doubt, which implements our proposed methods, as well as the code used to reproduce our experiments.
Differentiable Causal Computations via Delayed Trace
We investigate causal computations taking sequences of inputs to sequences of outputs where the nth output depends on the first n inputs only. We model these in category theory via a construction taking a Cartesian category C to another category St(C) with a novel trace-like operation called "delayed trace", which misses yanking and dinaturality axioms of the usual trace. The delayed trace operation provides a feedback mechanism in St(C) with an implicit guardedness guarantee. When C is equipped with a Cartesian differential operator, we construct a differential operator for St(C) using an abstract version of backpropagation through time, a technique from machine learning based on unrolling of functions. This obtains a swath of properties for backpropagation through time, including a chain rule and Schwartz theorem. Our differential operator is also able to compute the derivative of a stateful network without requiring the network to be unrolled.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
70 years of machine learning in geoscience in review
This review gives an overview of the development of machine learning in geoscience. A thorough analysis of the co-developments of machine learning applications throughout the last 70 years relates the recent enthusiasm for machine learning to developments in geoscience. I explore the shift of kriging towards a mainstream machine learning method and the historic application of neural networks in geoscience, following the general trend of machine learning enthusiasm through the decades. Furthermore, this chapter explores the shift from mathematical fundamentals and knowledge in software development towards skills in model validation, applied statistics, and integrated subject matter expertise. The review is interspersed with code examples to complement the theoretical foundations and illustrate model validation and machine learning explainability for science. The scope of this review includes various shallow machine learning methods, e.g. Decision Trees, Random Forests, Support-Vector Machines, and Gaussian Processes, as well as, deep neural networks, including feed-forward neural networks, convolutional neural networks, recurrent neural networks and generative adversarial networks. Regarding geoscience, the review has a bias towards geophysics but aims to strike a balance with geochemistry, geostatistics, and geology, however excludes remote sensing, as this would exceed the scope. In general, I aim to provide context for the recent enthusiasm surrounding deep learning with respect to research, hardware, and software developments that enable successful application of shallow and deep machine learning in all disciplines of Earth science.
Extracting Sentiment Attitudes From Analytical Texts
In this paper we present the RuSentRel corpus including analytical texts in the sphere of international relations. For each document we annotated sentiments from the author to mentioned named entities, and sentiments of relations between mentioned entities. In the current experiments, we considered the problem of extracting sentiment relations between entities for the whole documents as a three-class machine learning task. We experimented with conventional machine-learning methods (Naive Bayes, SVM, Random Forest).
Nine tips for ecologists using machine learning
Due to their high predictive performance and flexibility, machine learning models are an appropriate and efficient tool for ecologists. However, implementing a machine learning model is not yet a trivial task and may seem intimidating to ecologists with no previous experience in this area. Here we provide a series of tips to help ecologists in implementing machine learning models. We focus on classification problems as many ecological studies aim to assign data into predefined classes such as ecological states or biological entities. Each of the nine tips identifies a common error, trap or challenge in developing machine learning models and provides recommendations to facilitate their use in ecological studies.
Credit card fraud detection - Classifier selection strategy
Machine learning has opened up new tools for financial fraud detection. Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds. With growing credit card transaction volumes and rising fraud percentages there is growing interest in finding appropriate machine learning classifiers for detection. However, fraud data sets are diverse and exhibit inconsistent characteristics. As a result, a model effective on a given data set is not guaranteed to perform on another. Further, the possibility of temporal drift in data patterns and characteristics over time is high. Additionally, fraud data has massive and varying imbalance. In this work, we evaluate sampling methods as a viable pre-processing mechanism to handle imbalance and propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets. The model derived based on our selection strategy surpasses peer models, whilst working in more realistic conditions, establishing the effectiveness of the strategy.
The Devil is in the Errors: Leveraging Large Language Models for Fine-grained Machine Translation Evaluation
Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on estimating a single scalar quality score, current metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we help fill this gap by proposing AutoMQM, a prompting technique which leverages the reasoning and in-context learning capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple score prediction prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations.
A Tutorial on Deep Neural Networks for Intelligent Systems
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Networks (DBNs), which are used to build networks with more than two layers, are also described. Moreover, examples for supervised learning with DNNs performing simple prediction and classification tasks, are presented and explained. This tutorial includes two intelligent pattern recognition applications: hand- written digits (benchmark known as MNIST) and speech recognition.
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
Machine learning (ML) holds great potential for accurately forecasting treatment outcomes over time, which could ultimately enable the adoption of more individualized treatment strategies in many practical applications. However, a significant challenge that has been largely overlooked by the ML literature on this topic is the presence of informative sampling in observational data. When instances are observed irregularly over time, sampling times are typically not random, but rather informative -- depending on the instance's characteristics, past outcomes, and administered treatments. In this work, we formalize informative sampling as a covariate shift problem and show that it can prohibit accurate estimation of treatment outcomes if not properly accounted for. To overcome this challenge, we present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting, and propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs. Using a simulation environment based on a clinical use case, we demonstrate the effectiveness of our approach in learning under informative sampling.
Fix your Models by Fixing your Datasets
The quality of underlying training data is very crucial for building performant machine learning models with wider generalizabilty. However, current machine learning (ML) tools lack streamlined processes for improving the data quality. So, getting data quality insights and iteratively pruning the errors to obtain a dataset which is most representative of downstream use cases is still an ad-hoc manual process. Our work addresses this data tooling gap, required to build improved ML workflows purely through data-centric techniques. More specifically, we introduce a systematic framework for (1) finding noisy or mislabelled samples in the dataset and, (2) identifying the most informative samples, which when included in training would provide maximal model performance lift. We demonstrate the efficacy of our framework on public as well as private enterprise datasets of two Fortune 500 companies, and are confident this work will form the basis for ML teams to perform more intelligent data discovery and pruning.
Towards MLOps: A DevOps Tools Recommender System for Machine Learning System
Applying DevOps practices to machine learning system is termed as MLOps and machine learning systems evolve on new data unlike traditional systems on requirements. The objective of MLOps is to establish a connection between different open-source tools to construct a pipeline that can automatically perform steps to construct a dataset, train the machine learning model and deploy the model to the production as well as store different versions of model and dataset. Benefits of MLOps is to make sure the fast delivery of the new trained models to the production to have accurate results. Furthermore, MLOps practice impacts the overall quality of the software products and is completely dependent on open-source tools and selection of relevant open-source tools is considered as challenged while a generalized method to select an appropriate open-source tools is desirable. In this paper, we present a framework for recommendation system that processes the contextual information (e.g., nature of data, type of the data) of the machine learning project and recommends a relevant toolchain (tech-stack) for the operationalization of machine learning systems. To check the applicability of the proposed framework, four different approaches i.e., rule-based, random forest, decision trees and k-nearest neighbors were investigated where precision, recall and f-score is measured, the random forest out classed other approaches with highest f-score value of 0.66.
Exploring the Potential of Feature Density in Estimating Machine Learning Classifier Performance with Application to Cyberbullying Detection
In this research. we analyze the potential of Feature Density (HD) as a way to comparatively estimate machine learning (ML) classifier performance prior to training. The goal of the study is to aid in solving the problem of resource-intensive training of ML models which is becoming a serious issue due to continuously increasing dataset sizes and the ever rising popularity of Deep Neural Networks (DNN). The issue of constantly increasing demands for more powerful computational resources is also affecting the environment, as training large-scale ML models are causing alarmingly-growing amounts of CO2, emissions. Our approach 1s to optimize the resource-intensive training of ML models for Natural Language Processing to reduce the number of required experiments iterations. We expand on previous attempts on improving classifier training efficiency with FD while also providing an insight to the effectiveness of various linguistically-backed feature preprocessing methods for dialog classification, specifically cyberbullying detection.
Fine-tuning Large Language Models for Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection
SemEval-2024 Task 8 introduces the challenge of identifying machine-generated texts from diverse Large Language Models (LLMs) in various languages and domains. The task comprises three subtasks: binary classification in monolingual and multilingual (Subtask A), multi-class classification (Subtask B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B. Each subtask is supported by three datasets for training, development, and testing. To tackle this task, two methods: 1) using traditional machine learning (ML) with natural language preprocessing (NLP) for feature extraction, and 2) fine-tuning LLMs for text classification. The results show that transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in effectiveness, with majority voting being particularly effective in multilingual contexts for identifying machine-generated texts.
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
Recent advancements in machine learning research, i.e., deep learning, introduced methods that excel conventional algorithms as well as humans in several complex tasks, ranging from detection of objects in images and speech recognition to playing difficult strategic games. However, the current methodology of machine learning research and consequently, implementations of the real-world applications of such algorithms, seems to have a recurring HARKing (Hypothesizing After the Results are Known) issue. In this work, we elaborate on the algorithmic, economic and social reasons and consequences of this phenomenon. We present examples from current common practices of conducting machine learning research (e.g. avoidance of reporting negative results) and failure of generalization ability of the proposed algorithms and datasets in actual real-life usage. Furthermore, a potential future trajectory of machine learning research and development from the perspective of accountable, unbiased, ethical and privacy-aware algorithmic decision making is discussed. We would like to emphasize that with this discussion we neither claim to provide an exhaustive argumentation nor blame any specific institution or individual on the raised issues. This is simply a discussion put forth by us, insiders of the machine learning field, reflecting on us.
Improving Classifier Training Efficiency for Automatic Cyberbullying Detection with Feature Density
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods in order to estimate dataset complexity, which in turn is used to comparatively estimate the potential performance of machine learning (ML) classifiers prior to any training. We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments iterations. This way we can optimize the resource-intensive training of ML models which is becoming a serious issue due to the increases in available dataset sizes and the ever rising popularity of models based on Deep Neural Networks (DNN). The problem of constantly increasing needs for more powerful computational resources is also affecting the environment due to alarmingly-growing amount of CO2 emissions caused by training of large-scale ML models. The research was conducted on multiple datasets, including popular datasets, such as Yelp business review dataset used for training typical sentiment analysis models, as well as more recent datasets trying to tackle the problem of cyberbullying, which, being a serious social problem, is also a much more sophisticated problem form the point of view of linguistic representation. We use cyberbullying datasets collected for multiple languages, namely English, Japanese and Polish. The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
Comparative Study on the Performance of Categorical Variable Encoders in Classification and Regression Tasks
Categorical variables often appear in datasets for classification and regression tasks, and they need to be encoded into numerical values before training. Since many encoders have been developed and can significantly impact performance, choosing the appropriate encoder for a task becomes a time-consuming yet important practical issue. This study broadly classifies machine learning models into three categories: 1) ATI models that implicitly perform affine transformations on inputs, such as multi-layer perceptron neural network; 2) Tree-based models that are based on decision trees, such as random forest; and 3) the rest, such as kNN. Theoretically, we prove that the one-hot encoder is the best choice for ATI models in the sense that it can mimic any other encoders by learning suitable weights from the data. We also explain why the target encoder and its variants are the most suitable encoders for tree-based models. This study conducted comprehensive computational experiments to evaluate 14 encoders, including one-hot and target encoders, along with eight common machine-learning models on 28 datasets. The computational results agree with our theoretical analysis. The findings in this study shed light on how to select the suitable encoder for data scientists in fields such as fraud detection, disease diagnosis, etc.
Predicting Gender by First Name Using Character-level Machine Learning
Predicting gender by the first name is not a simple task. In many applications, especially in the natural language processing (NLP) field, this task may be necessary, mainly when considering foreign names. In this paper, we examined and implemented several machine learning algorithms, such as extra trees, KNN, Naive Bayes, SVM, random forest, gradient boosting, light GBM, logistic regression, ridge classifier, and deep neural network models, such as MLP, RNN, GRU, CNN, and BiLSTM, to classify gender through the first name. A dataset of Brazilian names is used to train and evaluate the models. We analyzed the accuracy, recall, precision, f1 score, and confusion matrix to measure the models' performances. The results indicate that the gender prediction can be performed from the feature extraction strategy looking at the names as a set of strings. Some models accurately predict gender in more than 95% of the cases. The recurrent models overcome the feedforward models in this binary classification problem.
Model Cards for Model Reporting
Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related AI technology, increasing transparency into how well AI technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation.
Datamodels: Predicting Predictions from Training Data
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data. For any fixed "target" example x, training set S, and learning algorithm, a datamodel is a parameterized function 2^S to R that for any subset of S' subset S -- using only information about which examples of S are contained in S' -- predicts the outcome of training a model on S' and evaluating on x. Despite the potential complexity of the underlying process being approximated (e.g., end-to-end training and evaluation of deep neural networks), we show that even simple linear datamodels can successfully predict model outputs. We then demonstrate that datamodels give rise to a variety of applications, such as: accurately predicting the effect of dataset counterfactuals; identifying brittle predictions; finding semantically similar examples; quantifying train-test leakage; and embedding data into a well-behaved and feature-rich representation space. Data for this paper (including pre-computed datamodels as well as raw predictions from four million trained deep neural networks) is available at https://github.com/MadryLab/datamodels-data .
Machine Learning for Two-Sample Testing under Right-Censored Data: A Simulation Study
The focus of this study is to evaluate the effectiveness of Machine Learning (ML) methods for two-sample testing with right-censored observations. To achieve this, we develop several ML-based methods with varying architectures and implement them as two-sample tests. Each method is an ensemble (stacking) that combines predictions from classical two-sample tests. This paper presents the results of training the proposed ML methods, examines their statistical power compared to classical two-sample tests, analyzes the distribution of test statistics for the proposed methods when the null hypothesis is true, and evaluates the significance of the features incorporated into the proposed methods. All results from numerical experiments were obtained from a synthetic dataset generated using the Smirnov transform (Inverse Transform Sampling) and replicated multiple times through Monte Carlo simulation. To test the two-sample problem with right-censored observations, one can use the proposed two-sample methods. All necessary materials (source code, example scripts, dataset, and samples) are available on GitHub and Hugging Face.
A Review of Machine Learning-based Security in Cloud Computing
Cloud Computing (CC) is revolutionizing the way IT resources are delivered to users, allowing them to access and manage their systems with increased cost-effectiveness and simplified infrastructure. However, with the growth of CC comes a host of security risks, including threats to availability, integrity, and confidentiality. To address these challenges, Machine Learning (ML) is increasingly being used by Cloud Service Providers (CSPs) to reduce the need for human intervention in identifying and resolving security issues. With the ability to analyze vast amounts of data, and make high-accuracy predictions, ML can transform the way CSPs approach security. In this paper, we will explore some of the most recent research in the field of ML-based security in Cloud Computing. We will examine the features and effectiveness of a range of ML algorithms, highlighting their unique strengths and potential limitations. Our goal is to provide a comprehensive overview of the current state of ML in cloud security and to shed light on the exciting possibilities that this emerging field has to offer.
Retrieval-Enhanced Machine Learning: Synthesis and Opportunities
In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
DataPerf: Benchmarks for Data-Centric AI Development
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.
Detecting Fake News Using Machine Learning : A Systematic Literature Review
Internet is one of the important inventions and a large number of persons are its users. These persons use this for different purposes. There are different social media platforms that are accessible to these users. Any user can make a post or spread the news through the online platforms. These platforms do not verify the users or their posts. So some of the users try to spread fake news through these platforms. These news can be propaganda against an individual, society, organization or political party. A human being is unable to detect all these fake news. So there is a need for machine learning classifiers that can detect these fake news automatically. Use of machine learning classifiers for detecting fake news is described in this systematic literature review.
Machine Learning Methods for the Design and Operation of Liquid Rocket Engines -- Research Activities at the DLR Institute of Space Propulsion
The last years have witnessed an enormous interest in the use of artificial intelligence methods, especially machine learning algorithms. This also has a major impact on aerospace engineering in general, and the design and operation of liquid rocket engines in particular, and research in this area is growing rapidly. The paper describes current machine learning applications at the DLR Institute of Space Propulsion. Not only applications in the field of modeling are presented, but also convincing results that prove the capabilities of machine learning methods for control and condition monitoring are described in detail. Furthermore, the advantages and disadvantages of the presented methods as well as current and future research directions are discussed.
Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach
Artificial intelligence (AI), and especially its sub-field of Machine Learning (ML), are impacting the daily lives of everyone with their ubiquitous applications. In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions. From a practical perspective, conventional ML systems process historical data to extract the features that are consequently used to train ML models that perform the desired task. However, in practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously. To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment. Although MLOps demonstrated great success in streamlining ML processes, thoroughly defining the specifications of robust MLOps approaches remains of great interest to researchers and practitioners. In this paper, we provide a comprehensive overview of the trustworthiness property of MLOps systems. Specifically, we highlight technical practices to achieve robust MLOps systems. In addition, we survey the existing research approaches that address the robustness aspects of ML systems in production. We also review the tools and software available to build MLOps systems and summarize their support to handle the robustness aspects. Finally, we present the open challenges and propose possible future directions and opportunities within this emerging field. The aim of this paper is to provide researchers and practitioners working on practical AI applications with a comprehensive view to adopt robust ML solutions in production environments.
Initial Study into Application of Feature Density and Linguistically-backed Embedding to Improve Machine Learning-based Cyberbullying Detection
In this research, we study the change in the performance of machine learning (ML) classifiers when various linguistic preprocessing methods of a dataset were used, with the specific focus on linguistically-backed embeddings in Convolutional Neural Networks (CNN). Moreover, we study the concept of Feature Density and confirm its potential to comparatively predict the performance of ML classifiers, including CNN. The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection. The dataset was re-annotated by objective experts (psychologists), as the importance of professional annotation in cyberbullying research has been indicated multiple times. The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density while also proposing a new approach of training various linguistically-backed embeddings for Convolutional Neural Networks.
Exploring the Limitations of Detecting Machine-Generated Text
Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts.
Data augmentation and feature selection for automatic model recommendation in computational physics
Classification algorithms have recently found applications in computational physics for the selection of numerical methods or models adapted to the environment and the state of the physical system. For such classification tasks, labeled training data come from numerical simulations and generally correspond to physical fields discretized on a mesh. Three challenging difficulties arise: the lack of training data, their high dimensionality, and the non-applicability of common data augmentation techniques to physics data. This article introduces two algorithms to address these issues, one for dimensionality reduction via feature selection, and one for data augmentation. These algorithms are combined with a wide variety of classifiers for their evaluation. When combined with a stacking ensemble made of six multilayer perceptrons and a ridge logistic regression, they enable reaching an accuracy of 90% on our classification problem for nonlinear structural mechanics.
TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data
Machine learning practitioners often have access to a spectrum of data: labeled data for the target task (which is often limited), unlabeled data, and auxiliary data, the many available labeled datasets for other tasks. We describe TAGLETS, a system built to study techniques for automatically exploiting all three types of data and creating high-quality, servable classifiers. The key components of TAGLETS are: (1) auxiliary data organized according to a knowledge graph, (2) modules encapsulating different methods for exploiting auxiliary and unlabeled data, and (3) a distillation stage in which the ensembled modules are combined into a servable model. We compare TAGLETS with state-of-the-art transfer learning and semi-supervised learning methods on four image classification tasks. Our study covers a range of settings, varying the amount of labeled data and the semantic relatedness of the auxiliary data to the target task. We find that the intelligent incorporation of auxiliary and unlabeled data into multiple learning techniques enables TAGLETS to match-and most often significantly surpass-these alternatives. TAGLETS is available as an open-source system at github.com/BatsResearch/taglets.
Automated Machine Learning -- a brief review at the end of the early years
Automated machine learning (AutoML) is the sub-field of machine learning that aims at automating, to some extend, all stages of the design of a machine learning system. In the context of supervised learning, AutoML is concerned with feature extraction, pre processing, model design and post processing. Major contributions and achievements in AutoML have been taking place during the recent decade. We are therefore in perfect timing to look back and realize what we have learned. This chapter aims to summarize the main findings in the early years of AutoML. More specifically, in this chapter an introduction to AutoML for supervised learning is provided and an historical review of progress in this field is presented. Likewise, the main paradigms of AutoML are described and research opportunities are outlined.
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
The final goal of all industrial machine learning (ML) projects is to develop ML products and rapidly bring them into production. However, it is highly challenging to automate and operationalize ML products and thus many ML endeavors fail to deliver on their expectations. The paradigm of Machine Learning Operations (MLOps) addresses this issue. MLOps includes several aspects, such as best practices, sets of concepts, and development culture. However, MLOps is still a vague term and its consequences for researchers and professionals are ambiguous. To address this gap, we conduct mixed-method research, including a literature review, a tool review, and expert interviews. As a result of these investigations, we provide an aggregated overview of the necessary principles, components, and roles, as well as the associated architecture and workflows. Furthermore, we furnish a definition of MLOps and highlight open challenges in the field. Finally, this work provides guidance for ML researchers and practitioners who want to automate and operate their ML products with a designated set of technologies.
Zero-shot and Few-shot Learning with Knowledge Graphs: A Comprehensive Survey
Machine learning especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for supervision. As sufficient labeled training data are not always ready due to e.g., continuously emerging prediction targets and costly sample annotation in real world applications, machine learning with sample shortage is now being widely investigated. Among all these studies, many prefer to utilize auxiliary information including those in the form of Knowledge Graph (KG) to reduce the reliance on labeled samples. In this survey, we have comprehensively reviewed over 90 papers about KG-aware research for two major sample shortage settings -- zero-shot learning (ZSL) where some classes to be predicted have no labeled samples, and few-shot learning (FSL) where some classes to be predicted have only a small number of labeled samples that are available. We first introduce KGs used in ZSL and FSL as well as their construction methods, and then systematically categorize and summarize KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next present different applications, including not only KG augmented prediction tasks such as image classification, question answering, text classification and knowledge extraction, but also KG completion tasks, and some typical evaluation resources for each task. We eventually discuss some challenges and open problems from different perspectives.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
Assessing Project-Level Fine-Tuning of ML4SE Models
Machine Learning for Software Engineering (ML4SE) is an actively growing research area that focuses on methods that help programmers in their work. In order to apply the developed methods in practice, they need to achieve reasonable quality in order to help rather than distract developers. While the development of new approaches to code representation and data collection improves the overall quality of the models, it does not take into account the information that we can get from the project at hand. In this work, we investigate how the model's quality can be improved if we target a specific project. We develop a framework to assess quality improvements that models can get after fine-tuning for the method name prediction task on a particular project. We evaluate three models of different complexity and compare their quality in three settings: trained on a large dataset of Java projects, further fine-tuned on the data from a particular project, and trained from scratch on this data. We show that per-project fine-tuning can greatly improve the models' quality as they capture the project's domain and naming conventions. We open-source the tool we used for data collection, as well as the code to run the experiments: https://zenodo.org/record/6040745.
SpotHitPy: A Study For ML-Based Song Hit Prediction Using Spotify
In this study, we approached the Hit Song Prediction problem, which aims to predict which songs will become Billboard hits. We gathered a dataset of nearly 18500 hit and non-hit songs and extracted their audio features using the Spotify Web API. We test four machine-learning models on our dataset. We were able to predict the Billboard success of a song with approximately 86\% accuracy. The most succesful algorithms were Random Forest and Support Vector Machine.
Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code is available at: http://github.com/WangYueFt/rfs/.
PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python
Machine learning is a general-purpose technology holding promises for many interdisciplinary research problems. However, significant barriers exist in crossing disciplinary boundaries when most machine learning tools are developed in different areas separately. We present Pykale - a Python library for knowledge-aware machine learning on graphs, images, texts, and videos to enable and accelerate interdisciplinary research. We formulate new green machine learning guidelines based on standard software engineering practices and propose a novel pipeline-based application programming interface (API). PyKale focuses on leveraging knowledge from multiple sources for accurate and interpretable prediction, thus supporting multimodal learning and transfer learning (particularly domain adaptation) with latest deep learning and dimensionality reduction models. We build PyKale on PyTorch and leverage the rich PyTorch ecosystem. Our pipeline-based API design enforces standardization and minimalism, embracing green machine learning concepts via reducing repetitions and redundancy, reusing existing resources, and recycling learning models across areas. We demonstrate its interdisciplinary nature via examples in bioinformatics, knowledge graph, image/video recognition, and medical imaging.
A Primer on Neural Network Models for Natural Language Processing
Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation.
Efficient Natural Language Response Suggestion for Smart Reply
This paper presents a computationally efficient machine-learned method for natural language response suggestion. Feed-forward neural networks using n-gram embedding features encode messages into vectors which are optimized to give message-response pairs a high dot-product value. An optimized search finds response suggestions. The method is evaluated in a large-scale commercial e-mail application, Inbox by Gmail. Compared to a sequence-to-sequence approach, the new system achieves the same quality at a small fraction of the computational requirements and latency.
Interpretable Meta-Learning of Physical Systems
Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.
PROMISSING: Pruning Missing Values in Neural Networks
While data are the primary fuel for machine learning models, they often suffer from missing values, especially when collected in real-world scenarios. However, many off-the-shelf machine learning models, including artificial neural network models, are unable to handle these missing values directly. Therefore, extra data preprocessing and curation steps, such as data imputation, are inevitable before learning and prediction processes. In this study, we propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks. In this method, there is no need to remove or impute the missing values; instead, the missing values are treated as a new source of information (representing what we do not know). Our experiments on simulated data, several classification and regression benchmarks, and a multi-modal clinical dataset show that PROMISSING results in similar prediction performance compared to various imputation techniques. In addition, our experiments show models trained using PROMISSING techniques are becoming less decisive in their predictions when facing incomplete samples with many unknowns. This finding hopefully advances machine learning models from being pure predicting machines to more realistic thinkers that can also say "I do not know" when facing incomplete sources of information.
Flying By ML -- CNN Inversion of Affine Transforms
This paper describes a machine learning method to automate reading of cockpit gauges, using a CNN to invert affine transformations and deduce aircraft states from instrument images. Validated with synthetic images of a turn-and-bank indicator, this research introduces methods such as generating datasets from a single image, the 'Clean Training Principle' for optimal noise-free training, and CNN interpolation for continuous value predictions from categorical data. It also offers insights into hyperparameter optimization and ML system software engineering.
A Benchmark Dataset for Tornado Detection and Prediction using Full-Resolution Polarimetric Weather Radar Data
Weather radar is the primary tool used by forecasters to detect and warn for tornadoes in near-real time. In order to assist forecasters in warning the public, several algorithms have been developed to automatically detect tornadic signatures in weather radar observations. Recently, Machine Learning (ML) algorithms, which learn directly from large amounts of labeled data, have been shown to be highly effective for this purpose. Since tornadoes are extremely rare events within the corpus of all available radar observations, the selection and design of training datasets for ML applications is critical for the performance, robustness, and ultimate acceptance of ML algorithms. This study introduces a new benchmark dataset, TorNet to support development of ML algorithms in tornado detection and prediction. TorNet contains full-resolution, polarimetric, Level-II WSR-88D data sampled from 10 years of reported storm events. A number of ML baselines for tornado detection are developed and compared, including a novel deep learning (DL) architecture capable of processing raw radar imagery without the need for manual feature extraction required for existing ML algorithms. Despite not benefiting from manual feature engineering or other preprocessing, the DL model shows increased detection performance compared to non-DL and operational baselines. The TorNet dataset, as well as source code and model weights of the DL baseline trained in this work, are made freely available.
Ownership and Creativity in Generative Models
Machine learning generated content such as image artworks, textual poems and music become prominent in recent years. These tools attract much attention from the media, artists, researchers, and investors. Because these tools are data-driven, they are inherently different than the traditional creative tools which arises the question - who may own the content that is generated by these tools? In this paper we aim to address this question, we start by providing a background to this problem, raising several candidates that may own the content and arguments for each one of them. Then we propose a possible algorithmic solution in the vision-based model's regime. Finally, we discuss the broader implications of this problem.
FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models
Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction.
Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow
For tasks like code synthesis from natural language, code retrieval, and code summarization, data-driven models have shown great promise. However, creating these models require parallel data between natural language (NL) and code with fine-grained alignments. Stack Overflow (SO) is a promising source to create such a data set: the questions are diverse and most of them have corresponding answers with high-quality code snippets. However, existing heuristic methods (e.g., pairing the title of a post with the code in the accepted answer) are limited both in their coverage and the correctness of the NL-code pairs obtained. In this paper, we propose a novel method to mine high-quality aligned data from SO using two sets of features: hand-crafted features considering the structure of the extracted snippets, and correspondence features obtained by training a probabilistic model to capture the correlation between NL and code using neural networks. These features are fed into a classifier that determines the quality of mined NL-code pairs. Experiments using Python and Java as test beds show that the proposed method greatly expands coverage and accuracy over existing mining methods, even when using only a small number of labeled examples. Further, we find that reasonable results are achieved even when training the classifier on one language and testing on another, showing promise for scaling NL-code mining to a wide variety of programming languages beyond those for which we are able to annotate data.
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
As machine learning tasks continue to evolve, the trend has been to gather larger datasets and train increasingly larger models. While this has led to advancements in accuracy, it has also escalated computational costs to unsustainable levels. Addressing this, our work aims to strike a delicate balance between computational efficiency and model accuracy, a persisting challenge in the field. We introduce a novel method that employs core subset selection for reweighting, effectively optimizing both computational time and model performance. By focusing on a strategically selected coreset, our approach offers a robust representation, as it efficiently minimizes the influence of outliers. The re-calibrated weights are then mapped back to and propagated across the entire dataset. Our experimental results substantiate the effectiveness of this approach, underscoring its potential as a scalable and precise solution for model training.
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.
AutoMLBench: A Comprehensive Experimental Evaluation of Automated Machine Learning Frameworks
With the booming demand for machine learning applications, it has been recognized that the number of knowledgeable data scientists can not scale with the growing data volumes and application needs in our digital world. In response to this demand, several automated machine learning (AutoML) frameworks have been developed to fill the gap of human expertise by automating the process of building machine learning pipelines. Each framework comes with different heuristics-based design decisions. In this study, we present a comprehensive evaluation and comparison of the performance characteristics of six popular AutoML frameworks, namely, AutoWeka, AutoSKlearn, TPOT, Recipe, ATM, and SmartML, across 100 data sets from established AutoML benchmark suites. Our experimental evaluation considers different aspects for its comparison, including the performance impact of several design decisions, including time budget, size of search space, meta-learning, and ensemble construction. The results of our study reveal various interesting insights that can significantly guide and impact the design of AutoML frameworks.
Feature Representation Learning for Click-through Rate Prediction: A Review and New Perspectives
Representation learning has been a critical topic in machine learning. In Click-through Rate Prediction, most features are represented as embedding vectors and learned simultaneously with other parameters in the model. With the development of CTR models, feature representation learning has become a trending topic and has been extensively studied by both industrial and academic researchers in recent years. This survey aims at summarizing the feature representation learning in a broader picture and pave the way for future research. To achieve such a goal, we first present a taxonomy of current research methods on feature representation learning following two main issues: (i) which feature to represent and (ii) how to represent these features. Then we give a detailed description of each method regarding these two issues. Finally, the review concludes with a discussion on the future directions of this field.
Distilling the Knowledge in a Neural Network
A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.
Deep Reinforcement Learning: An Overview
In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter reviews the recent advances in deep reinforcement learning with a focus on the most used deep architectures such as autoencoders, convolutional neural networks and recurrent neural networks which have successfully been come together with the reinforcement learning framework.
Sampling Streaming Data with Parallel Vector Quantization -- PVQ
Accumulation of corporate data in the cloud has attracted more enterprise applications to the cloud creating data gravity. As a consequence, network traffic has become more cloud centric. This increase in cloud centric traffic poses new challenges in designing learning systems for streaming data due to class imbalance. The number of classes plays a vital role in the accuracy of the classifiers built from the data streams. In this paper, we present a vector quantization-based sampling method, which substantially reduces the class imbalance in data streams. We demonstrate its effectiveness by conducting experiments on network traffic and anomaly dataset with commonly used ML model building methods; Multilayered Perceptron on TensorFlow backend, Support Vector Machines, K-Nearest Neighbour, and Random Forests. We built models using parallel processing, batch processing, and randomly selecting samples. We show that the accuracy of classification models improves when the data streams are pre-processed with our method. We used out of the box hyper-parameters of these classifiers and auto sklearn for hyperparameter optimization.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers
In many cases of machine learning, research suggests that the development of training data might have a higher relevance than the choice and modelling of classifiers themselves. Thus, data augmentation methods have been developed to improve classifiers by artificially created training data. In NLP, there is the challenge of establishing universal rules for text transformations which provide new linguistic patterns. In this paper, we present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts. We achieved promising improvements when evaluating short as well as long text tasks with the enhancement by our text generation method. Especially with regard to small data analytics, additive accuracy gains of up to 15.53% and 3.56% are achieved within a constructed low data regime, compared to the no augmentation baseline and another data augmentation technique. As the current track of these constructed regimes is not universally applicable, we also show major improvements in several real world low data tasks (up to +4.84 F1-score). Since we are evaluating the method from many perspectives (in total 11 datasets), we also observe situations where the method might not be suitable. We discuss implications and patterns for the successful application of our approach on different types of datasets.
AutoDES: AutoML Pipeline Generation of Classification with Dynamic Ensemble Strategy Selection
Automating machine learning has achieved remarkable technological developments in recent years, and building an automated machine learning pipeline is now an essential task. The model ensemble is the technique of combining multiple models to get a better and more robust model. However, existing automated machine learning tends to be simplistic in handling the model ensemble, where the ensemble strategy is fixed, such as stacked generalization. There have been many techniques on different ensemble methods, especially ensemble selection, and the fixed ensemble strategy limits the upper limit of the model's performance. In this article, we present a novel framework for automated machine learning. Our framework incorporates advances in dynamic ensemble selection, and to our best knowledge, our approach is the first in the field of AutoML to search and optimize ensemble strategies. In the comparison experiments, our method outperforms the state-of-the-art automated machine learning frameworks with the same CPU time in 42 classification datasets from the OpenML platform. Ablation experiments on our framework validate the effectiveness of our proposed method.
UnStar: Unlearning with Self-Taught Anti-Sample Reasoning for LLMs
The key components of machine learning are data samples for training, model for learning patterns, and loss function for optimizing accuracy. Analogously, unlearning can potentially be achieved through anti-data samples (or anti-samples), unlearning method, and reversed loss function. While prior research has explored unlearning methods and reversed loss functions, the potential of anti-samples remains largely untapped. In this paper, we introduce UnSTAR: Unlearning with Self-Taught Anti-Sample Reasoning for large language models (LLMs). Our contributions are threefold; first, we propose a novel concept of anti-sample-induced unlearning; second, we generate anti-samples by leveraging misleading rationales, which help reverse learned associations and accelerate the unlearning process; and third, we enable fine-grained targeted unlearning, allowing for the selective removal of specific associations without impacting related knowledge - something not achievable by previous works. Results demonstrate that anti-samples offer an efficient, targeted unlearning strategy for LLMs, opening new avenues for privacy-preserving machine learning and model modification.
From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
A Framework For Refining Text Classification and Object Recognition from Academic Articles
With the widespread use of the internet, it has become increasingly crucial to extract specific information from vast amounts of academic articles efficiently. Data mining techniques are generally employed to solve this issue. However, data mining for academic articles is challenging since it requires automatically extracting specific patterns in complex and unstructured layout documents. Current data mining methods for academic articles employ rule-based(RB) or machine learning(ML) approaches. However, using rule-based methods incurs a high coding cost for complex typesetting articles. On the other hand, simply using machine learning methods requires annotation work for complex content types within the paper, which can be costly. Furthermore, only using machine learning can lead to cases where patterns easily recognized by rule-based methods are mistakenly extracted. To overcome these issues, from the perspective of analyzing the standard layout and typesetting used in the specified publication, we emphasize implementing specific methods for specific characteristics in academic articles. We have developed a novel Text Block Refinement Framework (TBRF), a machine learning and rule-based scheme hybrid. We used the well-known ACL proceeding articles as experimental data for the validation experiment. The experiment shows that our approach achieved over 95% classification accuracy and 90% detection accuracy for tables and figures.
MLlib: Machine Learning in Apache Spark
Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark's open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, optimization, and linear algebra primitives. Shipped with Spark, MLlib supports several languages and provides a high-level API that leverages Spark's rich ecosystem to simplify the development of end-to-end machine learning pipelines. MLlib has experienced a rapid growth due to its vibrant open-source community of over 140 contributors, and includes extensive documentation to support further growth and to let users quickly get up to speed.
Evaluating categorical encoding methods on a real credit card fraud detection database
Correctly dealing with categorical data in a supervised learning context is still a major issue. Furthermore, though some machine learning methods embody builtin methods to deal with categorical features, it is unclear whether they bring some improvements and how do they compare with usual categorical encoding methods. In this paper, we describe several well-known categorical encoding methods that are based on target statistics and weight of evidence. We apply them on a large and real credit card fraud detection database. Then, we train the encoded databases using state-of-the-art gradient boosting methods and evaluate their performances. We show that categorical encoding methods generally bring substantial improvements with respect to the absence of encoding. The contribution of this work is twofold: (1) we compare many state-of-the-art "lite" categorical encoding methods on a large scale database and (2) we use a real credit card fraud detection database.
Learning De-biased Representations with Biased Representations
Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at https://github.com/clovaai/rebias.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
Data and its (dis)contents: A survey of dataset development and use in machine learning research
Datasets have played a foundational role in the advancement of machine learning research. They form the basis for the models we design and deploy, as well as our primary medium for benchmarking and evaluation. Furthermore, the ways in which we collect, construct and share these datasets inform the kinds of problems the field pursues and the methods explored in algorithm development. However, recent work from a breadth of perspectives has revealed the limitations of predominant practices in dataset collection and use. In this paper, we survey the many concerns raised about the way we collect and use data in machine learning and advocate that a more cautious and thorough understanding of data is necessary to address several of the practical and ethical issues of the field.
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
We here propose a machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothesis test. The model is based on a modern implementation of kernel methods, nonparametric algorithms that can learn any continuous function given enough data. The resulting approach is efficient and agnostic to the type of anomaly that may be present in the data. Our study demonstrates the effectiveness of this strategy on multivariate data from drift tube chamber muon detectors.
Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development
Data is a crucial component of machine learning. The field is reliant on data to train, validate, and test models. With increased technical capabilities, machine learning research has boomed in both academic and industry settings, and one major focus has been on computer vision. Computer vision is a popular domain of machine learning increasingly pertinent to real-world applications, from facial recognition in policing to object detection for autonomous vehicles. Given computer vision's propensity to shape machine learning research and impact human life, we seek to understand disciplinary practices around dataset documentation - how data is collected, curated, annotated, and packaged into datasets for computer vision researchers and practitioners to use for model tuning and development. Specifically, we examine what dataset documentation communicates about the underlying values of vision data and the larger practices and goals of computer vision as a field. To conduct this study, we collected a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks. Through both a structured and thematic content analysis, we document a number of values around accepted data practices, what makes desirable data, and the treatment of humans in the dataset construction process. We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; impartiality at the expense of positionality; and model work at the expense of data work. Many of the silenced values we identify sit in opposition with social computing practices. We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.
Representation Learning: A Review and New Perspectives
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
A Deep Learning Framework for Lifelong Machine Learning
Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).
A quantitative framework for evaluating architectural patterns in ML systems
Contemporary intelligent systems incorporate software components, including machine learning components. As they grow in complexity and data volume such machine learning systems face unique quality challenges like scalability and performance. To overcome them, engineers may often use specific architectural patterns, however their impact on ML systems is difficult to quantify. The effect of software architecture on traditional systems is well studied, however more work is needed in the area of machine learning systems. This study proposes a framework for quantitative assessment of architectural patterns in ML systems, focusing on scalability and performance metrics for cost-effective CPU-based inference. We integrate these metrics into a systematic evaluation process for selection of architectural patterns and demonstrate its application through a case study. The approach shown in the paper should enable software architects to objectively analyze and select optimal patterns, addressing key challenges in ML system design.
Forecasting Lithium-Ion Battery Longevity with Limited Data Availability: Benchmarking Different Machine Learning Algorithms
As the use of Lithium-ion batteries continues to grow, it becomes increasingly important to be able to predict their remaining useful life. This work aims to compare the relative performance of different machine learning algorithms, both traditional machine learning and deep learning, in order to determine the best-performing algorithms for battery cycle life prediction based on minimal data. We investigated 14 different machine learning models that were fed handcrafted features based on statistical data and split into 3 feature groups for testing. For deep learning models, we tested a variety of neural network models including different configurations of standard Recurrent Neural Networks, Gated Recurrent Units, and Long Short Term Memory with and without attention mechanism. Deep learning models were fed multivariate time series signals based on the raw data for each battery across the first 100 cycles. Our experiments revealed that the machine learning algorithms on handcrafted features performed particularly well, resulting in 10-20% average mean absolute percentage error. The best-performing algorithm was the Random Forest Regressor, which gave a minimum 9.8% mean absolute percentage error. Traditional machine learning models excelled due to their capability to comprehend general data set trends. In comparison, deep learning models were observed to perform particularly poorly on raw, limited data. Algorithms like GRU and RNNs that focused on capturing medium-range data dependencies were less adept at recognizing the gradual, slow trends critical for this task. Our investigation reveals that implementing machine learning models with hand-crafted features proves to be more effective than advanced deep learning models for predicting the remaining useful Lithium-ion battery life with limited data availability.
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Modern machine learning research relies on relatively few carefully curated datasets. Even in these datasets, and typically in `untidy' or raw data, practitioners are faced with significant issues of data quality and diversity which can be prohibitively labor intensive to address. Existing methods for dealing with these challenges tend to make strong assumptions about the particular issues at play, and often require a priori knowledge or metadata such as domain labels. Our work is orthogonal to these methods: we instead focus on providing a unified and efficient framework for Metadata Archaeology -- uncovering and inferring metadata of examples in a dataset. We curate different subsets of data that might exist in a dataset (e.g. mislabeled, atypical, or out-of-distribution examples) using simple transformations, and leverage differences in learning dynamics between these probe suites to infer metadata of interest. Our method is on par with far more sophisticated mitigation methods across different tasks: identifying and correcting mislabeled examples, classifying minority-group samples, prioritizing points relevant for training and enabling scalable human auditing of relevant examples.
A Survey on Multi-Task Learning
Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI
In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets.
Challenges and Complexities in Machine Learning based Credit Card Fraud Detection
Credit cards play an exploding role in modern economies. Its popularity and ubiquity have created a fertile ground for fraud, assisted by the cross boarder reach and instantaneous confirmation. While transactions are growing, the fraud percentages are also on the rise as well as the true cost of a dollar fraud. Volume of transactions, uniqueness of frauds and ingenuity of the fraudster are main challenges in detecting frauds. The advent of machine learning, artificial intelligence and big data has opened up new tools in the fight against frauds. Given past transactions, a machine learning algorithm has the ability to 'learn' infinitely complex characteristics in order to identify frauds in real-time, surpassing the best human investigators. However, the developments in fraud detection algorithms has been challenging and slow due the massively unbalanced nature of fraud data, absence of benchmarks and standard evaluation metrics to identify better performing classifiers, lack of sharing and disclosure of research findings and the difficulties in getting access to confidential transaction data for research. This work investigates the properties of typical massively imbalanced fraud data sets, their availability, suitability for research use while exploring the widely varying nature of fraud distributions. Furthermore, we show how human annotation errors compound with machine classification errors. We also carry out experiments to determine the effect of PCA obfuscation (as a means of disseminating sensitive transaction data for research and machine learning) on algorithmic performance of classifiers and show that while PCA does not significantly degrade performance, care should be taken to use the appropriate principle component size (dimensions) to avoid overfitting.
Addressing contingency in algorithmic (mis)information classification: Toward a responsible machine learning agenda
Machine learning (ML) enabled classification models are becoming increasingly popular for tackling the sheer volume and speed of online misinformation and other content that could be identified as harmful. In building these models, data scientists need to take a stance on the legitimacy, authoritativeness and objectivity of the sources of ``truth" used for model training and testing. This has political, ethical and epistemic implications which are rarely addressed in technical papers. Despite (and due to) their reported high accuracy and performance, ML-driven moderation systems have the potential to shape online public debate and create downstream negative impacts such as undue censorship and the reinforcing of false beliefs. Using collaborative ethnography and theoretical insights from social studies of science and expertise, we offer a critical analysis of the process of building ML models for (mis)information classification: we identify a series of algorithmic contingencies--key moments during model development that could lead to different future outcomes, uncertainty and harmful effects as these tools are deployed by social media platforms. We conclude by offering a tentative path toward reflexive and responsible development of ML tools for moderating misinformation and other harmful content online.
Spurious Correlations in Machine Learning: A Survey
Machine learning systems are known to be sensitive to spurious correlations between biased features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this survey, we provide a comprehensive review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to aid future research. The paper concludes with a discussion of the recent advancements and future research challenges in this field, aiming to provide valuable insights for researchers in the related domains.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
Angler: Helping Machine Translation Practitioners Prioritize Model Improvements
Machine learning (ML) models can fail in unexpected ways in the real world, but not all model failures are equal. With finite time and resources, ML practitioners are forced to prioritize their model debugging and improvement efforts. Through interviews with 13 ML practitioners at Apple, we found that practitioners construct small targeted test sets to estimate an error's nature, scope, and impact on users. We built on this insight in a case study with machine translation models, and developed Angler, an interactive visual analytics tool to help practitioners prioritize model improvements. In a user study with 7 machine translation experts, we used Angler to understand prioritization practices when the input space is infinite, and obtaining reliable signals of model quality is expensive. Our study revealed that participants could form more interesting and user-focused hypotheses for prioritization by analyzing quantitative summary statistics and qualitatively assessing data by reading sentences.
Synergizing Machine Learning & Symbolic Methods: A Survey on Hybrid Approaches to Natural Language Processing
The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges, offering a roadmap for future directions.
a survey on GPT-3
This paper provides an introductory survey to GPT-3. We cover some of the historical development behind this technology, some of the key features of GPT-3, and discuss the machine learning model and the datasets used. We survey both academic and commercial efforts applying GPT-3 in diverse domains such as developing conversational AI chatbots, software development, creative work, domain knowledge, and business productivity. We discuss some of the challenges that GPT-3 faces such as the problems of training complexity, bias, and hallucination/incorrect answers. We also discuss the future research opportunities in this area.
MUGC: Machine Generated versus User Generated Content Detection
As advanced modern systems like deep neural networks (DNNs) and generative AI continue to enhance their capabilities in producing convincing and realistic content, the need to distinguish between user-generated and machine generated content is becoming increasingly evident. In this research, we undertake a comparative evaluation of eight traditional machine-learning algorithms to distinguish between machine-generated and human-generated data across three diverse datasets: Poems, Abstracts, and Essays. Our results indicate that traditional methods demonstrate a high level of accuracy in identifying machine-generated data, reflecting the documented effectiveness of popular pre-trained models like RoBERT. We note that machine-generated texts tend to be shorter and exhibit less word variety compared to human-generated content. While specific domain-related keywords commonly utilized by humans, albeit disregarded by current LLMs (Large Language Models), may contribute to this high detection accuracy, we show that deeper word representations like word2vec can capture subtle semantic variances. Furthermore, readability, bias, moral, and affect comparisons reveal a discernible contrast between machine-generated and human generated content. There are variations in expression styles and potentially underlying biases in the data sources (human and machine-generated). This study provides valuable insights into the advancing capacities and challenges associated with machine-generated content across various domains.
Learning Universal Predictors
Meta-learning has emerged as a powerful approach to train neural networks to learn new tasks quickly from limited data. Broad exposure to different tasks leads to versatile representations enabling general problem solving. But, what are the limits of meta-learning? In this work, we explore the potential of amortizing the most powerful universal predictor, namely Solomonoff Induction (SI), into neural networks via leveraging meta-learning to its limits. We use Universal Turing Machines (UTMs) to generate training data used to expose networks to a broad range of patterns. We provide theoretical analysis of the UTM data generation processes and meta-training protocols. We conduct comprehensive experiments with neural architectures (e.g. LSTMs, Transformers) and algorithmic data generators of varying complexity and universality. Our results suggest that UTM data is a valuable resource for meta-learning, and that it can be used to train neural networks capable of learning universal prediction strategies.
PHUDGE: Phi-3 as Scalable Judge
In this paper cum technical report, we present PHUDGE A fine tuned Phi3 model that achieved SOTA results in 4 tasks as Feedback Test, Feedback OOD, MT Human, Preference Test surpassing each and every existing model in latency and throughput. It shows very strong correlation not only with GPT4 but with Human annotators too in unseen data as well as in both absolute and relative grading tasks. We have not only addressed the usage of small LMs for cost effective production grade systems but have also shown that Causal modelling is not only slow in nature but sometimes it can hinder models learning capabilities and should be replaced by simpler tasks whenever we can to make the overall system faster and better. We show that by following systematic ML experimentation, thoughtful data augmentation and re purposing the problem itself, we can even beat 10x bigger models even with lesser training data. To the best of our knowledge, we are re the first one to experiment and showcase the usage of generalised version of Earth Movers Distance AKA Wasserstein distance by using Minkowski Distance with a penalty to control loss smoothing and can be used as a loss function instead of Cross Entropy to get stable training and better results for grading tasks.
PyGlove: Symbolic Programming for Automated Machine Learning
Neural networks are sensitive to hyper-parameter and architecture choices. Automated Machine Learning (AutoML) is a promising paradigm for automating these choices. Current ML software libraries, however, are quite limited in handling the dynamic interactions among the components of AutoML. For example, efficientNAS algorithms, such as ENAS and DARTS, typically require an implementation coupling between the search space and search algorithm, the two key components in AutoML. Furthermore, implementing a complex search flow, such as searching architectures within a loop of searching hardware configurations, is difficult. To summarize, changing the search space, search algorithm, or search flow in current ML libraries usually requires a significant change in the program logic. In this paper, we introduce a new way of programming AutoML based on symbolic programming. Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program. As a result, AutoML can be reformulated as an automated process of symbolic manipulation. With this formulation, we decouple the triangle of the search algorithm, the search space and the child program. This decoupling makes it easy to change the search space and search algorithm (without and with weight sharing), as well as to add search capabilities to existing code and implement complex search flows. We then introduce PyGlove, a new Python library that implements this paradigm. Through case studies on ImageNet and NAS-Bench-101, we show that with PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows to achieve better results.
Infrastructure for Usable Machine Learning: The Stanford DAWN Project
Despite incredible recent advances in machine learning, building machine learning applications remains prohibitively time-consuming and expensive for all but the best-trained, best-funded engineering organizations. This expense comes not from a need for new and improved statistical models but instead from a lack of systems and tools for supporting end-to-end machine learning application development, from data preparation and labeling to productionization and monitoring. In this document, we outline opportunities for infrastructure supporting usable, end-to-end machine learning applications in the context of the nascent DAWN (Data Analytics for What's Next) project at Stanford.
Analyzing Wearables Dataset to Predict ADLs and Falls: A Pilot Study
Healthcare is an important aspect of human life. Use of technologies in healthcare has increased manifolds after the pandemic. Internet of Things based systems and devices proposed in literature can help elders, children and adults facing/experiencing health problems. This paper exhaustively reviews thirty-nine wearable based datasets which can be used for evaluating the system to recognize Activities of Daily Living and Falls. A comparative analysis on the SisFall dataset using five machine learning methods i.e., Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbor, Decision Tree and Naive Bayes is performed in python. The dataset is modified in two ways, in first all the attributes present in dataset are used as it is and labelled in binary form. In second, magnitude of three axes(x,y,z) for three sensors value are computed and then used in experiment with label attribute. The experiments are performed on one subject, ten subjects and all the subjects and compared in terms of accuracy, precision and recall. The results obtained from this study proves that KNN outperforms other machine learning methods in terms of accuracy, precision and recall. It is also concluded that personalization of data improves accuracy.
A Typology for Exploring the Mitigation of Shortcut Behavior
As machine learning models become increasingly larger, trained weakly supervised on large, possibly uncurated data sets, it becomes increasingly important to establish mechanisms for inspecting, interacting, and revising models to mitigate learning shortcuts and guarantee their learned knowledge is aligned with human knowledge. The recently proposed XIL framework was developed for this purpose, and several such methods have been introduced, each with individual motivations and methodological details. In this work, we provide a unification of various XIL methods into a single typology by establishing a common set of basic modules. In doing so, we pave the way for a principled comparison of existing, but, importantly, also future XIL approaches. In addition, we discuss existing and introduce novel measures and benchmarks for evaluating the overall abilities of a XIL method. Given this extensive toolbox, including our typology, measures, and benchmarks, we finally compare several recent XIL methods methodologically and quantitatively. In our evaluations, all methods prove to revise a model successfully. However, we found remarkable differences in individual benchmark tasks, revealing valuable application-relevant aspects for integrating these benchmarks in developing future methods.
An ensemble of convolution-based methods for fault detection using vibration signals
This paper focuses on solving a fault detection problem using multivariate time series of vibration signals collected from planetary gearboxes in a test rig. Various traditional machine learning and deep learning methods have been proposed for multivariate time-series classification, including distance-based, functional data-oriented, feature-driven, and convolution kernel-based methods. Recent studies have shown using convolution kernel-based methods like ROCKET, and 1D convolutional neural networks with ResNet and FCN, have robust performance for multivariate time-series data classification. We propose an ensemble of three convolution kernel-based methods and show its efficacy on this fault detection problem by outperforming other approaches and achieving an accuracy of more than 98.8\%.
On Mutual Information Maximization for Representation Learning
Many recent methods for unsupervised or self-supervised representation learning train feature extractors by maximizing an estimate of the mutual information (MI) between different views of the data. This comes with several immediate problems: For example, MI is notoriously hard to estimate, and using it as an objective for representation learning may lead to highly entangled representations due to its invariance under arbitrary invertible transformations. Nevertheless, these methods have been repeatedly shown to excel in practice. In this paper we argue, and provide empirical evidence, that the success of these methods cannot be attributed to the properties of MI alone, and that they strongly depend on the inductive bias in both the choice of feature extractor architectures and the parametrization of the employed MI estimators. Finally, we establish a connection to deep metric learning and argue that this interpretation may be a plausible explanation for the success of the recently introduced methods.
Feature Gradients: Scalable Feature Selection via Discrete Relaxation
In this paper we introduce Feature Gradients, a gradient-based search algorithm for feature selection. Our approach extends a recent result on the estimation of learnability in the sublinear data regime by showing that the calculation can be performed iteratively (i.e., in mini-batches) and in linear time and space with respect to both the number of features D and the sample size N . This, along with a discrete-to-continuous relaxation of the search domain, allows for an efficient, gradient-based search algorithm among feature subsets for very large datasets. Crucially, our algorithm is capable of finding higher-order correlations between features and targets for both the N > D and N < D regimes, as opposed to approaches that do not consider such interactions and/or only consider one regime. We provide experimental demonstration of the algorithm in small and large sample-and feature-size settings.
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
TransICD: Transformer Based Code-wise Attention Model for Explainable ICD Coding
International Classification of Disease (ICD) coding procedure which refers to tagging medical notes with diagnosis codes has been shown to be effective and crucial to the billing system in medical sector. Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors. Moreover, training skilled coders also requires time and human resources. Therefore, automating the ICD code determination process is an important task. With the advancement of artificial intelligence theory and computational hardware, machine learning approach has emerged as a suitable solution to automate this process. In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document. Finally, they are fed to separate dense layers for corresponding code prediction. Furthermore, to handle the imbalance in the code frequency of clinical datasets, we employ a label distribution aware margin (LDAM) loss function. The experimental results on the MIMIC-III dataset show that our proposed model outperforms other baselines by a significant margin. In particular, our best setting achieves a micro-AUC score of 0.923 compared to 0.868 of bidirectional recurrent neural networks. We also show that by using the code-wise attention mechanism, the model can provide more insights about its prediction, and thus it can support clinicians to make reliable decisions. Our code is available online (https://github.com/biplob1ly/TransICD)
Pattern Based Multivariable Regression using Deep Learning (PBMR-DP)
We propose a deep learning methodology for multivariate regression that is based on pattern recognition that triggers fast learning over sensor data. We used a conversion of sensors-to-image which enables us to take advantage of Computer Vision architectures and training processes. In addition to this data preparation methodology, we explore the use of state-of-the-art architectures to generate regression outputs to predict agricultural crop continuous yield information. Finally, we compare with some of the top models reported in MLCAS2021. We found that using a straightforward training process, we were able to accomplish an MAE of 4.394, RMSE of 5.945, and R^2 of 0.861.
MotorFactory: A Blender Add-on for Large Dataset Generation of Small Electric Motors
To enable automatic disassembly of different product types with uncertain conditions and degrees of wear in remanufacturing, agile production systems that can adapt dynamically to changing requirements are needed. Machine learning algorithms can be employed due to their generalization capabilities of learning from various types and variants of products. However, in reality, datasets with a diversity of samples that can be used to train models are difficult to obtain in the initial period. This may cause bad performances when the system tries to adapt to new unseen input data in the future. In order to generate large datasets for different learning purposes, in our project, we present a Blender add-on named MotorFactory to generate customized mesh models of various motor instances. MotorFactory allows to create mesh models which, complemented with additional add-ons, can be further used to create synthetic RGB images, depth images, normal images, segmentation ground truth masks, and 3D point cloud datasets with point-wise semantic labels. The created synthetic datasets may be used for various tasks including motor type classification, object detection for decentralized material transfer tasks, part segmentation for disassembly and handling tasks, or even reinforcement learning-based robotics control or view-planning.
Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning
We analyze the growth of dataset sizes used in machine learning for natural language processing and computer vision, and extrapolate these using two methods; using the historical growth rate and estimating the compute-optimal dataset size for future predicted compute budgets. We investigate the growth in data usage by estimating the total stock of unlabeled data available on the internet over the coming decades. Our analysis indicates that the stock of high-quality language data will be exhausted soon; likely before 2026. By contrast, the stock of low-quality language data and image data will be exhausted only much later; between 2030 and 2050 (for low-quality language) and between 2030 and 2060 (for images). Our work suggests that the current trend of ever-growing ML models that rely on enormous datasets might slow down if data efficiency is not drastically improved or new sources of data become available.
Language models are weak learners
A central notion in practical and theoretical machine learning is that of a weak learner, classifiers that achieve better-than-random performance (on any given distribution over data), even by a small margin. Such weak learners form the practical basis for canonical machine learning methods such as boosting. In this work, we illustrate that prompt-based large language models can operate effectively as said weak learners. Specifically, we illustrate the use of a large language model (LLM) as a weak learner in a boosting algorithm applied to tabular data. We show that by providing (properly sampled according to the distribution of interest) text descriptions of tabular data samples, LLMs can produce a summary of the samples that serves as a template for classification and achieves the aim of acting as a weak learner on this task. We incorporate these models into a boosting approach, which in some settings can leverage the knowledge within the LLM to outperform traditional tree-based boosting. The model outperforms both few-shot learning and occasionally even more involved fine-tuning procedures, particularly for tasks involving small numbers of data points. The results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
Probing Classifiers: Promises, Shortcomings, and Advances
Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple -- a classifier is trained to predict some linguistic property from a model's representations -- and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This article critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Deep learning has demonstrated tremendous success in variety of application domains in the past few years. This new field of machine learning has been growing rapidly and applied in most of the application domains with some new modalities of applications, which helps to open new opportunity. There are different methods have been proposed on different category of learning approaches, which includes supervised, semi-supervised and un-supervised learning. The experimental results show state-of-the-art performance of deep learning over traditional machine learning approaches in the field of Image Processing, Computer Vision, Speech Recognition, Machine Translation, Art, Medical imaging, Medical information processing, Robotics and control, Bio-informatics, Natural Language Processing (NLP), Cyber security, and many more. This report presents a brief survey on development of DL approaches, including Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) including Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). In addition, we have included recent development of proposed advanced variant DL techniques based on the mentioned DL approaches. Furthermore, DL approaches have explored and evaluated in different application domains are also included in this survey. We have also comprised recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys have published on Deep Learning in Neural Networks [1, 38] and a survey on RL [234]. However, those papers have not discussed the individual advanced techniques for training large scale deep learning models and the recently developed method of generative models [1].
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
Towards A Rigorous Science of Interpretable Machine Learning
As machine learning systems become ubiquitous, there has been a surge of interest in interpretable machine learning: systems that provide explanation for their outputs. These explanations are often used to qualitatively assess other criteria such as safety or non-discrimination. However, despite the interest in interpretability, there is very little consensus on what interpretable machine learning is and how it should be measured. In this position paper, we first define interpretability and describe when interpretability is needed (and when it is not). Next, we suggest a taxonomy for rigorous evaluation and expose open questions towards a more rigorous science of interpretable machine learning.
Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification
This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.