Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOptimizing ViViT Training: Time and Memory Reduction for Action Recognition
In this paper, we address the challenges posed by the substantial training time and memory consumption associated with video transformers, focusing on the ViViT (Video Vision Transformer) model, in particular the Factorised Encoder version, as our baseline for action recognition tasks. The factorised encoder variant follows the late-fusion approach that is adopted by many state of the art approaches. Despite standing out for its favorable speed/accuracy tradeoffs among the different variants of ViViT, its considerable training time and memory requirements still pose a significant barrier to entry. Our method is designed to lower this barrier and is based on the idea of freezing the spatial transformer during training. This leads to a low accuracy model if naively done. But we show that by (1) appropriately initializing the temporal transformer (a module responsible for processing temporal information) (2) introducing a compact adapter model connecting frozen spatial representations ((a module that selectively focuses on regions of the input image) to the temporal transformer, we can enjoy the benefits of freezing the spatial transformer without sacrificing accuracy. Through extensive experimentation over 6 benchmarks, we demonstrate that our proposed training strategy significantly reduces training costs (by sim 50%) and memory consumption while maintaining or slightly improving performance by up to 1.79\% compared to the baseline model. Our approach additionally unlocks the capability to utilize larger image transformer models as our spatial transformer and access more frames with the same memory consumption.
GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.
Memory-Efficient Backpropagation through Large Linear Layers
In modern neural networks like Transformers, linear layers require significant memory to store activations during backward pass. This study proposes a memory reduction approach to perform backpropagation through linear layers. Since the gradients of linear layers are computed by matrix multiplications, we consider methods for randomized matrix multiplications and demonstrate that they require less memory with a moderate decrease of the test accuracy. Also, we investigate the variance of the gradient estimate induced by the randomized matrix multiplication. We compare this variance with the variance coming from gradient estimation based on the batch of samples. We demonstrate the benefits of the proposed method on the fine-tuning of the pre-trained RoBERTa model on GLUE tasks.
APOLLO: SGD-like Memory, AdamW-level Performance
Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.
Fast and Memory-Efficient Video Diffusion Using Streamlined Inference
The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).
Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model
With the rapid growth in model size, fine-tuning the large pre-trained language model has become increasingly difficult due to its extensive memory usage. Previous works usually focus on reducing the number of trainable parameters in the network. While the model parameters do contribute to memory usage, the primary memory bottleneck during training arises from storing feature maps, also known as activations, as they are crucial for gradient calculation. Notably, neural networks are usually trained using stochastic gradient descent. We argue that in stochastic optimization, models can handle noisy gradients as long as the gradient estimator is unbiased with reasonable variance. Following this motivation, we propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance, which only requires storing the sub-sampled activations for calculating the gradient. Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones. By replacing the linear operation with our approximated one in transformers, we can achieve up to 2.7times peak memory reduction with almost no accuracy drop and enables up to 6.4times larger batch size. Under the same hardware, WTA-CRS enables better down-streaming task performance by applying larger models and/or faster training speed with larger batch sizes.
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Dataset distillation methods aim to compress a large dataset into a small set of synthetic samples, such that when being trained on, competitive performances can be achieved compared to regular training on the entire dataset. Among recently proposed methods, Matching Training Trajectories (MTT) achieves state-of-the-art performance on CIFAR-10/100, while having difficulty scaling to ImageNet-1k dataset due to the large memory requirement when performing unrolled gradient computation through back-propagation. Surprisingly, we show that there exists a procedure to exactly calculate the gradient of the trajectory matching loss with constant GPU memory requirement (irrelevant to the number of unrolled steps). With this finding, the proposed memory-efficient trajectory matching method can easily scale to ImageNet-1K with 6x memory reduction while introducing only around 2% runtime overhead than original MTT. Further, we find that assigning soft labels for synthetic images is crucial for the performance when scaling to larger number of categories (e.g., 1,000) and propose a novel soft label version of trajectory matching that facilities better aligning of model training trajectories on large datasets. The proposed algorithm not only surpasses previous SOTA on ImageNet-1K under extremely low IPCs (Images Per Class), but also for the first time enables us to scale up to 50 IPCs on ImageNet-1K. Our method (TESLA) achieves 27.9% testing accuracy, a remarkable +18.2% margin over prior arts.
MCUFormer: Deploying Vision Transformers on Microcontrollers with Limited Memory
Due to the high price and heavy energy consumption of GPUs, deploying deep models on IoT devices such as microcontrollers makes significant contributions for ecological AI. Conventional methods successfully enable convolutional neural network inference of high resolution images on microcontrollers, while the framework for vision transformers that achieve the state-of-the-art performance in many vision applications still remains unexplored. In this paper, we propose a hardware-algorithm co-optimizations method called MCUFormer to deploy vision transformers on microcontrollers with extremely limited memory, where we jointly design transformer architecture and construct the inference operator library to fit the memory resource constraint. More specifically, we generalize the one-shot network architecture search (NAS) to discover the optimal architecture with highest task performance given the memory budget from the microcontrollers, where we enlarge the existing search space of vision transformers by considering the low-rank decomposition dimensions and patch resolution for memory reduction. For the construction of the inference operator library of vision transformers, we schedule the memory buffer during inference through operator integration, patch embedding decomposition, and token overwriting, allowing the memory buffer to be fully utilized to adapt to the forward pass of the vision transformer. Experimental results demonstrate that our MCUFormer achieves 73.62\% top-1 accuracy on ImageNet for image classification with 320KB memory on STM32F746 microcontroller. Code is available at https://github.com/liangyn22/MCUFormer.
Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks
The growing computational demands posed by increasingly number of neural network's parameters necessitate low-memory-consumption training approaches. Previous memory reduction techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, suffer from the limitation of low rank and saddle point issues, particularly during intensive tasks like pre-training. In this paper, we propose Sparse Spectral Training (SST), an advanced training methodology that updates all singular values and selectively updates singular vectors of network weights, thereby optimizing resource usage while closely approximating full-rank training. SST refines the training process by employing a targeted updating strategy for singular vectors, which is determined by a multinomial sampling method weighted by the significance of the singular values, ensuring both high performance and memory reduction. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, including natural language generation, machine translation, node classification and link prediction, SST demonstrates its capability to outperform existing memory reduction training methods and is comparable with full-rank training in some cases. On OPT-125M, with rank equating to 8.3% of embedding dimension, SST reduces the perplexity gap to full-rank training by 67.6%, demonstrating a significant reduction of the performance loss with prevalent low-rank methods. This approach offers a strong alternative to traditional training techniques, paving the way for more efficient and scalable neural network training solutions.
MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression
Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9times with the same average attention span, boosting retrieval accuracy by 1.5-7.1times over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from 9%-36% to within 5% across two long-context understanding benchmarks. MoA achieves a 1.2-1.4times GPU memory reduction and boosts decode throughput by 5.5-6.7 times for 7B and 13B dense models on a single GPU, with minimal impact on performance.
Ultra-Long Sequence Distributed Transformer
Transformer models trained on long sequences often achieve higher accuracy than short sequences. Unfortunately, conventional transformers struggle with long sequence training due to the overwhelming computation and memory requirements. Existing methods for long sequence training offer limited speedup and memory reduction, and may compromise accuracy. This paper presents a novel and efficient distributed training method, the Long Short-Sequence Transformer (LSS Transformer), for training transformer with long sequences. It distributes a long sequence into segments among GPUs, with each GPU computing a partial self-attention for its segment. Then, it uses a fused communication and a novel double gradient averaging technique to avoid the need to aggregate partial self-attention and minimize communication overhead. We evaluated the performance between LSS Transformer and the state-of-the-art Nvidia sequence parallelism on a Wikipedia enwik8 dataset. Results show that our proposed method lead to 5.6x faster and 10.2x more memory-efficient implementation compared to state-of-the-art sequence parallelism on 144 Nvidia V100 GPUs. Moreover, our algorithm scales to an extreme sequence length of 50,112 at 3,456 GPUs, achieving 161% super-linear parallel efficiency and a throughput of 32 petaflops.
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models
Large language models (LLMs) show excellent performance but are compute- and memory-intensive. Quantization can reduce memory and accelerate inference. However, existing methods cannot maintain accuracy and hardware efficiency at the same time. We propose SmoothQuant, a training-free, accuracy-preserving, and general-purpose post-training quantization (PTQ) solution to enable 8-bit weight, 8-bit activation (W8A8) quantization for LLMs. Based on the fact that weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by offline migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation. SmoothQuant enables an INT8 quantization of both weights and activations for all the matrix multiplications in LLMs, including OPT, BLOOM, GLM, MT-NLG, and LLaMA family. We demonstrate up to 1.56x speedup and 2x memory reduction for LLMs with negligible loss in accuracy. SmoothQuant enables serving 530B LLM within a single node. Our work offers a turn-key solution that reduces hardware costs and democratizes LLMs. Code is available at https://github.com/mit-han-lab/smoothquant.
FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization
Large language models (LLMs) have demonstrated state-of-the-art performance across various tasks. However, the latency of inference and the large GPU memory consumption of LLMs restrict their deployment performance. Recently, there have been some efficient attempts to quantize LLMs, yet inference with large batch size or long sequence still has the issue of being compute-bound. Fine-grained quantization methods have showcased their proficiency in achieving low-bit quantization for LLMs, while requiring FP16 data type for linear layer computations, which is time-consuming when dealing with large batch size or long sequence. In this paper, we introduce a method called FlattenQuant, which significantly reduces the maximum value of the tensor by flattening the large channels in the tensor, to achieve low bit per-tensor quantization with minimal accuracy loss. Our experiments show that FlattenQuant can directly use 4 bits to achieve 48.29% of the linear layer calculation in LLMs, with the remaining layers using 8 bits. The 4-bit matrix multiplication introduced in the FlattenQuant method can effectively address the compute-bound caused by large matrix calculation. Our work achieves up to 2times speedup and 2.3times memory reduction for LLMs with negligible loss in accuracy.
Confidant: Customizing Transformer-based LLMs via Collaborative Edge Training
Transformer-based large language models (LLMs) have demonstrated impressive capabilities in a variety of natural language processing (NLP) tasks. Nonetheless, it is challenging to deploy and fine-tune LLMs on mobile edge devices with limited computing, memory, and energy budgets. In this paper, we propose Confidant, a multi-backend collaborative training framework for customizing state-of-the-art LLMs on commodity mobile devices like smartphones. Confidant partitions an LLM into several sub-models so that each fits into a mobile device's memory. A pipeline parallel training mechanism is further developed to ensure fast and efficient distributed training. In addition, we propose a novel backend scheduler to allocate different attention heads to heterogeneous compute hardware, including mobile CPU and GPUs, to maximize the compute resource utilization on each edge device. Our preliminary experimental results show that Confidant achieves at most 45.3% memory reduction and 8.03x inference speedup in practical settings.
Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders
Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has been introduced as a solution to this problem. Most of the existing feature selection methods are computationally inefficient; inefficient algorithms lead to high energy consumption, which is not desirable for devices with limited computational and energy resources. In this paper, a novel and flexible method for unsupervised feature selection is proposed. This method, named QuickSelection, introduces the strength of the neuron in sparse neural networks as a criterion to measure the feature importance. This criterion, blended with sparsely connected denoising autoencoders trained with the sparse evolutionary training procedure, derives the importance of all input features simultaneously. We implement QuickSelection in a purely sparse manner as opposed to the typical approach of using a binary mask over connections to simulate sparsity. It results in a considerable speed increase and memory reduction. When tested on several benchmark datasets, including five low-dimensional and three high-dimensional datasets, the proposed method is able to achieve the best trade-off of classification and clustering accuracy, running time, and maximum memory usage, among widely used approaches for feature selection. Besides, our proposed method requires the least amount of energy among the state-of-the-art autoencoder-based feature selection methods.
PyramidInfer: Pyramid KV Cache Compression for High-throughput LLM Inference
Large Language Models (LLMs) have shown remarkable comprehension abilities but face challenges in GPU memory usage during inference, hindering their scalability for real-time applications like chatbots. To accelerate inference, we store computed keys and values (KV cache) in the GPU memory. Existing methods study the KV cache compression to reduce memory by pruning the pre-computed KV cache. However, they neglect the inter-layer dependency between layers and huge memory consumption in pre-computation. To explore these deficiencies, we find that the number of crucial keys and values that influence future generations decreases layer by layer and we can extract them by the consistency in attention weights. Based on the findings, we propose PyramidInfer, a method that compresses the KV cache by layer-wise retaining crucial context. PyramidInfer saves significant memory by computing fewer keys and values without sacrificing performance. Experimental results show PyramidInfer improves 2.2x throughput compared to Accelerate with over 54% GPU memory reduction in KV cache.
Unified Normalization for Accelerating and Stabilizing Transformers
Solid results from Transformers have made them prevailing architectures in various natural language and vision tasks. As a default component in Transformers, Layer Normalization (LN) normalizes activations within each token to boost the robustness. However, LN requires on-the-fly statistics calculation in inference as well as division and square root operations, leading to inefficiency on hardware. What is more, replacing LN with other hardware-efficient normalization schemes (e.g., Batch Normalization) results in inferior performance, even collapse in training. We find that this dilemma is caused by abnormal behaviors of activation statistics, including large fluctuations over iterations and extreme outliers across layers. To tackle these issues, we propose Unified Normalization (UN), which can speed up the inference by being fused with other linear operations and achieve comparable performance on par with LN. UN strives to boost performance by calibrating the activation and gradient statistics with a tailored fluctuation smoothing strategy. Meanwhile, an adaptive outlier filtration strategy is applied to avoid collapse in training whose effectiveness is theoretically proved and experimentally verified in this paper. We demonstrate that UN can be an efficient drop-in alternative to LN by conducting extensive experiments on language and vision tasks. Besides, we evaluate the efficiency of our method on GPU. Transformers equipped with UN enjoy about 31% inference speedup and nearly 18% memory reduction. Code will be released at https://github.com/hikvision-research/Unified-Normalization.
Multimodal Mamba: Decoder-only Multimodal State Space Model via Quadratic to Linear Distillation
Recent Multimodal Large Language Models (MLLMs) have achieved remarkable performance but face deployment challenges due to their quadratic computational complexity, growing Key-Value cache requirements, and reliance on separate vision encoders. We propose mmMamba, a framework for developing linear-complexity native multimodal state space models through progressive distillation from existing MLLMs using moderate academic computational resources. Our approach enables the direct conversion of trained decoder-only MLLMs to linear-complexity architectures without requiring pre-trained RNN-based LLM or vision encoders. We propose an seeding strategy to carve Mamba from trained Transformer and a three-stage distillation recipe, which can effectively transfer the knowledge from Transformer to Mamba while preserving multimodal capabilities. Our method also supports flexible hybrid architectures that combine Transformer and Mamba layers for customizable efficiency-performance trade-offs. Distilled from the Transformer-based decoder-only HoVLE, mmMamba-linear achieves competitive performance against existing linear and quadratic-complexity VLMs, while mmMamba-hybrid further improves performance significantly, approaching HoVLE's capabilities. At 103K tokens, mmMamba-linear demonstrates 20.6times speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves 13.5times speedup and 60.2% memory savings. Code and models are released at https://github.com/hustvl/mmMamba
ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization
The optimal bit-width for achieving the best trade-off between quantized model size and accuracy has been a subject of ongoing debate. While some advocate for 4-bit quantization, others propose that 1.58-bit offers superior results. However, the lack of a cohesive framework for different bits has left such conclusions relatively tenuous. We present ParetoQ, the first unified framework that facilitates rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization settings. Our findings reveal a notable learning transition between 2 and 3 bits: For 3-bits and above, the fine-tuned models stay close to their original pre-trained distributions, whereas for learning 2-bit networks or below, the representations change drastically. By optimizing training schemes and refining quantization functions, ParetoQ surpasses all previous methods tailored to specific bit widths. Remarkably, our ParetoQ ternary 600M-parameter model even outperforms the previous SoTA ternary 3B-parameter model in accuracy, using only one-fifth of the parameters. Extensive experimentation shows that ternary, 2-bit, and 3-bit quantization maintains comparable performance in the size-accuracy trade-off and generally exceeds 4-bit and binary quantization. Considering hardware constraints, 2-bit quantization offers promising potential for memory reduction and speedup.
OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models
Large language models (LLMs) have revolutionized natural language processing tasks. However, their practical deployment is hindered by their immense memory and computation requirements. Although recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM, they hand-craft quantization parameters, which leads to low performance and fails to deal with extremely low-bit quantization. To tackle this issue, we introduce an Omnidirectionally calibrated Quantization (OmniQuant) technique for LLMs, which achieves good performance in diverse quantization settings while maintaining the computational efficiency of PTQ by efficiently optimizing various quantization parameters. OmniQuant comprises two innovative components including Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET). LWC modulates the extreme values of weights by optimizing the clipping threshold. Meanwhile, LET tackles activation outliers by shifting the challenge of quantization from activations to weights through a learnable equivalent transformation. Operating within a differentiable framework using block-wise error minimization, OmniQuant can optimize the quantization process efficiently for both weight-only and weight-activation quantization. For instance, the LLaMA-2 model family with the size of 7-70B can be processed with OmniQuant on a single A100-40G GPU within 1-16 hours using 128 samples. Extensive experiments validate OmniQuant's superior performance across diverse quantization configurations such as W4A4, W6A6, W4A16, W3A16, and W2A16. Additionally, OmniQuant demonstrates effectiveness in instruction-tuned models and delivers notable improvements in inference speed and memory reduction on real devices. Codes and models are available at https://github.com/OpenGVLab/OmniQuant.
Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads
Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.
Fine-Tuning Language Models with Just Forward Passes
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12x memory reduction; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Optimizing neural networks with loss that contain high-dimensional and high-order differential operators is expensive to evaluate with back-propagation due to O(d^{k}) scaling of the derivative tensor size and the O(2^{k-1}L) scaling in the computation graph, where d is the dimension of the domain, L is the number of ops in the forward computation graph, and k is the derivative order. In previous works, the polynomial scaling in d was addressed by amortizing the computation over the optimization process via randomization. Separately, the exponential scaling in k for univariate functions (d=1) was addressed with high-order auto-differentiation (AD). In this work, we show how to efficiently perform arbitrary contraction of the derivative tensor of arbitrary order for multivariate functions, by properly constructing the input tangents to univariate high-order AD, which can be used to efficiently randomize any differential operator. When applied to Physics-Informed Neural Networks (PINNs), our method provides >1000times speed-up and >30times memory reduction over randomization with first-order AD, and we can now solve 1-million-dimensional PDEs in 8 minutes on a single NVIDIA A100 GPU. This work opens the possibility of using high-order differential operators in large-scale problems.
Jetfire: Efficient and Accurate Transformer Pretraining with INT8 Data Flow and Per-Block Quantization
Pretraining transformers are generally time-consuming. Fully quantized training (FQT) is a promising approach to speed up pretraining. However, most FQT methods adopt a quantize-compute-dequantize procedure, which often leads to suboptimal speedup and significant performance degradation when used in transformers due to the high memory access overheads and low-precision computations. In this work, we propose Jetfire, an efficient and accurate INT8 training method specific to transformers. Our method features an INT8 data flow to optimize memory access and a per-block quantization method to maintain the accuracy of pretrained transformers. Extensive experiments demonstrate that our INT8 FQT method achieves comparable accuracy to the FP16 training baseline and outperforms the existing INT8 training works for transformers. Moreover, for a standard transformer block, our method offers an end-to-end training speedup of 1.42x and a 1.49x memory reduction compared to the FP16 baseline.
Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM
Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability. There are two mainstream quantization schemes for LLMs: coarse-grained (e.g., channel-wise) quantization and fine-grained (e.g., group-wise) quantization. Fine-grained quantization has smaller quantization loss, consequently achieving superior performance. However, when applied to weight-activation quantization, it disrupts continuous integer matrix multiplication, leading to inefficient inference. In this paper, we introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed. DSQ dequantizes the fine-grained INT4 weight into coarse-grained INT8 representation and preform matrix multiplication using INT8 kernels. Besides, we develop a two-phase grid search algorithm to simplify the determination of fine-grained and coarse-grained quantization scales. We also devise a percentile clipping schema for smoothing the activation outliers without the need for complex optimization techniques. Experimental results demonstrate that DGQ consistently outperforms prior methods across various LLM architectures and a wide range of tasks. Remarkably, by our implemented efficient CUTLASS kernel, we achieve 1.12 times memory reduction and 3.24 times speed gains comparing A16W4 implementation. These advancements enable efficient deployment of A8W4 LLMs for real-world applications.
DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
Search for Efficient Large Language Models
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research. Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs. However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures. Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs. In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration. Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data. Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks. Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.
SqueezeAttention: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget
Optimizing the Key-Value (KV) cache of the Large Language Model (LLM) has been considered critical to saving the cost of inference. Most of the existing KV-cache compression algorithms attempted to sparsify the sequence of tokens by taking advantage of the different importance of tokens. In this work, we found that by identifying the importance of attention layers, we could optimize the KV-cache jointly from two dimensions. Based on our observations regarding layer-wise importance in inference, we propose SqueezeAttention to precisely optimize the allocation of KV-cache budget among layers on-the-fly and then incorporate three representative token sparsification algorithms to compress the KV-cache for each layer with its very own budget. By optimizing the KV-cache from both sequence's and layer's dimensions, SqueezeAttention achieves around 30% to 70% of the memory reductions and up to 2.2 times of throughput improvements in a wide range of LLMs and benchmarks. The code is available at https://github.com/hetailang/SqueezeAttention.
Offsite-Tuning: Transfer Learning without Full Model
Transfer learning is important for foundation models to adapt to downstream tasks. However, many foundation models are proprietary, so users must share their data with model owners to fine-tune the models, which is costly and raise privacy concerns. Moreover, fine-tuning large foundation models is computation-intensive and impractical for most downstream users. In this paper, we propose Offsite-Tuning, a privacy-preserving and efficient transfer learning framework that can adapt billion-parameter foundation models to downstream data without access to the full model. In offsite-tuning, the model owner sends a light-weight adapter and a lossy compressed emulator to the data owner, who then fine-tunes the adapter on the downstream data with the emulator's assistance. The fine-tuned adapter is then returned to the model owner, who plugs it into the full model to create an adapted foundation model. Offsite-tuning preserves both parties' privacy and is computationally more efficient than the existing fine-tuning methods that require access to the full model weights. We demonstrate the effectiveness of offsite-tuning on various large language and vision foundation models. Offsite-tuning can achieve comparable accuracy as full model fine-tuning while being privacy-preserving and efficient, achieving 6.5x speedup and 5.6x memory reduction. Code is available at https://github.com/mit-han-lab/offsite-tuning.
Efficient block contrastive learning via parameter-free meta-node approximation
Contrastive learning has recently achieved remarkable success in many domains including graphs. However contrastive loss, especially for graphs, requires a large number of negative samples which is unscalable and computationally prohibitive with a quadratic time complexity. Sub-sampling is not optimal and incorrect negative sampling leads to sampling bias. In this work, we propose a meta-node based approximation technique that can (a) proxy all negative combinations (b) in quadratic cluster size time complexity, (c) at graph level, not node level, and (d) exploit graph sparsity. By replacing node-pairs with additive cluster-pairs, we compute the negatives in cluster-time at graph level. The resulting Proxy approximated meta-node Contrastive (PamC) loss, based on simple optimized GPU operations, captures the full set of negatives, yet is efficient with a linear time complexity. By avoiding sampling, we effectively eliminate sample bias. We meet the criterion for larger number of samples, thus achieving block-contrastiveness, which is proven to outperform pair-wise losses. We use learnt soft cluster assignments for the meta-node constriction, and avoid possible heterophily and noise added during edge creation. Theoretically, we show that real world graphs easily satisfy conditions necessary for our approximation. Empirically, we show promising accuracy gains over state-of-the-art graph clustering on 6 benchmarks. Importantly, we gain substantially in efficiency; up to 3x in training time, 1.8x in inference time and over 5x in GPU memory reduction.
Multitrack Music Transformer
Existing approaches for generating multitrack music with transformer models have been limited in terms of the number of instruments, the length of the music segments and slow inference. This is partly due to the memory requirements of the lengthy input sequences necessitated by existing representations. In this work, we propose a new multitrack music representation that allows a diverse set of instruments while keeping a short sequence length. Our proposed Multitrack Music Transformer (MMT) achieves comparable performance with state-of-the-art systems, landing in between two recently proposed models in a subjective listening test, while achieving substantial speedups and memory reductions over both, making the method attractive for real time improvisation or near real time creative applications. Further, we propose a new measure for analyzing musical self-attention and show that the trained model attends more to notes that form a consonant interval with the current note and to notes that are 4N beats away from the current step.
DynamicCity: Large-Scale LiDAR Generation from Dynamic Scenes
LiDAR scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D LiDAR generation framework capable of generating large-scale, high-quality LiDAR scenes that capture the temporal evolution of dynamic environments. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D LiDAR features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D LiDAR generation methods across multiple metrics. The code will be released to facilitate future research.
Network Memory Footprint Compression Through Jointly Learnable Codebooks and Mappings
The massive interest in deep neural networks (DNNs) for both computer vision and natural language processing has been sparked by the growth in computational power. However, this led to an increase in the memory footprint, to a point where it can be challenging to simply load a model on commodity devices such as mobile phones. To address this limitation, quantization is a favored solution as it maps high precision tensors to a low precision, memory efficient format. In terms of memory footprint reduction, its most effective variants are based on codebooks. These methods, however, suffer from two limitations. First, they either define a single codebook for each tensor, or use a memory-expensive mapping to multiple codebooks. Second, gradient descent optimization of the mapping favors jumps toward extreme values, hence not defining a proximal search. In this work, we propose to address these two limitations. First, we initially group similarly distributed neurons and leverage the re-ordered structure to either apply different scale factors to the different groups, or map weights that fall in these groups to several codebooks, without any mapping overhead. Second, stemming from this initialization, we propose a joint learning of the codebook and weight mappings that bears similarities with recent gradient-based post-training quantization techniques. Third, drawing estimation from straight-through estimation techniques, we introduce a novel gradient update definition to enable a proximal search of the codebooks and their mappings. The proposed jointly learnable codebooks and mappings (JLCM) method allows a very efficient approximation of any DNN: as such, a Llama 7B can be compressed down to 2Go and loaded on 5-year-old smartphones.
Training Deep Nets with Sublinear Memory Cost
We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, with only the computational cost of an extra forward pass per mini-batch. As many of the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper and more complex models to be explored, and helps advance the innovations in deep learning research. We focus on reducing the memory cost to store the intermediate feature maps and gradients during training. Computation graph analysis is used for automatic in-place operation and memory sharing optimizations. We show that it is possible to trade computation for memory - giving a more memory efficient training algorithm with a little extra computation cost. In the extreme case, our analysis also shows that the memory consumption can be reduced to O(log n) with as little as O(n log n) extra cost for forward computation. Our experiments show that we can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G with only 30 percent additional running time cost on ImageNet problems. Similarly, significant memory cost reduction is observed in training complex recurrent neural networks on very long sequences.
EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified Compression and Adaptive Layer Tuning and Voting
Efficient adaption of large language models (LLMs) on edge devices is essential for applications requiring continuous and privacy-preserving adaptation and inference. However, existing tuning techniques fall short because of the high computation and memory overheads. To this end, we introduce a computation- and memory-efficient LLM tuning framework, called Edge-LLM, to facilitate affordable and effective LLM adaptation on edge devices. Specifically, Edge-LLM features three core components: (1) a layer-wise unified compression (LUC) technique to reduce the computation overhead by generating layer-wise pruning sparsity and quantization bit-width policies, (2) an adaptive layer tuning and voting scheme to reduce the memory overhead by reducing the backpropagation depth, and (3) a complementary hardware scheduling strategy to handle the irregular computation patterns introduced by LUC and adaptive layer tuning, thereby achieving efficient computation and data movements. Extensive experiments demonstrate that Edge-LLM achieves a 2.92x speed up and a 4x memory overhead reduction as compared to vanilla tuning methods with comparable task accuracy. Our code is available at https://github.com/GATECH-EIC/Edge-LLM
Modality Plug-and-Play: Elastic Modality Adaptation in Multimodal LLMs for Embodied AI
Large Language Models (LLMs) are capable of reasoning over diverse input data modalities through pre-trained encoders. However, the growing diversity of input data modalities prevents incorporating all modalities into LLMs, especially when LLMs are deployed on resource-constrained edge devices for embodied AI applications. Instead, a better option is to adaptively involve only the useful modalities at runtime, depending on the current environmental contexts and task requirements. For such modality adaptation, existing work adopts fixed connections between encoders and the LLM's input layer, leading to high training cost at runtime and ineffective cross-modal interaction. In this paper, we address these limitations by presenting mPnP-LLM, a new technique that allows fully elastic, automated and prompt runtime modality adaptation, by connecting unimodal encoders to a flexible set of last LLM blocks and making such latent connections fully trainable at runtime. Experiments over the nuScenes-QA dataset show that mPnP-LLM can achieve up to 3.7x FLOPs reduction and 30% GPU memory usage reduction, while retaining on-par accuracy with the existing schemes. Under the same compute budget, mPnP-LLM improves the task accuracy by up to 4% compared to the best existing scheme.
Post-Training Sparse Attention with Double Sparsity
The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve 1{16} token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1times acceleration in attention operations and a 1.9times improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3times compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at https://github.com/andy-yang-1/DoubleSparse.
Similarity search in the blink of an eye with compressed indices
Nowadays, data is represented by vectors. Retrieving those vectors, among millions and billions, that are similar to a given query is a ubiquitous problem, known as similarity search, of relevance for a wide range of applications. Graph-based indices are currently the best performing techniques for billion-scale similarity search. However, their random-access memory pattern presents challenges to realize their full potential. In this work, we present new techniques and systems for creating faster and smaller graph-based indices. To this end, we introduce a novel vector compression method, Locally-adaptive Vector Quantization (LVQ), that uses per-vector scaling and scalar quantization to improve search performance with fast similarity computations and a reduced effective bandwidth, while decreasing memory footprint and barely impacting accuracy. LVQ, when combined with a new high-performance computing system for graph-based similarity search, establishes the new state of the art in terms of performance and memory footprint. For billions of vectors, LVQ outcompetes the second-best alternatives: (1) in the low-memory regime, by up to 20.7x in throughput with up to a 3x memory footprint reduction, and (2) in the high-throughput regime by 5.8x with 1.4x less memory.
With Greater Text Comes Greater Necessity: Inference-Time Training Helps Long Text Generation
Long text generation, such as novel writing and discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, we embeds this information directly into a temporary Lora module. In the process of long text generation, this module is progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long text, as indicated by a 13.2% decrease in perplexity (PPL) on a subset of PG19, and a 29.3% decrease in PPL along with a 113.2% increase in BLEU score on a subset of GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. For example, we can ensure a moderate improvement in generation quality (a decrease of 3.8% in PPL) while enabling a 51.5% memory usage reduction and a 60.0% decrease in latency for inference.
Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment
With the rapid growth of computing powers and recent advances in deep learning, we have witnessed impressive demonstrations of novel robot capabilities in research settings. Nonetheless, these learning systems exhibit brittle generalization and require excessive training data for practical tasks. To harness the capabilities of state-of-the-art robot learning models while embracing their imperfections, we present Sirius, a principled framework for humans and robots to collaborate through a division of work. In this framework, partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably; meanwhile, human operators monitor the process and intervene in challenging situations. Such a human-robot team ensures safe deployments in complex tasks. Further, we introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions. The core idea is re-weighing training samples with approximated human trust and optimizing the policies with weighted behavioral cloning. We evaluate Sirius in simulation and on real hardware, showing that Sirius consistently outperforms baselines over a collection of contact-rich manipulation tasks, achieving an 8% boost in simulation and 27% on real hardware than the state-of-the-art methods in policy success rate, with twice faster convergence and 85% memory size reduction. Videos and more details are available at https://ut-austin-rpl.github.io/sirius/
Memory Consolidation Enables Long-Context Video Understanding
Most transformer-based video encoders are limited to short temporal contexts due to their quadratic complexity. While various attempts have been made to extend this context, this has often come at the cost of both conceptual and computational complexity. We propose to instead re-purpose existing pre-trained video transformers by simply fine-tuning them to attend to memories derived non-parametrically from past activations. By leveraging redundancy reduction, our memory-consolidated vision transformer (MC-ViT) effortlessly extends its context far into the past and exhibits excellent scaling behavior when learning from longer videos. In doing so, MC-ViT sets a new state-of-the-art in long-context video understanding on EgoSchema, Perception Test, and Diving48, outperforming methods that benefit from orders of magnitude more parameters.
Frustratingly Simple Memory Efficiency for Pre-trained Language Models via Dynamic Embedding Pruning
The extensive memory footprint of pre-trained language models (PLMs) can hinder deployment in memory-constrained settings, such as cloud environments or on-device. PLMs use embedding matrices to represent extensive vocabularies, forming a large proportion of the model parameters. While previous work towards parameter-efficient PLM development has considered pruning parameters within the transformer layers, pruning the embedding matrix as part of fine-tuning or inference has yet to be explored. We first demonstrate that a significant proportion of the vocabulary remains unused in these scenarios. We then propose a simple yet effective approach that leverages this finding to minimize the memory footprint of the embedding matrix. We show that this approach provides substantial reductions in memory usage across a wide range of models and tasks. Notably, our approach maintains equivalent downstream task performance while allowing a more efficient use of compute resources.
Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss
Contrastive loss is a powerful approach for representation learning, where larger batch sizes enhance performance by providing more negative samples to better distinguish between similar and dissimilar data. However, scaling batch sizes is constrained by the quadratic growth in GPU memory consumption, primarily due to the full instantiation of the similarity matrix. To address this, we propose a tile-based computation strategy that partitions the contrastive loss calculation into arbitrary small blocks, avoiding full materialization of the similarity matrix. Furthermore, we introduce a multi-level tiling strategy to leverage the hierarchical structure of distributed systems, employing ring-based communication at the GPU level to optimize synchronization and fused kernels at the CUDA core level to reduce I/O overhead. Experimental results show that the proposed method scales batch sizes to unprecedented levels. For instance, it enables contrastive training of a CLIP-ViT-L/14 model with a batch size of 4M or 12M using 8 or 32 A800 80GB without sacrificing any accuracy. Compared to SOTA memory-efficient solutions, it achieves a two-order-of-magnitude reduction in memory while maintaining comparable speed. The code will be made publicly available.
KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache
Efficiently serving large language models (LLMs) requires batching many requests together to reduce the cost per request. Yet, the key-value (KV) cache, which stores attention keys and values to avoid re-computations, significantly increases memory demands and becomes the new bottleneck in speed and memory usage. This memory demand increases with larger batch sizes and longer context lengths. Additionally, the inference speed is limited by the size of KV cache, as the GPU's SRAM must load the entire KV cache from the main GPU memory for each token generated, causing the computational core to be idle during this process. A straightforward and effective solution to reduce KV cache size is quantization, which decreases the total bytes taken by KV cache. However, there is a lack of in-depth studies that explore the element distribution of KV cache to understand the hardness and limitation of KV cache quantization. To fill the gap, we conducted a comprehensive study on the element distribution in KV cache of popular LLMs. Our findings indicate that the key cache should be quantized per-channel, i.e., group elements along the channel dimension and quantize them together. In contrast, the value cache should be quantized per-token. From this analysis, we developed a tuning-free 2bit KV cache quantization algorithm, named KIVI. With the hardware-friendly implementation, KIVI can enable Llama (Llama-2), Falcon, and Mistral models to maintain almost the same quality while using 2.6times less peak memory usage (including the model weight). This reduction in memory usage enables up to 4times larger batch size, bringing 2.35times sim 3.47times throughput on real LLM inference workload. The source code is available at https://github.com/jy-yuan/KIVI.
Cut Your Losses in Large-Vocabulary Language Models
As language models grow ever larger, so do their vocabularies. This has shifted the memory footprint of LLMs during training disproportionately to one single layer: the cross-entropy in the loss computation. Cross-entropy builds up a logit matrix with entries for each pair of input tokens and vocabulary items and, for small models, consumes an order of magnitude more memory than the rest of the LLM combined. We propose Cut Cross-Entropy (CCE), a method that computes the cross-entropy loss without materializing the logits for all tokens into global memory. Rather, CCE only computes the logit for the correct token and evaluates the log-sum-exp over all logits on the fly. We implement a custom kernel that performs the matrix multiplications and the log-sum-exp reduction over the vocabulary in flash memory, making global memory consumption for the cross-entropy computation negligible. This has a dramatic effect. Taking the Gemma 2 (2B) model as an example, CCE reduces the memory footprint of the loss computation from 24 GB to 1 MB, and the total training-time memory consumption of the classifier head from 28 GB to 1 GB. To improve the throughput of CCE, we leverage the inherent sparsity of softmax and propose to skip elements of the gradient computation that have a negligible (i.e., below numerical precision) contribution to the gradient. Experiments demonstrate that the dramatic reduction in memory consumption is accomplished without sacrificing training speed or convergence.
LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
Existing low-rank adaptation (LoRA) methods face challenges on sparse large language models (LLMs) due to the inability to maintain sparsity. Recent works introduced methods that maintain sparsity by augmenting LoRA techniques with additional masking mechanisms. Despite these successes, such approaches suffer from an increased memory and computation overhead, which affects efficiency of LoRA methods. In response to this limitation, we introduce LoRS, an innovative method designed to achieve both memory and computation efficiency when fine-tuning sparse LLMs. To mitigate the substantial memory and computation demands associated with preserving sparsity, our approach incorporates strategies of weight recompute and computational graph rearrangement. In addition, we also improve the effectiveness of LoRS through better adapter initialization. These innovations lead to a notable reduction in memory and computation consumption during the fine-tuning phase, all while achieving performance levels that outperform existing LoRA approaches.
PowerInfer-2: Fast Large Language Model Inference on a Smartphone
This paper introduces PowerInfer-2, a framework designed for high-speed inference of Large Language Models (LLMs) on smartphones, particularly effective for models whose sizes exceed the device's memory capacity. The key insight of PowerInfer-2 is to utilize the heterogeneous computation, memory, and I/O resources in smartphones by decomposing traditional matrix computations into fine-grained neuron cluster computations. Specifically, PowerInfer-2 features a polymorphic neuron engine that adapts computational strategies for various stages of LLM inference. Additionally, it introduces segmented neuron caching and fine-grained neuron-cluster-level pipelining, which effectively minimize and conceal the overhead caused by I/O operations. The implementation and evaluation of PowerInfer-2 demonstrate its capability to support a wide array of LLM models on two smartphones, achieving up to a 29.2x speed increase compared with state-of-the-art frameworks. Notably, PowerInfer-2 is the first system to serve the TurboSparse-Mixtral-47B model with a generation rate of 11.68 tokens per second on a smartphone. For models that fit entirely within the memory, PowerInfer-2 can achieve approximately a 40% reduction in memory usage while maintaining inference speeds comparable to llama.cpp and MLC-LLM. For more details, including a demonstration video, please visit the project site at www.powerinfer.ai/v2.
ThinK: Thinner Key Cache by Query-Driven Pruning
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications by leveraging increased model sizes and sequence lengths. However, the associated rise in computational and memory costs poses significant challenges, particularly in managing long sequences due to the quadratic complexity of the transformer attention mechanism. This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference. Unlike existing approaches that optimize the memory based on the sequence lengths, we uncover that the channel dimension of the KV cache exhibits significant redundancy, characterized by unbalanced magnitude distribution and low-rank structure in attention weights. Based on these observations, we propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels. Our approach not only maintains or enhances model accuracy but also achieves a reduction in memory costs by over 20% compared with vanilla KV cache eviction methods. Extensive evaluations on the LLaMA3 and Mistral models across various long-sequence datasets confirm the efficacy of ThinK, setting a new precedent for efficient LLM deployment without compromising performance. We also outline the potential of extending our method to value cache pruning, demonstrating ThinK's versatility and broad applicability in reducing both memory and computational overheads.
FastRM: An efficient and automatic explainability framework for multimodal generative models
While Large Vision Language Models (LVLMs) have become masterly capable in reasoning over human prompts and visual inputs, they are still prone to producing responses that contain misinformation. Identifying incorrect responses that are not grounded in evidence has become a crucial task in building trustworthy AI. Explainability methods such as gradient-based relevancy maps on LVLM outputs can provide an insight on the decision process of models, however these methods are often computationally expensive and not suited for on-the-fly validation of outputs. In this work, we propose FastRM, an effective way for predicting the explainable Relevancy Maps of LVLM models. Experimental results show that employing FastRM leads to a 99.8% reduction in compute time for relevancy map generation and an 44.4% reduction in memory footprint for the evaluated LVLM, making explainable AI more efficient and practical, thereby facilitating its deployment in real-world applications.
Online normalizer calculation for softmax
The Softmax function is ubiquitous in machine learning, multiple previous works suggested faster alternatives for it. In this paper we propose a way to compute classical Softmax with fewer memory accesses and hypothesize that this reduction in memory accesses should improve Softmax performance on actual hardware. The benchmarks confirm this hypothesis: Softmax accelerates by up to 1.3x and Softmax+TopK combined and fused by up to 5x.
TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting
Transformers have gained popularity in time series forecasting for their ability to capture long-sequence interactions. However, their high memory and computing requirements pose a critical bottleneck for long-term forecasting. To address this, we propose TSMixer, a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules for multivariate forecasting and representation learning on patched time series. Inspired by MLP-Mixer's success in computer vision, we adapt it for time series, addressing challenges and introducing validated components for enhanced accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a novel Hybrid channel modeling and infusion of a simple gating approach to effectively handle noisy channel interactions and generalization across diverse datasets. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer's modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X). The source code of our model is officially released as PatchTSMixer in the HuggingFace. Model: https://huggingface.co/docs/transformers/main/en/model_doc/patchtsmixer Examples: https://github.com/ibm/tsfm/#notebooks-links
LoRA-Enhanced Distillation on Guided Diffusion Models
Diffusion models, such as Stable Diffusion (SD), offer the ability to generate high-resolution images with diverse features, but they come at a significant computational and memory cost. In classifier-free guided diffusion models, prolonged inference times are attributed to the necessity of computing two separate diffusion models at each denoising step. Recent work has shown promise in improving inference time through distillation techniques, teaching the model to perform similar denoising steps with reduced computations. However, the application of distillation introduces additional memory overhead to these already resource-intensive diffusion models, making it less practical. To address these challenges, our research explores a novel approach that combines Low-Rank Adaptation (LoRA) with model distillation to efficiently compress diffusion models. This approach not only reduces inference time but also mitigates memory overhead, and notably decreases memory consumption even before applying distillation. The results are remarkable, featuring a significant reduction in inference time due to the distillation process and a substantial 50% reduction in memory consumption. Our examination of the generated images underscores that the incorporation of LoRA-enhanced distillation maintains image quality and alignment with the provided prompts. In summary, while conventional distillation tends to increase memory consumption, LoRA-enhanced distillation offers optimization without any trade-offs or compromises in quality.
Adaptive Blockwise Task-interleaved Pipeline Parallelism
Efficient distributed training serves as a powerful catalyst and an essential foundation for the development of large-scale neural networks. In distributed training scenarios, various pipeline parallelism methods are cleverly designed and widely employed. In this paper, we propose ZeroPP, a highly efficient and flexible pipeline parallelism method that trades off pipeline bubbles, memory usage, and communication through adaptive scheduling units. ZeroPP achieves minimal pipeline bubbles by carefully staggering the computation tasks of forward, input gradient, and weight gradient within a scheduling unit. Additionally, ZeroPP optimizes the combination of pipeline parallelism and fully sharded data parallelism using a blockwise schedule. We conduct experiments with popular GPT-style models and observe up to a 30% increase in throughput compared to the state-of-the-art breath-first pipeline parallelism. Besides, our evaluation also demonstrates up to a 68% increase in throughput and a 10% reduction in memory consumption compared to the memory-efficient 1F1B method.
Large Language Models Are Overparameterized Text Encoders
Large language models (LLMs) demonstrate strong performance as text embedding models when finetuned with supervised contrastive training. However, their large size balloons inference time and memory requirements. In this paper, we show that by pruning the last p% layers of an LLM before supervised training for only 1000 steps, we can achieve a proportional reduction in memory and inference time. We evaluate four different state-of-the-art LLMs on text embedding tasks and find that our method can prune up to 30\% of layers with negligible impact on performance and up to 80\% with only a modest drop. With only three lines of code, our method is easily implemented in any pipeline for transforming LLMs to text encoders. We also propose L^3 Prune, a novel layer-pruning strategy based on the model's initial loss that provides two optimal pruning configurations: a large variant with negligible performance loss and a small variant for resource-constrained settings. On average, the large variant prunes 21\% of the parameters with a -0.3 performance drop, and the small variant only suffers from a -5.1 decrease while pruning 74\% of the model. We consider these results strong evidence that LLMs are overparameterized for text embedding tasks, and can be easily pruned.
ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization
Large language models (LLMs) have shown impressive performance on language tasks but face challenges when deployed on resource-constrained devices due to their extensive parameters and reliance on dense multiplications, resulting in high memory demands and latency bottlenecks. Shift-and-add reparameterization offers a promising solution by replacing costly multiplications with hardware-friendly primitives in both the attention and multi-layer perceptron (MLP) layers of an LLM. However, current reparameterization techniques require training from scratch or full parameter fine-tuning to restore accuracy, which is resource-intensive for LLMs. To address this, we propose accelerating pretrained LLMs through post-training shift-and-add reparameterization, creating efficient multiplication-free models, dubbed ShiftAddLLM. Specifically, we quantize each weight matrix into binary matrices paired with group-wise scaling factors. The associated multiplications are reparameterized into (1) shifts between activations and scaling factors and (2) queries and adds according to the binary matrices. To reduce accuracy loss, we present a multi-objective optimization method to minimize both weight and output activation reparameterization errors. Additionally, based on varying sensitivity across layers to reparameterization, we develop an automated bit allocation strategy to further reduce memory usage and latency. Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM, achieving average perplexity improvements of 5.6 and 22.7 points at comparable or lower latency compared to the most competitive quantized LLMs at 3 and 2 bits, respectively, and more than 80% memory and energy reductions over the original LLMs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddLLM.
Keyformer: KV Cache Reduction through Key Tokens Selection for Efficient Generative Inference
Transformers have emerged as the underpinning architecture for Large Language Models (LLMs). In generative language models, the inference process involves two primary phases: prompt processing and token generation. Token generation, which constitutes the majority of the computational workload, primarily entails vector-matrix multiplications and interactions with the Key-Value (KV) Cache. This phase is constrained by memory bandwidth due to the overhead of transferring weights and KV cache values from the memory system to the computing units. This memory bottleneck becomes particularly pronounced in applications that require long-context and extensive text generation, both of which are increasingly crucial for LLMs. This paper introduces "Keyformer", an innovative inference-time approach, to mitigate the challenges associated with KV cache size and memory bandwidth utilization. Keyformer leverages the observation that approximately 90% of the attention weight in generative inference focuses on a specific subset of tokens, referred to as "key" tokens. Keyformer retains only the key tokens in the KV cache by identifying these crucial tokens using a novel score function. This approach effectively reduces both the KV cache size and memory bandwidth usage without compromising model accuracy. We evaluate Keyformer's performance across three foundational models: GPT-J, Cerebras-GPT, and MPT, which employ various positional embedding algorithms. Our assessment encompasses a variety of tasks, with a particular emphasis on summarization and conversation tasks involving extended contexts. Keyformer's reduction of KV cache reduces inference latency by 2.1x and improves token generation throughput by 2.4x, while preserving the model's accuracy.
Characterizing Verbatim Short-Term Memory in Neural Language Models
When a language model is trained to predict natural language sequences, its prediction at each moment depends on a representation of prior context. What kind of information about the prior context can language models retrieve? We tested whether language models could retrieve the exact words that occurred previously in a text. In our paradigm, language models (transformers and an LSTM) processed English text in which a list of nouns occurred twice. We operationalized retrieval as the reduction in surprisal from the first to the second list. We found that the transformers retrieved both the identity and ordering of nouns from the first list. Further, the transformers' retrieval was markedly enhanced when they were trained on a larger corpus and with greater model depth. Lastly, their ability to index prior tokens was dependent on learned attention patterns. In contrast, the LSTM exhibited less precise retrieval, which was limited to list-initial tokens and to short intervening texts. The LSTM's retrieval was not sensitive to the order of nouns and it improved when the list was semantically coherent. We conclude that transformers implemented something akin to a working memory system that could flexibly retrieve individual token representations across arbitrary delays; conversely, the LSTM maintained a coarser and more rapidly-decaying semantic gist of prior tokens, weighted toward the earliest items.
Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts
Computer vision researchers are embracing two promising paradigms: Vision Transformers (ViTs) and Multi-task Learning (MTL), which both show great performance but are computation-intensive, given the quadratic complexity of self-attention in ViT and the need to activate an entire large MTL model for one task. M^3ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE), where only a small portion of subnetworks ("experts") are sparsely and dynamically activated based on the current task. M^3ViT achieves better accuracy and over 80% computation reduction but leaves challenges for efficient deployment on FPGA. Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations, including (1) a novel reordering mechanism for self-attention, which requires only constant bandwidth regardless of the target parallelism; (2) a fast single-pass softmax approximation; (3) an accurate and low-cost GELU approximation; (4) a unified and flexible computing unit that is shared by almost all computational layers to maximally reduce resource usage; and (5) uniquely for M^3ViT, a novel patch reordering method to eliminate memory access overhead. Edge-MoE achieves 2.24x and 4.90x better energy efficiency comparing with GPU and CPU, respectively. A real-time video demonstration is available online, along with our open-source code written using High-Level Synthesis.
MixDQ: Memory-Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization
Diffusion models have achieved significant visual generation quality. However, their significant computational and memory costs pose challenge for their application on resource-constrained mobile devices or even desktop GPUs. Recent few-step diffusion models reduces the inference time by reducing the denoising steps. However, their memory consumptions are still excessive. The Post Training Quantization (PTQ) replaces high bit-width FP representation with low-bit integer values (INT4/8) , which is an effective and efficient technique to reduce the memory cost. However, when applying to few-step diffusion models, existing quantization methods face challenges in preserving both the image quality and text alignment. To address this issue, we propose an mixed-precision quantization framework - MixDQ. Firstly, We design specialized BOS-aware quantization method for highly sensitive text embedding quantization. Then, we conduct metric-decoupled sensitivity analysis to measure the sensitivity of each layer. Finally, we develop an integer-programming-based method to conduct bit-width allocation. While existing quantization methods fall short at W8A8, MixDQ could achieve W8A8 without performance loss, and W4A8 with negligible visual degradation. Compared with FP16, we achieve 3-4x reduction in model size and memory cost, and 1.45x latency speedup.
FedMef: Towards Memory-efficient Federated Dynamic Pruning
Federated learning (FL) promotes decentralized training while prioritizing data confidentiality. However, its application on resource-constrained devices is challenging due to the high demand for computation and memory resources to train deep learning models. Neural network pruning techniques, such as dynamic pruning, could enhance model efficiency, but directly adopting them in FL still poses substantial challenges, including post-pruning performance degradation, high activation memory usage, etc. To address these challenges, we propose FedMef, a novel and memory-efficient federated dynamic pruning framework. FedMef comprises two key components. First, we introduce the budget-aware extrusion that maintains pruning efficiency while preserving post-pruning performance by salvaging crucial information from parameters marked for pruning within a given budget. Second, we propose scaled activation pruning to effectively reduce activation memory footprints, which is particularly beneficial for deploying FL to memory-limited devices. Extensive experiments demonstrate the effectiveness of our proposed FedMef. In particular, it achieves a significant reduction of 28.5% in memory footprint compared to state-of-the-art methods while obtaining superior accuracy.
Knowledge Distillation of Russian Language Models with Reduction of Vocabulary
Today, transformer language models serve as a core component for majority of natural language processing tasks. Industrial application of such models requires minimization of computation time and memory footprint. Knowledge distillation is one of approaches to address this goal. Existing methods in this field are mainly focused on reducing the number of layers or dimension of embeddings/hidden representations. Alternative option is to reduce the number of tokens in vocabulary and therefore the embeddings matrix of the student model. The main problem with vocabulary minimization is mismatch between input sequences and output class distributions of a teacher and a student models. As a result, it is impossible to directly apply KL-based knowledge distillation. We propose two simple yet effective alignment techniques to make knowledge distillation to the students with reduced vocabulary. Evaluation of distilled models on a number of common benchmarks for Russian such as Russian SuperGLUE, SberQuAD, RuSentiment, ParaPhaser, Collection-3 demonstrated that our techniques allow to achieve compression from 17times to 49times, while maintaining quality of 1.7times compressed student with the full-sized vocabulary, but reduced number of Transformer layers only. We make our code and distilled models available.
Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Benefiting from the advancements in large language models and cross-modal alignment, existing multi-modal video understanding methods have achieved prominent performance in offline scenario. However, online video streams, as one of the most common media forms in the real world, have seldom received attention. Compared to offline videos, the 'dynamic' nature of online video streams poses challenges for the direct application of existing models and introduces new problems, such as the storage of extremely long-term information, interaction between continuous visual content and 'asynchronous' user questions. Therefore, in this paper we present Flash-VStream, a video-language model that simulates the memory mechanism of human. Our model is able to process extremely long video streams in real-time and respond to user queries simultaneously. Compared to existing models, Flash-VStream achieves significant reductions in inference latency and VRAM consumption, which is intimately related to performing understanding of online streaming video. In addition, given that existing video understanding benchmarks predominantly concentrate on offline scenario, we propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding. Comparisons with popular existing methods on the proposed benchmark demonstrate the superiority of our method for such challenging setting. To verify the generalizability of our approach, we further evaluate it on existing video understanding benchmarks and achieves state-of-the-art performance in offline scenarios as well. All code, models, and datasets are available at the https://invinciblewyq.github.io/vstream-page/
HeadInfer: Memory-Efficient LLM Inference by Head-wise Offloading
Transformer-based large language models (LLMs) demonstrate impressive performance in long context generation. Extending the context length has disproportionately shifted the memory footprint of LLMs during inference to the key-value cache (KV cache). In this paper, we propose HEADINFER, which offloads the KV cache to CPU RAM while avoiding the need to fully store the KV cache for any transformer layer on the GPU. HEADINFER employs a fine-grained, head-wise offloading strategy, maintaining only selective attention heads KV cache on the GPU while computing attention output dynamically. Through roofline analysis, we demonstrate that HEADINFER maintains computational efficiency while significantly reducing memory footprint. We evaluate HEADINFER on the Llama-3-8B model with a 1-million-token sequence, reducing the GPU memory footprint of the KV cache from 128 GB to 1 GB and the total GPU memory usage from 207 GB to 17 GB, achieving a 92% reduction compared to BF16 baseline inference. Notably, HEADINFER enables 4-million-token inference with an 8B model on a single consumer GPU with 24GB memory (e.g., NVIDIA RTX 4090) without approximation methods.
A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization
Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.
Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for Classifying Imagery and Motor Signals in ECoG-Based BCIs
Motor impairments, frequently caused by neurological incidents like strokes or traumatic brain injuries, present substantial obstacles in rehabilitation therapy. This research aims to elevate the field by optimizing motor imagery classification algorithms within Brain-Computer Interfaces (BCIs). By improving the efficiency of BCIs, we offer a novel approach that holds significant promise for enhancing motor rehabilitation outcomes. Utilizing unsupervised techniques for dimensionality reduction, namely Uniform Manifold Approximation and Projection (UMAP) coupled with K-Nearest Neighbors (KNN), we evaluate the necessity of employing supervised methods such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) for classification tasks. Importantly, participants who exhibited high KNN scores following UMAP dimensionality reduction also achieved high accuracy in supervised deep learning (DL) models. Due to individualized model requirements and massive neural training data, dimensionality reduction becomes an effective preprocessing step that minimizes the need for extensive data labeling and supervised deep learning techniques. This approach has significant implications not only for targeted therapies in motor dysfunction but also for addressing regulatory, safety, and reliability concerns in the rapidly evolving BCI field.
Rethinking Token Reduction for State Space Models
Recent advancements in State Space Models (SSMs) have attracted significant interest, particularly in models optimized for parallel training and handling long-range dependencies. Architectures like Mamba have scaled to billions of parameters with selective SSM. To facilitate broader applications using Mamba, exploring its efficiency is crucial. While token reduction techniques offer a straightforward post-training strategy, we find that applying existing methods directly to SSMs leads to substantial performance drops. Through insightful analysis, we identify the reasons for this failure and the limitations of current techniques. In response, we propose a tailored, unified post-training token reduction method for SSMs. Our approach integrates token importance and similarity, thus taking advantage of both pruning and merging, to devise a fine-grained intra-layer token reduction strategy. Extensive experiments show that our method improves the average accuracy by 5.7% to 13.1% on six benchmarks with Mamba-2 compared to existing methods, while significantly reducing computational demands and memory requirements.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning
Training LLMs presents significant memory challenges due to growing size of data, weights, and optimizer states. Techniques such as data and model parallelism, gradient checkpointing, and offloading strategies address this issue but are often infeasible due to hardware constraints. To mitigate memory usage, alternative methods like Parameter-Efficient-Fine-Tuning (PEFT) and GaLore approximate weights or optimizer states. PEFT methods, such as LoRA, have gained popularity for fine-tuning LLMs, though they require a full-rank warm start. In contrast, GaLore allows full-parameter learning while being more memory-efficient. This work introduces Natural GaLore, a simple drop in replacement for AdamW, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients using Woodbury's Identity. We demonstrate that incorporating second-order information speeds up optimization significantly, especially when the iteration budget is limited. Empirical pretraining on 60M, 130M, 350M, and 1.1B parameter Llama models on C4 data demonstrate significantly lower perplexity over GaLore without additional memory overhead. By fine-tuning RoBERTa on the GLUE benchmark using Natural GaLore, we demonstrate significant reduction in gap 86.05% vs 86.28% for full-finetuning. Furthermore, fine-tuning the TinyLlama 1.1B model for function calling using the TinyAgent framework shows that Natural GaLore achieving 83.09% accuracy on the TinyAgent dataset, significantly outperforms 16-bit LoRA at 80.06% and even surpasses GPT4-Turbo by 4%, all while using 30% less memory. All code to reproduce the results are available at: https://github.com/selfsupervised-ai/Natural-GaLore.git
CAME: Confidence-guided Adaptive Memory Efficient Optimization
Adaptive gradient methods, such as Adam and LAMB, have demonstrated excellent performance in the training of large language models. Nevertheless, the need for adaptivity requires maintaining second-moment estimates of the per-parameter gradients, which entails a high cost of extra memory overheads. To solve this problem, several memory-efficient optimizers (e.g., Adafactor) have been proposed to obtain a drastic reduction in auxiliary memory usage, but with a performance penalty. In this paper, we first study a confidence-guided strategy to reduce the instability of existing memory efficient optimizers. Based on this strategy, we propose CAME to simultaneously achieve two goals: fast convergence as in traditional adaptive methods, and low memory usage as in memory-efficient methods. Extensive experiments demonstrate the training stability and superior performance of CAME across various NLP tasks such as BERT and GPT-2 training. Notably, for BERT pre-training on the large batch size of 32,768, our proposed optimizer attains faster convergence and higher accuracy compared with the Adam optimizer. The implementation of CAME is publicly available.
IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers
The self-attention-based model, transformer, is recently becoming the leading backbone in the field of computer vision. In spite of the impressive success made by transformers in a variety of vision tasks, it still suffers from heavy computation and intensive memory costs. To address this limitation, this paper presents an Interpretability-Aware REDundancy REDuction framework (IA-RED^2). We start by observing a large amount of redundant computation, mainly spent on uncorrelated input patches, and then introduce an interpretable module to dynamically and gracefully drop these redundant patches. This novel framework is then extended to a hierarchical structure, where uncorrelated tokens at different stages are gradually removed, resulting in a considerable shrinkage of computational cost. We include extensive experiments on both image and video tasks, where our method could deliver up to 1.4x speed-up for state-of-the-art models like DeiT and TimeSformer, by only sacrificing less than 0.7% accuracy. More importantly, contrary to other acceleration approaches, our method is inherently interpretable with substantial visual evidence, making vision transformer closer to a more human-understandable architecture while being lighter. We demonstrate that the interpretability that naturally emerged in our framework can outperform the raw attention learned by the original visual transformer, as well as those generated by off-the-shelf interpretation methods, with both qualitative and quantitative results. Project Page: http://people.csail.mit.edu/bpan/ia-red/.
HarDNet: A Low Memory Traffic Network
State-of-the-art neural network architectures such as ResNet, MobileNet, and DenseNet have achieved outstanding accuracy over low MACs and small model size counterparts. However, these metrics might not be accurate for predicting the inference time. We suggest that memory traffic for accessing intermediate feature maps can be a factor dominating the inference latency, especially in such tasks as real-time object detection and semantic segmentation of high-resolution video. We propose a Harmonic Densely Connected Network to achieve high efficiency in terms of both low MACs and memory traffic. The new network achieves 35%, 36%, 30%, 32%, and 45% inference time reduction compared with FC-DenseNet-103, DenseNet-264, ResNet-50, ResNet-152, and SSD-VGG, respectively. We use tools including Nvidia profiler and ARM Scale-Sim to measure the memory traffic and verify that the inference latency is indeed proportional to the memory traffic consumption and the proposed network consumes low memory traffic. We conclude that one should take memory traffic into consideration when designing neural network architectures for high-resolution applications at the edge.
Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
CAMELoT: Towards Large Language Models with Training-Free Consolidated Associative Memory
Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs. Memory-augmented models have emerged as a promising solution to this problem, but current methods are hindered by limited memory capacity and require costly re-training to integrate with a new LLM. In this work, we introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training, enabling it to handle arbitrarily long input sequences. Unlike previous methods, our associative memory module consolidates representations of individual tokens into a non-parametric distribution model, dynamically managed by properly balancing the novelty and recency of the incoming data. By retrieving information from this consolidated associative memory, the base LLM can achieve significant (up to 29.7% on Arxiv) perplexity reduction in long-context modeling compared to other baselines evaluated on standard benchmarks. This architecture, which we call CAMELoT (Consolidated Associative Memory Enhanced Long Transformer), demonstrates superior performance even with a tiny context window of 128 tokens, and also enables improved in-context learning with a much larger set of demonstrations.
MFAGAN: A Compression Framework for Memory-Efficient On-Device Super-Resolution GAN
Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation and more energy consumption, hindering the deployment of GAN-based SR into resource-constricted mobile devices. In this paper, we propose a novel compression framework Multi-scale Feature Aggregation Net based GAN (MFAGAN) for reducing the memory access cost of the generator. First, to overcome the memory explosion of dense connections, we utilize a memory-efficient multi-scale feature aggregation net as the generator. Second, for faster and more stable training, our method introduces the PatchGAN discriminator. Third, to balance the student discriminator and the compressed generator, we distill both the generator and the discriminator. Finally, we perform a hardware-aware neural architecture search (NAS) to find a specialized SubGenerator for the target mobile phone. Benefiting from these improvements, the proposed MFAGAN achieves up to 8.3times memory saving and 42.9times computation reduction, with only minor visual quality degradation, compared with ESRGAN. Empirical studies also show sim70 milliseconds latency on Qualcomm Snapdragon 865 chipset.
Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems
Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each categorical feature could take on as many as tens of millions of different possible categories, the embedding tables form the primary memory bottleneck during both training and inference. We propose a novel approach for reducing the embedding size in an end-to-end fashion by exploiting complementary partitions of the category set to produce a unique embedding vector for each category without explicit definition. By storing multiple smaller embedding tables based on each complementary partition and combining embeddings from each table, we define a unique embedding for each category at smaller memory cost. This approach may be interpreted as using a specific fixed codebook to ensure uniqueness of each category's representation. Our experimental results demonstrate the effectiveness of our approach over the hashing trick for reducing the size of the embedding tables in terms of model loss and accuracy, while retaining a similar reduction in the number of parameters.
Discovering the Gems in Early Layers: Accelerating Long-Context LLMs with 1000x Input Token Reduction
Large Language Models (LLMs) have demonstrated remarkable capabilities in handling long context inputs, but this comes at the cost of increased computational resources and latency. Our research introduces a novel approach for the long context bottleneck to accelerate LLM inference and reduce GPU memory consumption. Our research demonstrates that LLMs can identify relevant tokens in the early layers before generating answers to a query. Leveraging this insight, we propose an algorithm that uses early layers of an LLM as filters to select and compress input tokens, significantly reducing the context length for subsequent processing. Our method, GemFilter, demonstrates substantial improvements in both speed and memory efficiency compared to existing techniques, such as standard attention and SnapKV/H2O. Notably, it achieves a 2.4times speedup and 30\% reduction in GPU memory usage compared to SOTA methods. Evaluation on the Needle in a Haystack task shows that GemFilter significantly outperforms standard attention, SnapKV and demonstrates comparable performance on the LongBench challenge. GemFilter is simple, training-free, and broadly applicable across different LLMs. Crucially, it provides interpretability by allowing humans to inspect the selected input sequence. These findings not only offer practical benefits for LLM deployment, but also enhance our understanding of LLM internal mechanisms, paving the way for further optimizations in LLM design and inference. Our code is available at https://github.com/SalesforceAIResearch/GemFilter.
LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units
Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.
Shortcut-V2V: Compression Framework for Video-to-Video Translation based on Temporal Redundancy Reduction
Video-to-video translation aims to generate video frames of a target domain from an input video. Despite its usefulness, the existing networks require enormous computations, necessitating their model compression for wide use. While there exist compression methods that improve computational efficiency in various image/video tasks, a generally-applicable compression method for video-to-video translation has not been studied much. In response, we present Shortcut-V2V, a general-purpose compression framework for video-to-video translation. Shourcut-V2V avoids full inference for every neighboring video frame by approximating the intermediate features of a current frame from those of the previous frame. Moreover, in our framework, a newly-proposed block called AdaBD adaptively blends and deforms features of neighboring frames, which makes more accurate predictions of the intermediate features possible. We conduct quantitative and qualitative evaluations using well-known video-to-video translation models on various tasks to demonstrate the general applicability of our framework. The results show that Shourcut-V2V achieves comparable performance compared to the original video-to-video translation model while saving 3.2-5.7x computational cost and 7.8-44x memory at test time.
ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
Large Language Models (LLMs) with billions of parameters have drastically transformed AI applications. However, their demanding computation during inference has raised significant challenges for deployment on resource-constrained devices. Despite recent trends favoring alternative activation functions such as GELU or SiLU, known for increased computation, this study strongly advocates for reinstating ReLU activation in LLMs. We demonstrate that using the ReLU activation function has a negligible impact on convergence and performance while significantly reducing computation and weight transfer. This reduction is particularly valuable during the memory-bound inference step, where efficiency is paramount. Exploring sparsity patterns in ReLU-based LLMs, we unveil the reutilization of activated neurons for generating new tokens and leveraging these insights, we propose practical strategies to substantially reduce LLM inference computation up to three times, using ReLU activations with minimal performance trade-offs.
Onesweep: A Faster Least Significant Digit Radix Sort for GPUs
We present Onesweep, a least-significant digit (LSD) radix sorting algorithm for large GPU sorting problems residing in global memory. Our parallel algorithm employs a method of single-pass prefix sum that only requires ~2n global read/write operations for each digit-binning iteration. This exhibits a significant reduction in last-level memory traffic versus contemporary GPU radix sorting implementations, where each iteration of digit binning requires two passes through the dataset totaling ~3n global memory operations. On the NVIDIA A100 GPU, our approach achieves 29.4 GKey/s when sorting 256M random 32-bit keys. Compared to CUB, the current state-of-the-art GPU LSD radix sort, our approach provides a speedup of ~1.5x. For 32-bit keys with varied distributions, our approach provides more consistent performance compared to HRS, the current state-of-the-art GPU MSD radix sort, and outperforms it in almost all cases.
RotateKV: Accurate and Robust 2-Bit KV Cache Quantization for LLMs via Outlier-Aware Adaptive Rotations
Key-Value (KV) cache facilitates efficient large language models (LLMs) inference by avoiding recomputation of past KVs. As the batch size and context length increase, the oversized KV caches become a significant memory bottleneck, highlighting the need for efficient compression. Existing KV quantization rely on fine-grained quantization or the retention of a significant portion of high bit-widths caches, both of which compromise compression ratio and often fail to maintain robustness at extremely low average bit-widths. In this work, we explore the potential of rotation technique for 2-bit KV quantization and propose RotateKV, which achieves accurate and robust performance through the following innovations: (i) Outlier-Aware Rotation, which utilizes channel-reordering to adapt the rotations to varying channel-wise outlier distributions without sacrificing the computational efficiency of the fast Walsh-Hadamard transform (FWHT); (ii) Pre-RoPE Grouped-Head Rotation, which mitigates the impact of rotary position embedding (RoPE) on proposed outlier-aware rotation and further smooths outliers across heads; (iii) Attention-Sink-Aware Quantization, which leverages the massive activations to precisely identify and protect attention sinks. RotateKV achieves less than 0.3 perplexity (PPL) degradation with 2-bit quantization on WikiText-2 using LLaMA-2-13B, maintains strong CoT reasoning and long-context capabilities, with less than 1.7\% degradation on GSM8K, outperforming existing methods even at lower average bit-widths. RotateKV also showcases a 3.97x reduction in peak memory usage, supports 5.75x larger batch sizes, and achieves a 2.32x speedup in decoding stage.
Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs
Large language models (LLMs) have shown remarkable performance in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process. Previous works have explored architectural changes and modifications in positional encoding to relax the constraint, but they often require expensive training or do not address the computational demands of self-attention. In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations. HOMER uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks. Each chunk is then processed collectively, employing a hierarchical strategy that merges adjacent chunks at progressive transformer layers. A token reduction technique precedes each merging, ensuring memory usage efficiency. We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experiments demonstrate the proposed method's superior performance and memory efficiency, enabling the broader use of LLMs in contexts requiring extended context. Code is available at https://github.com/alinlab/HOMER.
LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference
Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.
Beta-Rank: A Robust Convolutional Filter Pruning Method For Imbalanced Medical Image Analysis
As deep neural networks include a high number of parameters and operations, it can be a challenge to implement these models on devices with limited computational resources. Despite the development of novel pruning methods toward resource-efficient models, it has become evident that these models are not capable of handling "imbalanced" and "limited number of data points". We proposed a novel filter pruning method by considering the input and output of filters along with the values of the filters that deal with imbalanced datasets better than others. Our pruning method considers the fact that all information about the importance of a filter may not be reflected in the value of the filter. Instead, it is reflected in the changes made to the data after the filter is applied to it. In this work, three methods are compared with the same training conditions except for the ranking values of each method, and 14 methods are compared from other papers. We demonstrated that our model performed significantly better than other methods for imbalanced medical datasets. For example, when we removed up to 58% of FLOPs for the IDRID dataset and up to 45% for the ISIC dataset, our model was able to yield an equivalent (or even superior) result to the baseline model. To evaluate FLOP and parameter reduction using our model in real-world settings, we built a smartphone app, where we demonstrated a reduction of up to 79% in memory usage and 72% in prediction time. All codes and parameters for training different models are available at https://github.com/mohofar/Beta-Rank
k2SSL: A Faster and Better Framework for Self-Supervised Speech Representation Learning
Self-supervised learning (SSL) has achieved great success in speech-related tasks, driven by advancements in speech encoder architectures and the expansion of datasets. While Transformer and Conformer architectures have dominated SSL backbones, encoders like Zipformer, which excel in automatic speech recognition (ASR), remain unexplored in SSL. Concurrently, inefficiencies in data processing within existing SSL training frameworks, such as fairseq, pose challenges in managing the growing volumes of training data. To address these issues, we propose k2SSL, an open-source framework that offers faster, more memory-efficient, and better-performing self-supervised speech representation learning, with a focus on downstream ASR tasks. The optimized HuBERT and proposed Zipformer-based SSL systems exhibit substantial reductions in both training time and memory usage during SSL training. Experiments on LibriSpeech and Libri-Light demonstrate that Zipformer-based SSL systems significantly outperform comparable HuBERT and WavLM systems, achieving a relative WER reduction on dev-other/test-other of up to 34.8%/32.4% compared to HuBERT Base after supervised fine-tuning, along with a 3.5x pre-training speedup in total GPU hours.
Sparse Finetuning for Inference Acceleration of Large Language Models
We consider the problem of accurate sparse finetuning of large language models (LLMs), that is, finetuning pretrained LLMs on specialized tasks, while inducing sparsity in their weights. On the accuracy side, we observe that standard loss-based finetuning may fail to recover accuracy, especially at high sparsities. To address this, we perform a detailed study of distillation-type losses, determining an L2-based distillation approach we term SquareHead which enables accurate recovery even at higher sparsities, across all model types. On the practical efficiency side, we show that sparse LLMs can be executed with speedups by taking advantage of sparsity, for both CPU and GPU runtimes. While the standard approach is to leverage sparsity for computational reduction, we observe that in the case of memory-bound LLMs sparsity can also be leveraged for reducing memory bandwidth. We exhibit end-to-end results showing speedups due to sparsity, while recovering accuracy, on T5 (language translation), Whisper (speech translation), and open GPT-type (MPT for text generation). For MPT text generation, we show for the first time that sparse finetuning can reach 75% sparsity without accuracy drops, provide notable end-to-end speedups for both CPU and GPU inference, and highlight that sparsity is also compatible with quantization approaches. Models and software for reproducing our results are provided in Section 6.
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and \squad benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at https://github.com/google-research/ALBERT.
Compressing Context to Enhance Inference Efficiency of Large Language Models
Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM's fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50\% reduction in context cost, resulting in a 36\% reduction in inference memory usage and a 32\% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
PockEngine: Sparse and Efficient Fine-tuning in a Pocket
On-device learning and efficient fine-tuning enable continuous and privacy-preserving customization (e.g., locally fine-tuning large language models on personalized data). However, existing training frameworks are designed for cloud servers with powerful accelerators (e.g., GPUs, TPUs) and lack the optimizations for learning on the edge, which faces challenges of resource limitations and edge hardware diversity. We introduce PockEngine: a tiny, sparse and efficient engine to enable fine-tuning on various edge devices. PockEngine supports sparse backpropagation: it prunes the backward graph and sparsely updates the model with measured memory saving and latency reduction while maintaining the model quality. Secondly, PockEngine is compilation first: the entire training graph (including forward, backward and optimization steps) is derived at compile-time, which reduces the runtime overhead and brings opportunities for graph transformations. PockEngine also integrates a rich set of training graph optimizations, thus can further accelerate the training cost, including operator reordering and backend switching. PockEngine supports diverse applications, frontends and hardware backends: it flexibly compiles and tunes models defined in PyTorch/TensorFlow/Jax and deploys binaries to mobile CPU/GPU/DSPs. We evaluated PockEngine on both vision models and large language models. PockEngine achieves up to 15 times speedup over off-the-shelf TensorFlow (Raspberry Pi), 5.6 times memory saving back-propagation (Jetson AGX Orin). Remarkably, PockEngine enables fine-tuning LLaMav2-7B on NVIDIA Jetson AGX Orin at 550 tokens/s, 7.9times faster than the PyTorch.
Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs
In this study, we introduce adaptive KV cache compression, a plug-and-play method that reduces the memory footprint of generative inference for Large Language Models (LLMs). Different from the conventional KV cache that retains key and value vectors for all context tokens, we conduct targeted profiling to discern the intrinsic structure of attention modules. Based on the recognized structure, we then construct the KV cache in an adaptive manner: evicting long-range contexts on attention heads emphasizing local contexts, discarding non-special tokens on attention heads centered on special tokens, and only employing the standard KV cache for attention heads that broadly attend to all tokens. Moreover, with the lightweight attention profiling used to guide the construction of the adaptive KV cache, FastGen can be deployed without resource-intensive fine-tuning or re-training. In our experiments across various asks, FastGen demonstrates substantial reduction on GPU memory consumption with negligible generation quality loss. We will release our code and the compatible CUDA kernel for reproducibility.
Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy
Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
In federated learning (FL), clients usually have diverse participation statistics that are unknown a priori, which can significantly harm the performance of FL if not handled properly. Existing works aiming at addressing this problem are usually based on global variance reduction, which requires a substantial amount of additional memory in a multiplicative factor equal to the total number of clients. An important open problem is to find a lightweight method for FL in the presence of clients with unknown participation rates. In this paper, we address this problem by adapting the aggregation weights in federated averaging (FedAvg) based on the participation history of each client. We first show that, with heterogeneous participation statistics, FedAvg with non-optimal aggregation weights can diverge from the optimal solution of the original FL objective, indicating the need of finding optimal aggregation weights. However, it is difficult to compute the optimal weights when the participation statistics are unknown. To address this problem, we present a new algorithm called FedAU, which improves FedAvg by adaptively weighting the client updates based on online estimates of the optimal weights without knowing the statistics of client participation. We provide a theoretical convergence analysis of FedAU using a novel methodology to connect the estimation error and convergence. Our theoretical results reveal important and interesting insights, while showing that FedAU converges to an optimal solution of the original objective and has desirable properties such as linear speedup. Our experimental results also verify the advantage of FedAU over baseline methods with various participation patterns.
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models
Large transformer models display promising performance on a wide range of natural language processing (NLP) tasks. Although the AI community has expanded the model scale to the trillion parameter level, the practical deployment of 10-100 billion parameter models is still uncertain due to the latency, throughput, and memory constraints. In this paper, we proposed EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models on single- or multi-GPU systems. EnergonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns. It delegates the execution of sub-models to multiple workers in the single-controller style and applies tensor parallelism and pipeline parallelism among the workers in a multi-controller style. Upon the novel architecture, we propose three techniques, i.e. non-blocking pipeline parallelism, distributed redundant computation elimination, and peer memory pooling. EnergonAI enables the users to program complex parallel code the same as a serial one. Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput. In our experiments, EnergonAI can achieve 37% latency reduction in tensor parallelism, 10% scalability improvement in pipeline parallelism, and it improves the model scale inferred on a single GPU by using a larger heterogeneous memory space at cost of limited performance reduction.
LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models
Advances in latent diffusion models (LDMs) have revolutionized high-resolution image generation, but the design space of the autoencoder that is central to these systems remains underexplored. In this paper, we introduce LiteVAE, a family of autoencoders for LDMs that leverage the 2D discrete wavelet transform to enhance scalability and computational efficiency over standard variational autoencoders (VAEs) with no sacrifice in output quality. We also investigate the training methodologies and the decoder architecture of LiteVAE and propose several enhancements that improve the training dynamics and reconstruction quality. Our base LiteVAE model matches the quality of the established VAEs in current LDMs with a six-fold reduction in encoder parameters, leading to faster training and lower GPU memory requirements, while our larger model outperforms VAEs of comparable complexity across all evaluated metrics (rFID, LPIPS, PSNR, and SSIM).
ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression
The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase and the memory bottleneck of fetching the key-value (KV) cache in the decoding phase, particularly in scenarios involving high-resolution images or videos. Visual content often exhibits substantial redundancy, resulting in highly sparse attention maps within LVLMs. This sparsity can be leveraged to accelerate attention computation or compress the KV cache through various approaches. However, most studies focus on addressing only one of these bottlenecks and do not adequately support dynamic adjustment of sparsity concerning distinct layers or tasks. In this paper, we present ZipVL, an efficient inference framework designed for LVLMs that resolves both computation and memory bottlenecks through a dynamic ratio allocation strategy of important tokens. This ratio is adaptively determined based on the layer-specific distribution of attention scores, rather than fixed hyper-parameters, thereby improving efficiency for less complex tasks while maintaining high performance for more challenging ones. Then we select important tokens based on their normalized attention scores and perform attention mechanism solely on those important tokens to accelerate the prefill phase. To mitigate the memory bottleneck in the decoding phase, we employ mixed-precision quantization to the KV cache, where high-bit quantization is used for caches of important tokens, while low-bit quantization is applied to those of less importance. Our experiments demonstrate that ZipVL can accelerate the prefill phase by 2.6times and reduce GPU memory usage by 50.0%, with a minimal accuracy reduction of only 0.2% on Video-MME benchmark over LongVA-7B model, effectively enhancing the generation efficiency of LVLMs.
Data-Juicer: A One-Stop Data Processing System for Large Language Models
The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.
READ: Recurrent Adaptation of Large Transformers
Fine-tuning large-scale Transformers has led to the explosion of many AI applications across Natural Language Processing and Computer Vision tasks. However, fine-tuning all pre-trained model parameters becomes impractical as the model size and number of tasks increase. Parameter-efficient transfer learning (PETL) methods aim to address these challenges. While effective in reducing the number of trainable parameters, PETL methods still require significant energy and computational resources to fine-tune. In this paper, we introduce REcurrent ADaption (READ) -- a lightweight and memory-efficient fine-tuning method -- to overcome the limitations of the current PETL approaches. Specifically, READ inserts a small RNN network alongside the backbone model so that the model does not have to back-propagate through the large backbone network. Through comprehensive empirical evaluation of the GLUE benchmark, we demonstrate READ can achieve a 56% reduction in the training memory consumption and an 84% reduction in the GPU energy usage while retraining high model quality compared to full-tuning. Additionally, the model size of READ does not grow with the backbone model size, making it a highly scalable solution for fine-tuning large Transformers.
ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification
KV cache stores key and value states from previous tokens to avoid re-computation, yet it demands substantial storage space, especially for long sequences. Adaptive KV cache compression seeks to discern the saliency of tokens, preserving vital information while aggressively compressing those of less importance. However, previous methods of this approach exhibit significant performance degradation at high compression ratios due to inaccuracies in identifying salient tokens. In this paper, we present ZipCache, an accurate and efficient KV cache quantization method for LLMs. First, we construct a strong baseline for quantizing KV cache. Through the proposed channel-separable tokenwise quantization scheme, the memory overhead of quantization parameters are substantially reduced compared to fine-grained groupwise quantization. To enhance the compression ratio, we propose normalized attention score as an effective metric for identifying salient tokens by considering the lower triangle characteristics of the attention matrix. Moreover, we develop an efficient approximation method that decouples the saliency metric from full attention scores, enabling compatibility with fast attention implementations like FlashAttention. Extensive experiments demonstrate that ZipCache achieves superior compression ratios, fast generation speed and minimal performance losses compared with previous KV cache compression methods. For instance, when evaluating Mistral-7B model on GSM8k dataset, ZipCache is capable of compressing the KV cache by 4.98times, with only a 0.38% drop in accuracy. In terms of efficiency, ZipCache also showcases a 37.3% reduction in prefill-phase latency, a 56.9% reduction in decoding-phase latency, and a 19.8% reduction in GPU memory usage when evaluating LLaMA3-8B model with a input length of 4096.
Selective Attention Improves Transformer
Unneeded elements in the attention's context degrade performance. We introduce Selective Attention, a simple parameter-free change to the standard attention mechanism which reduces attention to unneeded elements. Selective attention improves language modeling performance in a variety of model sizes and context lengths. For example, a range of transformers trained with the language modeling objective on C4 with selective attention perform equivalently to standard transformers with ~2X more heads and parameters in their attention modules. Selective attention also allows decreasing the size of the attention's context buffer, leading to meaningful reductions in the memory and compute requirements during inference. For example, transformers with 100M parameters trained on C4 with context sizes of 512, 1,024, and 2,048 need 16X, 25X, and 47X less memory for their attention module, respectively, when equipped with selective attention, as those without selective attention, with the same validation perplexity.
DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution
MLLMs have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data. These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks. However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs involves storing billions of parameters and performing tremendous computation, imposing significant hardware demands. In our paper, we propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to terminate processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (i.e., power consumption), as well as peak computational consumption (i.e., latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance. Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.
PortLLM: Personalizing Evolving Large Language Models with Training-Free and Portable Model Patches
As large language models (LLMs) increasingly shape the AI landscape, fine-tuning pretrained models has become more popular than in the pre-LLM era for achieving optimal performance in domain-specific tasks. However, pretrained LLMs such as ChatGPT are periodically evolved, i.e., model parameters are frequently updated), making it challenging for downstream users with limited resources to keep up with fine-tuning the newest LLMs for their domain application. Even though fine-tuning costs have nowadays been reduced thanks to the innovations of parameter-efficient fine-tuning such as LoRA, not all downstream users have adequate computing for frequent personalization. Moreover, access to fine-tuning datasets, particularly in sensitive domains such as healthcare, could be time-restrictive, making it crucial to retain the knowledge encoded in earlier fine-tuned rounds for future adaptation. In this paper, we present PortLLM, a training-free framework that (i) creates an initial lightweight model update patch to capture domain-specific knowledge, and (ii) allows a subsequent seamless plugging for the continual personalization of evolved LLM at minimal cost. Our extensive experiments cover seven representative datasets, from easier question-answering tasks {BoolQ, SST2} to harder reasoning tasks {WinoGrande, GSM8K}, and models including {Mistral-7B, Llama2, Llama3.1, and Gemma2}, validating the portability of our designed model patches and showcasing the effectiveness of our proposed framework. For instance, PortLLM achieves comparable performance to LoRA fine-tuning with reductions of up to 12.2x in GPU memory usage. Finally, we provide theoretical justifications to understand the portability of our model update patches, which offers new insights into the theoretical dimension of LLMs' personalization.
A Survey of Quantization Methods for Efficient Neural Network Inference
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
1.58-bit FLUX
We present 1.58-bit FLUX, the first successful approach to quantizing the state-of-the-art text-to-image generation model, FLUX.1-dev, using 1.58-bit weights (i.e., values in {-1, 0, +1}) while maintaining comparable performance for generating 1024 x 1024 images. Notably, our quantization method operates without access to image data, relying solely on self-supervision from the FLUX.1-dev model. Additionally, we develop a custom kernel optimized for 1.58-bit operations, achieving a 7.7x reduction in model storage, a 5.1x reduction in inference memory, and improved inference latency. Extensive evaluations on the GenEval and T2I Compbench benchmarks demonstrate the effectiveness of 1.58-bit FLUX in maintaining generation quality while significantly enhancing computational efficiency.
FP8-LM: Training FP8 Large Language Models
In this paper, we explore FP8 low-bit data formats for efficient training of large language models (LLMs). Our key insight is that most variables, such as gradients and optimizer states, in LLM training can employ low-precision data formats without compromising model accuracy and requiring no changes to hyper-parameters. Specifically, we propose a new FP8 automatic mixed-precision framework for training LLMs. This framework offers three levels of FP8 utilization to streamline mixed-precision and distributed parallel training for LLMs. It gradually incorporates 8-bit gradients, optimizer states, and distributed learning in an incremental manner. Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 42% reduction in real memory usage but also ran 64% faster than the widely adopted BF16 framework (i.e., Megatron-LM), surpassing the speed of Nvidia Transformer Engine by 17%. This largely reduces the training costs for large foundation models. Furthermore, our FP8 mixed-precision training methodology is generic. It can be seamlessly applied to other tasks such as LLM instruction tuning and reinforcement learning with human feedback, offering savings in fine-tuning expenses. Our FP8 low-precision training framework is open-sourced at {https://github.com/Azure/MS-AMP}{aka.ms/MS.AMP}.
Tuning LayerNorm in Attention: Towards Efficient Multi-Modal LLM Finetuning
This paper introduces an efficient strategy to transform Large Language Models (LLMs) into Multi-Modal Large Language Models (MLLMs). By conceptualizing this transformation as a domain adaptation process, i.e., transitioning from text understanding to embracing multiple modalities, we intriguingly note that, within each attention block, tuning LayerNorm suffices to yield strong performance. Moreover, when benchmarked against other tuning approaches like full parameter finetuning or LoRA, its benefits on efficiency are substantial. For example, when compared to LoRA on a 13B model scale, performance can be enhanced by an average of over 20% across five multi-modal tasks, and meanwhile, results in a significant reduction of trainable parameters by 41.9% and a decrease in GPU memory usage by 17.6%. On top of this LayerNorm strategy, we showcase that selectively tuning only with conversational data can improve efficiency further. Beyond these empirical outcomes, we provide a comprehensive analysis to explore the role of LayerNorm in adapting LLMs to the multi-modal domain and improving the expressive power of the model.
LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning
Large pre-trained models (LPMs), such as LLaMA and GLM, have shown exceptional performance across various tasks through fine-tuning. Although low-rank adaption (LoRA) has emerged to cheaply fine-tune these LPMs on downstream tasks, their deployment is still hindered by the vast model scale and computational costs. Neural network pruning offers a way to compress LPMs. However, the current pruning methods designed for LPMs are not compatible with LoRA. This is due to their utilization of unstructured pruning on LPMs, impeding the merging of LoRA weights, or their dependence on the gradients of pre-trained weights to guide pruning, which can impose significant memory overhead. To this end, we propose LoRAPrune, a new framework that delivers an accurate, compact model for efficient inference in a highly memory-effective manner. Specifically, we first design a LoRA-guided pruning criterion, which uses the weights and gradients of LoRA, rather than the gradients of pre-trained weights for importance estimation. We then propose a structured iterative pruning procedure, to remove redundant channels and heads. Extensive experimental results demonstrate the superior performance of our LoRAPrune over existing approaches on the LLaMA series models. For instance, at a 50\% compression rate, LoRAPrune outperforms LLM-Pruner by a perplexity reduction of 8.0 on WikiText2 and 16.05 on PTB datasets, while concurrently reducing memory usage by 52.6\%. The code will be released after review
ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation
This study introduces an approach to optimize Parameter Efficient Fine Tuning (PEFT) for Pretrained Language Models (PLMs) by implementing a Shared Low Rank Adaptation (ShareLoRA). By strategically deploying ShareLoRA across different layers and adapting it for the Query, Key, and Value components of self-attention layers, we achieve a substantial reduction in the number of training parameters and memory usage. Importantly, ShareLoRA not only maintains model performance but also exhibits robustness in both classification and generation tasks across a variety of models, including RoBERTa, GPT-2, LLaMA and LLaMA2. It demonstrates superior transfer learning capabilities compared to standard LoRA applications and mitigates overfitting by sharing weights across layers. Our findings affirm that ShareLoRA effectively boosts parameter efficiency while ensuring scalable and high-quality performance across different language model architectures.
Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation
The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve 2.4 sim 6.5 times inference speedups and a 75% reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.
Generative Adapter: Contextualizing Language Models in Parameters with A Single Forward Pass
Large language models (LMs) are typically adapted to improve performance on new contexts (\eg text prompts that define new tasks or domains) through fine-tuning or prompting. However, there is an accuracy compute tradeoff -- fine-tuning incurs significant training cost and prompting increases inference overhead. We introduce GenerativeAdapter, an effective and efficient adaptation method that directly maps new contexts to low-rank LM adapters, thereby significantly reducing inference overhead with no need for finetuning. The adapter generator is trained via self-supervised learning, and can be used to adapt a single frozen LM for any new task simply by mapping the associated task or domain context to a new adapter. We apply GenerativeAdapter to two pretrained LMs (Mistral-7B-Instruct and Llama2-7B-Chat) and evaluate the adapted models in three adaption scenarios: knowledge acquisition from documents, learning from demonstrations, and personalization for users. In StreamingQA, our approach is effective in injecting knowledge into the LM's parameters, achieving a 63.5% improvement in F1 score over the model with supervised fine-tuning (from 19.5 to 31.5) for contexts as long as 32K tokens. In the MetaICL in-context learning evaluation, our method achieves an average accuracy of 44.9 across 26 tasks, outperforming the base model. On MSC, our method proves to be highly competitive in memorizing user information from conversations with a 4x reduction in computation and memory costs compared to prompting with full conversation history. Together, these results suggest that GenerativeAdapter should allow for general adaption to a wide range of different contexts.
Liger Kernel: Efficient Triton Kernels for LLM Training
Training Large Language Models (LLMs) efficiently at scale presents a formidable challenge, driven by their ever-increasing computational demands and the need for enhanced performance. In this work, we introduce Liger-Kernel, an open-sourced set of Triton kernels developed specifically for LLM training. With kernel optimization techniques like kernel operation fusing and input chunking, our kernels achieve on average a 20% increase in training throughput and a 60% reduction in GPU memory usage for popular LLMs compared to HuggingFace implementations. In addition, Liger-Kernel is designed with modularity, accessibility, and adaptability in mind, catering to both casual and expert users. Comprehensive benchmarks and integration tests are built in to ensure compatibility, performance, correctness, and convergence across diverse computing environments and model architectures. The source code is available under a permissive license at: github.com/linkedin/Liger-Kernel.
Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models
The landscape of computational building blocks of efficient image restoration architectures is dominated by a combination of convolutional processing and various attention mechanisms. However, convolutional filters, while efficient, are inherently local and therefore struggle with modeling long-range dependencies in images. In contrast, attention excels at capturing global interactions between arbitrary image regions, but suffers from a quadratic cost in image dimension. In this work, we propose Serpent, an efficient architecture for high-resolution image restoration that combines recent advances in state space models (SSMs) with multi-scale signal processing in its core computational block. SSMs, originally introduced for sequence modeling, can maintain a global receptive field with a favorable linear scaling in input size. We propose a novel hierarchical architecture inspired by traditional signal processing principles, that converts the input image into a collection of sequences and processes them in a multi-scale fashion. Our experimental results demonstrate that Serpent can achieve reconstruction quality on par with state-of-the-art techniques, while requiring orders of magnitude less compute (up to 150 fold reduction in FLOPS) and a factor of up to 5times less GPU memory while maintaining a compact model size. The efficiency gains achieved by Serpent are especially notable at high image resolutions.
DeepPeep: Exploiting Design Ramifications to Decipher the Architecture of Compact DNNs
The remarkable predictive performance of deep neural networks (DNNs) has led to their adoption in service domains of unprecedented scale and scope. However, the widespread adoption and growing commercialization of DNNs have underscored the importance of intellectual property (IP) protection. Devising techniques to ensure IP protection has become necessary due to the increasing trend of outsourcing the DNN computations on the untrusted accelerators in cloud-based services. The design methodologies and hyper-parameters of DNNs are crucial information, and leaking them may cause massive economic loss to the organization. Furthermore, the knowledge of DNN's architecture can increase the success probability of an adversarial attack where an adversary perturbs the inputs and alter the prediction. In this work, we devise a two-stage attack methodology "DeepPeep" which exploits the distinctive characteristics of design methodologies to reverse-engineer the architecture of building blocks in compact DNNs. We show the efficacy of "DeepPeep" on P100 and P4000 GPUs. Additionally, we propose intelligent design maneuvering strategies for thwarting IP theft through the DeepPeep attack and proposed "Secure MobileNet-V1". Interestingly, compared to vanilla MobileNet-V1, secure MobileNet-V1 provides a significant reduction in inference latency (approx60%) and improvement in predictive performance (approx2%) with very-low memory and computation overheads.
From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients
Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at https://github.com/VITA-Group/welore
LaMDA: Large Model Fine-Tuning via Spectrally Decomposed Low-Dimensional Adaptation
Low-rank adaptation (LoRA) has become the default approach to fine-tune large language models (LLMs) due to its significant reduction in trainable parameters. However, trainable parameter demand for LoRA increases with increasing model embedding dimensions, leading to high compute costs. Additionally, its backward updates require storing high-dimensional intermediate activations and optimizer states, demanding high peak GPU memory. In this paper, we introduce large model fine-tuning via spectrally decomposed low-dimensional adaptation (LaMDA), a novel approach to fine-tuning large language models, which leverages low-dimensional adaptation to achieve significant reductions in trainable parameters and peak GPU memory footprint. LaMDA freezes a first projection matrix (PMA) in the adaptation path while introducing a low-dimensional trainable square matrix, resulting in substantial reductions in trainable parameters and peak GPU memory usage. LaMDA gradually freezes a second projection matrix (PMB) during the early fine-tuning stages, reducing the compute cost associated with weight updates to enhance parameter efficiency further. We also present an enhancement, LaMDA++, incorporating a ``lite-weight" adaptive rank allocation for the LoRA path via normalized spectrum analysis of pre-trained model weights. We evaluate LaMDA/LaMDA++ across various tasks, including natural language understanding with the GLUE benchmark, text summarization, natural language generation, and complex reasoning on different LLMs. Results show that LaMDA matches or surpasses the performance of existing alternatives while requiring up to 17.7x fewer parameter updates and up to 1.32x lower peak GPU memory usage during fine-tuning. Code will be publicly available.
Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared Pre-trained Language Models
Parameter-shared pre-trained language models (PLMs) have emerged as a successful approach in resource-constrained environments, enabling substantial reductions in model storage and memory costs without significant performance compromise. However, it is important to note that parameter sharing does not alleviate computational burdens associated with inference, thus impeding its practicality in situations characterized by limited stringent latency requirements or computational resources. Building upon neural ordinary differential equations (ODEs), we introduce a straightforward technique to enhance the inference efficiency of parameter-shared PLMs. Additionally, we propose a simple pre-training technique that leads to fully or partially shared models capable of achieving even greater inference acceleration. The experimental results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs, providing novel insights into more efficient utilization of parameter-shared models in resource-constrained settings.
PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization
In this paper, we present a pure-Python library called PyPop7 for black-box optimization (BBO). As population-based methods are becoming increasingly popular for BBO, our design goal is to provide a unified API and elegant implementations for them, particularly in high-dimensional cases. Since population-based methods suffer easily from the curse of dimensionality owing to their random sampling nature, various improvements have been proposed to alleviate this issue via exploiting possible problem structures: such as space decomposition, low-memory approximation, low-rank metric learning, variance reduction, ensemble of random subspaces, model self-adaptation, and smoothing. Now PyPop7 has covered these advances with >72 versions and variants of 13 BBO algorithm families from different research communities. Its open-source code and full-fledged documents are available at https://github.com/Evolutionary-Intelligence/pypop and https://pypop.readthedocs.io, respectively.
CompAct: Compressed Activations for Memory-Efficient LLM Training
We introduce CompAct, a technique that reduces peak memory utilization on GPU by 25-30% for pretraining and 50% for fine-tuning of LLMs. Peak device memory is a major limiting factor in training LLMs, with various recent works aiming to reduce model memory. However most works don't target the largest component of allocated memory during training: the model's compute graph, which is stored for the backward pass. By storing low-rank, compressed activations to be used in the backward pass we greatly reduce the required memory, unlike previous methods which only reduce optimizer overheads or the number of trained parameters. Our compression uses random projection matrices, thus avoiding additional memory overheads. Comparisons with previous techniques for either pretraining or fine-tuning show that CompAct substantially improves existing compute-performance tradeoffs. We expect CompAct's savings to scale even higher for larger models.
Memory^3: Language Modeling with Explicit Memory
The training and inference of large language models (LLMs) are together a costly process that transports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human brain, we reduce this cost by equipping LLMs with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG). Conceptually, with most of its knowledge externalized to explicit memories, the LLM can enjoy a smaller parameter size, training cost, and inference cost, all proportional to the amount of remaining "abstract knowledge". As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs as well as RAG models, and maintains higher decoding speed than RAG. The model is named Memory^3, since explicit memory is the third form of memory in LLMs after implicit memory (model parameters) and working memory (context key-values). We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable and a two-stage pretraining scheme that facilitates memory formation.
Self-attention Does Not Need O(n^2) Memory
We present a very simple algorithm for attention that requires O(1) memory with respect to sequence length and an extension to self-attention that requires O(log n) memory. This is in contrast with the frequently stated belief that self-attention requires O(n^2) memory. While the time complexity is still O(n^2), device memory rather than compute capability is often the limiting factor on modern accelerators. Thus, reducing the memory requirements of attention allows processing of longer sequences than might otherwise be feasible. We provide a practical implementation for accelerators that requires O(n) memory, is numerically stable, and is within a few percent of the runtime of the standard implementation of attention. We also demonstrate how to differentiate the function while remaining memory-efficient. For sequence length 16384, the memory overhead of self-attention is reduced by 59X for inference and by 32X for differentiation.
Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs
Nowadays, Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications. However, long context training poses great challenges considering the constraint of GPU memory. It not only leads to substantial activation memory consumption during training, but also incurs considerable memory fragmentation. To facilitate long context training, existing frameworks have adopted strategies such as recomputation and various forms of parallelisms. Nevertheless, these techniques rely on redundant computation or extensive communication, resulting in low Model FLOPS Utilization (MFU). In this paper, we propose MEMO, a novel LLM training framework designed for fine-grained activation memory management. Given the quadratic scaling of computation and linear scaling of memory with sequence lengths when using FlashAttention, we offload memory-consuming activations to CPU memory after each layer's forward pass and fetch them during the backward pass. To maximize the swapping of activations without hindering computation, and to avoid exhausting limited CPU memory, we implement a token-wise activation recomputation and swapping mechanism. Furthermore, we tackle the memory fragmentation issue by employing a bi-level Mixed Integer Programming (MIP) approach, optimizing the reuse of memory across transformer layers. Empirical results demonstrate that MEMO achieves an average of 2.42x and 2.26x MFU compared to Megatron-LM and DeepSpeed, respectively. This improvement is attributed to MEMO's ability to minimize memory fragmentation, reduce recomputation and intensive communication, and circumvent the delays associated with the memory reorganization process due to fragmentation. By leveraging fine-grained activation memory management, MEMO facilitates efficient training of 7B LLM with 1 million sequence length on just 8 A800 GPUs, achieving an MFU of 52.30%.
Continual Learning via Neural Pruning
We introduce Continual Learning via Neural Pruning (CLNP), a new method aimed at lifelong learning in fixed capacity models based on neuronal model sparsification. In this method, subsequent tasks are trained using the inactive neurons and filters of the sparsified network and cause zero deterioration to the performance of previous tasks. In order to deal with the possible compromise between model sparsity and performance, we formalize and incorporate the concept of graceful forgetting: the idea that it is preferable to suffer a small amount of forgetting in a controlled manner if it helps regain network capacity and prevents uncontrolled loss of performance during the training of future tasks. CLNP also provides simple continual learning diagnostic tools in terms of the number of free neurons left for the training of future tasks as well as the number of neurons that are being reused. In particular, we see in experiments that CLNP verifies and automatically takes advantage of the fact that the features of earlier layers are more transferable. We show empirically that CLNP leads to significantly improved results over current weight elasticity based methods.
Simple linear attention language models balance the recall-throughput tradeoff
Recent work has shown that attention-based language models excel at recall, the ability to ground generations in tokens previously seen in context. However, the efficiency of attention-based models is bottle-necked during inference by the KV-cache's aggressive memory consumption. In this work, we explore whether we can improve language model efficiency (e.g. by reducing memory consumption) without compromising on recall. By applying experiments and theory to a broad set of architectures, we identify a key tradeoff between a model's state size and recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba, RWKV) maintain a fixed-size recurrent state, but struggle at recall. We propose BASED a simple architecture combining linear and sliding window attention. By varying BASED window size and linear attention feature dimension, we can dial the state size and traverse the pareto frontier of the recall-memory tradeoff curve, recovering the full quality of attention on one end and the small state size of attention-alternatives on the other. We train language models up to 1.3b parameters and show that BASED matches the strongest sub-quadratic models (e.g. Mamba) in perplexity and outperforms them on real-world recall-intensive tasks by 6.22 accuracy points. Implementations of linear attention are often less efficient than optimized standard attention implementations. To make BASED competitive, we develop IO-aware algorithms that enable 24x higher throughput on language generation than FlashAttention-2, when generating 1024 tokens using 1.3b parameter models. Code for this work is provided at: https://github.com/HazyResearch/based.
On the Structural Memory of LLM Agents
Memory plays a pivotal role in enabling large language model~(LLM)-based agents to engage in complex and long-term interactions, such as question answering (QA) and dialogue systems. While various memory modules have been proposed for these tasks, the impact of different memory structures across tasks remains insufficiently explored. This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents. Specifically, we evaluate four types of memory structures, including chunks, knowledge triples, atomic facts, and summaries, along with mixed memory that combines these components. In addition, we evaluate three widely used memory retrieval methods: single-step retrieval, reranking, and iterative retrieval. Extensive experiments conducted across four tasks and six datasets yield the following key insights: (1) Different memory structures offer distinct advantages, enabling them to be tailored to specific tasks; (2) Mixed memory structures demonstrate remarkable resilience in noisy environments; (3) Iterative retrieval consistently outperforms other methods across various scenarios. Our investigation aims to inspire further research into the design of memory systems for LLM-based agents.
Full Parameter Fine-tuning for Large Language Models with Limited Resources
Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) but demand massive GPU resources for training. Lowering the threshold for LLMs training would encourage greater participation from researchers, benefiting both academia and society. While existing approaches have focused on parameter-efficient fine-tuning, which tunes or adds a small number of parameters, few have addressed the challenge of tuning the full parameters of LLMs with limited resources. In this work, we propose a new optimizer, LOw-Memory Optimization (LOMO), which fuses the gradient computation and the parameter update in one step to reduce memory usage. By integrating LOMO with existing memory saving techniques, we reduce memory usage to 10.8% compared to the standard approach (DeepSpeed solution). Consequently, our approach enables the full parameter fine-tuning of a 65B model on a single machine with 8 RTX 3090, each with 24GB memory.
Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs
Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subset of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale Llama-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks.
Relational Experience Replay: Continual Learning by Adaptively Tuning Task-wise Relationship
Continual learning is a promising machine learning paradigm to learn new tasks while retaining previously learned knowledge over streaming training data. Till now, rehearsal-based methods, keeping a small part of data from old tasks as a memory buffer, have shown good performance in mitigating catastrophic forgetting for previously learned knowledge. However, most of these methods typically treat each new task equally, which may not adequately consider the relationship or similarity between old and new tasks. Furthermore, these methods commonly neglect sample importance in the continual training process and result in sub-optimal performance on certain tasks. To address this challenging problem, we propose Relational Experience Replay (RER), a bi-level learning framework, to adaptively tune task-wise relationships and sample importance within each task to achieve a better `stability' and `plasticity' trade-off. As such, the proposed method is capable of accumulating new knowledge while consolidating previously learned old knowledge during continual learning. Extensive experiments conducted on three publicly available datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) show that the proposed method can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
NeuZip: Memory-Efficient Training and Inference with Dynamic Compression of Neural Networks
The performance of neural networks improves when more parameters are used. However, the model sizes are constrained by the available on-device memory during training and inference. Although applying techniques like quantization can alleviate the constraint, they suffer from performance degradation. In this work, we introduce NeuZip, a new weight compression scheme based on the entropy of floating-point numbers in neural networks. With NeuZip, we are able to achieve memory-efficient training and inference without sacrificing performance. Notably, we significantly reduce the memory footprint of training a Llama-3 8B model from 31GB to less than 16GB, while keeping the training dynamics fully unchanged. In inference, our method can reduce memory usage by more than half while maintaining near-lossless performance. Our code is publicly available.
An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding
Continual learning refers to a dynamical framework in which a model receives a stream of non-stationary data over time and must adapt to new data while preserving previously acquired knowledge. Unluckily, neural networks fail to meet these two desiderata, incurring the so-called catastrophic forgetting phenomenon. Whereas a vast array of strategies have been proposed to attenuate forgetting in the computer vision domain, for speech-related tasks, on the other hand, there is a dearth of works. In this paper, we consider the joint use of rehearsal and knowledge distillation (KD) approaches for spoken language understanding under a class-incremental learning scenario. We report on multiple KD combinations at different levels in the network, showing that combining feature-level and predictions-level KDs leads to the best results. Finally, we provide an ablation study on the effect of the size of the rehearsal memory that corroborates the efficacy of our approach for low-resource devices.
Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners. These requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify two key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. To address them, we propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we use LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. GS-LoRA is effective, parameter-efficient, data-efficient, and easy to implement. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes. Codes will be released on https://github.com/bjzhb666/GS-LoRA.
Center Loss Regularization for Continual Learning
The ability to learn different tasks sequentially is essential to the development of artificial intelligence. In general, neural networks lack this capability, the major obstacle being catastrophic forgetting. It occurs when the incrementally available information from non-stationary data distributions is continually acquired, disrupting what the model has already learned. Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks while keeping the decision boundaries unchanged. We employ the center loss as a regularization penalty that enforces new tasks' features to have the same class centers as old tasks and makes the features highly discriminative. This, in turn, leads to the least forgetting of already learned information. This method is easy to implement, requires minimal computational and memory overhead, and allows the neural network to maintain high performance across many sequentially encountered tasks. We also demonstrate that using the center loss in conjunction with the memory replay outperforms other replay-based strategies. Along with standard MNIST variants for continual learning, we apply our method to continual domain adaptation scenarios with the Digits and PACS datasets. We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
Practical Continual Forgetting for Pre-trained Vision Models
For privacy and security concerns, the need to erase unwanted information from pre-trained vision models is becoming evident nowadays. In real-world scenarios, erasure requests originate at any time from both users and model owners, and these requests usually form a sequence. Therefore, under such a setting, selective information is expected to be continuously removed from a pre-trained model while maintaining the rest. We define this problem as continual forgetting and identify three key challenges. (i) For unwanted knowledge, efficient and effective deleting is crucial. (ii) For remaining knowledge, the impact brought by the forgetting procedure should be minimal. (iii) In real-world scenarios, the training samples may be scarce or partially missing during the process of forgetting. To address them, we first propose Group Sparse LoRA (GS-LoRA). Specifically, towards (i), we introduce LoRA modules to fine-tune the FFN layers in Transformer blocks for each forgetting task independently, and towards (ii), a simple group sparse regularization is adopted, enabling automatic selection of specific LoRA groups and zeroing out the others. To further extend GS-LoRA to more practical scenarios, we incorporate prototype information as additional supervision and introduce a more practical approach, GS-LoRA++. For each forgotten class, we move the logits away from its original prototype. For the remaining classes, we pull the logits closer to their respective prototypes. We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that our method manages to forget specific classes with minimal impact on other classes. Codes have been released on https://github.com/bjzhb666/GS-LoRA.
M+: Extending MemoryLLM with Scalable Long-Term Memory
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead.
UPSCALE: Unconstrained Channel Pruning
As neural networks grow in size and complexity, inference speeds decline. To combat this, one of the most effective compression techniques -- channel pruning -- removes channels from weights. However, for multi-branch segments of a model, channel removal can introduce inference-time memory copies. In turn, these copies increase inference latency -- so much so that the pruned model can be slower than the unpruned model. As a workaround, pruners conventionally constrain certain channels to be pruned together. This fully eliminates memory copies but, as we show, significantly impairs accuracy. We now have a dilemma: Remove constraints but increase latency, or add constraints and impair accuracy. In response, our insight is to reorder channels at export time, (1) reducing latency by reducing memory copies and (2) improving accuracy by removing constraints. Using this insight, we design a generic algorithm UPSCALE to prune models with any pruning pattern. By removing constraints from existing pruners, we improve ImageNet accuracy for post-training pruned models by 2.1 points on average -- benefiting DenseNet (+16.9), EfficientNetV2 (+7.9), and ResNet (+6.2). Furthermore, by reordering channels, UPSCALE improves inference speeds by up to 2x over a baseline export.
Recognition, recall, and retention of few-shot memories in large language models
The training of modern large language models (LLMs) takes place in a regime where most training examples are seen only a few times by the model during the course of training. What does a model remember about such examples seen only a few times during training and how long does that memory persist in the face of continuous training with new examples? Here, we investigate these questions through simple recognition, recall, and retention experiments with LLMs. In recognition experiments, we ask if the model can distinguish the seen example from a novel example; in recall experiments, we ask if the model can correctly recall the seen example when cued by a part of it; and in retention experiments, we periodically probe the model's memory for the original examples as the model is trained continuously with new examples. We find that a single exposure is generally sufficient for a model to achieve near perfect accuracy even in very challenging recognition experiments. We estimate that the recognition performance of even small language models easily exceeds human recognition performance reported in similar experiments with humans (Shepard, 1967). Achieving near perfect recall takes more exposures, but most models can do it in just 3 exposures. The flip side of this remarkable capacity for fast learning is that precise memories are quickly overwritten: recall performance for the original examples drops steeply over the first 10 training updates with new examples, followed by a more gradual decline. Even after 100K updates, however, some of the original examples are still recalled near perfectly. A qualitatively similar retention pattern has been observed in human long-term memory retention studies before (Bahrick, 1984). Finally, recognition is much more robust to interference than recall and memory for natural language sentences is generally superior to memory for stimuli without structure.
Scaling Laws for Forgetting When Fine-Tuning Large Language Models
We study and quantify the problem of forgetting when fine-tuning pre-trained large language models (LLMs) on a downstream task. We find that parameter-efficient fine-tuning (PEFT) strategies, such as Low-Rank Adapters (LoRA), still suffer from catastrophic forgetting. In particular, we identify a strong inverse linear relationship between the fine-tuning performance and the amount of forgetting when fine-tuning LLMs with LoRA. We further obtain precise scaling laws that show forgetting increases as a shifted power law in the number of parameters fine-tuned and the number of update steps. We also examine the impact of forgetting on knowledge, reasoning, and the safety guardrails trained into Llama 2 7B chat. Our study suggests that forgetting cannot be avoided through early stopping or by varying the number of parameters fine-tuned. We believe this opens up an important safety-critical direction for future research to evaluate and develop fine-tuning schemes which mitigate forgetting
Keep Me Updated! Memory Management in Long-term Conversations
Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.
Think Before You Act: Decision Transformers with Internal Working Memory
Large language model (LLM)-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and compute. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired, we propose an internal working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in both Atari games and meta-world object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
Near Optimal Memory-Regret Tradeoff for Online Learning
In the experts problem, on each of T days, an agent needs to follow the advice of one of n ``experts''. After each day, the loss associated with each expert's advice is revealed. A fundamental result in learning theory says that the agent can achieve vanishing regret, i.e. their cumulative loss is within o(T) of the cumulative loss of the best-in-hindsight expert. Can the agent perform well without sufficient space to remember all the experts? We extend a nascent line of research on this question in two directions: bullet We give a new algorithm against the oblivious adversary, improving over the memory-regret tradeoff obtained by [PZ23], and nearly matching the lower bound of [SWXZ22]. bullet We also consider an adaptive adversary who can observe past experts chosen by the agent. In this setting we give both a new algorithm and a novel lower bound, proving that roughly n memory is both necessary and sufficient for obtaining o(T) regret.
Memoria: Hebbian Memory Architecture for Human-Like Sequential Processing
Transformers have demonstrated their success in various domains and tasks. However, Transformers struggle with long input sequences due to their limited capacity. While one solution is to increase input length, endlessly stretching the length is unrealistic. Furthermore, humans selectively remember and use only relevant information from inputs, unlike Transformers which process all raw data from start to end. We introduce Memoria, a general memory network that applies Hebbian theory which is a major theory explaining human memory formulation to enhance long-term dependencies in neural networks. Memoria stores and retrieves information called engram at multiple memory levels of working memory, short-term memory, and long-term memory, using connection weights that change according to Hebb's rule. Through experiments with popular Transformer-based models like BERT and GPT, we present that Memoria significantly improves the ability to consider long-term dependencies in various tasks. Results show that Memoria outperformed existing methodologies in sorting and language modeling, and long text classification.
SirLLM: Streaming Infinite Retentive LLM
As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM
Dynamic Layer Tying for Parameter-Efficient Transformers
In the pursuit of reducing the number of trainable parameters in deep transformer networks, we employ Reinforcement Learning to dynamically select layers during training and tie them together. Every few iterations, the RL agent is asked whether to train each layer i independently or to copy the weights of a previous layer j<i. This facilitates weight sharing, reduces the number of trainable parameters, and also serves as an effective regularization technique. Experimental evaluations validate that our model modestly outperforms the baseline transformer model with regard to perplexity and drastically reduces the number of trainable parameters. In particular, the memory consumption during training is up to one order of magnitude less than the conventional training method.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.
LoMA: Lossless Compressed Memory Attention
The ability to handle long texts is one of the most important capabilities of Large Language Models (LLMs), but as the text length increases, the consumption of resources also increases dramatically. At present, reducing resource consumption by compressing the KV cache is a common approach. Although there are many existing compression methods, they share a common drawback: the compression is not lossless. That is, information is inevitably lost during the compression process. If the compression rate is high, the probability of losing important information increases dramatically. We propose a new method, Lossless Compressed Memory Attention (LoMA), which allows for lossless compression of information into special memory token KV pairs according to a set compression ratio. Our experiments have achieved remarkable results, demonstrating that LoMA can be efficiently trained and has very effective performance.
A Survey on Memory-Efficient Large-Scale Model Training in AI for Science
Scientific research faces high costs and inefficiencies with traditional methods, but the rise of deep learning and large language models (LLMs) offers innovative solutions. This survey reviews LLM applications across scientific fields such as biology, medicine, chemistry, and meteorology, underscoring their role in advancing research. However, the continuous expansion of model size has led to significant memory demands, hindering further development and application of LLMs for science. To address this, we review memory-efficient training techniques for LLMs based on the transformer architecture, including distributed training, mixed precision training, and gradient checkpointing. Using AlphaFold 2 as an example, we demonstrate how tailored memory optimization methods can reduce storage needs while preserving prediction accuracy. We also discuss the challenges of memory optimization in practice and potential future directions, hoping to provide valuable insights for researchers and engineers.
XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores inspired by the Atkinson-Shiffrin memory model. Prior work on video object segmentation typically only uses one type of feature memory. For videos longer than a minute, a single feature memory model tightly links memory consumption and accuracy. In contrast, following the Atkinson-Shiffrin model, we develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores: a rapidly updated sensory memory, a high-resolution working memory, and a compact thus sustained long-term memory. Crucially, we develop a memory potentiation algorithm that routinely consolidates actively used working memory elements into the long-term memory, which avoids memory explosion and minimizes performance decay for long-term prediction. Combined with a new memory reading mechanism, XMem greatly exceeds state-of-the-art performance on long-video datasets while being on par with state-of-the-art methods (that do not work on long videos) on short-video datasets. Code is available at https://hkchengrex.github.io/XMem
An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning
Incrementally fine-tuning foundational models on new tasks or domains is now the de facto approach in NLP. A known pitfall of this approach is the catastrophic forgetting of prior knowledge that happens during fine-tuning. A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning. Several existing works assume a fixed memory buffer to store prior task examples, while relying on inferences (forward passes) with the model at hand for choosing examples for rehearsal from the buffer. However, given the increasing computational cost of model inference, and decreasing cost of data storage, we focus on the setting to rehearse samples with a fixed computational budget instead of a fixed memory budget. We propose a sampling scheme, \bf mix-cd, that prioritizes rehearsal of ``collateral damage'' samples, which are samples predicted correctly by the prior model but forgotten by the incrementally tuned one. The crux of our scheme is a procedure to efficiently estimate the density of collateral damage samples without incurring additional model inferences. Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings. All the code will be publicly available at https://github.com/jybai/mix-cd-rehearsal.
InternEvo: Efficient Long-sequence Large Language Model Training via Hybrid Parallelism and Redundant Sharding
Large language models (LLMs) with long sequences begin to power more and more fundamentally new applications we use every day. Existing methods for long-sequence LLM training are neither efficient nor compatible with commonly-used training algorithms such as FlashAttention. We design Buff to address these issues. Buff decouples all of the sharding dimensions into a new hierarchical space, and systematically analyzes the memory and communication cost of LLM training. Then, it generates an effective hybrid parallelism strategy. We design a new selective overlap mechanism to mitigate the communication overhead introduced by the hybrid parallelism. We also implement memory management techniques to reduce GPU memory fragmentation. Evaluation results show that Buff generates parallelization strategies that match or outperform existing methods in model FLOPs utilization.
ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory
Large language models (LLMs) with memory are computationally universal. However, mainstream LLMs are not taking full advantage of memory, and the designs are heavily influenced by biological brains. Due to their approximate nature and proneness to the accumulation of errors, conventional neural memory mechanisms cannot support LLMs to simulate complex reasoning. In this paper, we seek inspiration from modern computer architectures to augment LLMs with symbolic memory for complex multi-hop reasoning. Such a symbolic memory framework is instantiated as an LLM and a set of SQL databases, where the LLM generates SQL instructions to manipulate the SQL databases. We validate the effectiveness of the proposed memory framework on a synthetic dataset requiring complex reasoning. The project website is available at https://chatdatabase.github.io/ .
THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation
Large language models (LLMs) are capable of processing lengthy dialogue histories during prolonged interaction with users without additional memory modules; however, their responses tend to overlook or incorrectly recall information from the past. In this paper, we revisit memory-augmented response generation in the era of LLMs. While prior work focuses on getting rid of outdated memories, we argue that such memories can provide contextual cues that help dialogue systems understand the development of past events and, therefore, benefit response generation. We present Theanine, a framework that augments LLMs' response generation with memory timelines -- series of memories that demonstrate the development and causality of relevant past events. Along with Theanine, we introduce TeaFarm, a counterfactual-driven question-answering pipeline addressing the limitation of G-Eval in long-term conversations. Supplementary videos of our methods and the TeaBag dataset for TeaFarm evaluation are in https://theanine-693b0.web.app/.
WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models
Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides in memories is a fundamental question for model editing. In this paper, we find that editing either long-term memory (direct model parameters) or working memory (non-parametric knowledge of neural network activations/representations by retrieval) will result in an impossible triangle -- reliability, generalization, and locality can not be realized together in the lifelong editing settings. For long-term memory, directly editing the parameters will cause conflicts with irrelevant pretrained knowledge or previous edits (poor reliability and locality). For working memory, retrieval-based activations can hardly make the model understand the edits and generalize (poor generalization). Therefore, we propose WISE to bridge the gap between memories. In WISE, we design a dual parametric memory scheme, which consists of the main memory for the pretrained knowledge and a side memory for the edited knowledge. We only edit the knowledge in the side memory and train a router to decide which memory to go through when given a query. For continual editing, we devise a knowledge-sharding mechanism where different sets of edits reside in distinct subspaces of parameters, and are subsequently merged into a shared memory without conflicts. Extensive experiments show that WISE can outperform previous model editing methods and overcome the impossible triangle under lifelong model editing of question answering, hallucination, and out-of-distribution settings across trending LLM architectures, e.g., GPT, LLaMA, and Mistral. Code will be released at https://github.com/zjunlp/EasyEdit.
HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
MoM: Linear Sequence Modeling with Mixture-of-Memories
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.
Self-Compressing Neural Networks
This work focuses on reducing neural network size, which is a major driver of neural network execution time, power consumption, bandwidth, and memory footprint. A key challenge is to reduce size in a manner that can be exploited readily for efficient training and inference without the need for specialized hardware. We propose Self-Compression: a simple, general method that simultaneously achieves two goals: (1) removing redundant weights, and (2) reducing the number of bits required to represent the remaining weights. This is achieved using a generalized loss function to minimize overall network size. In our experiments we demonstrate floating point accuracy with as few as 3% of the bits and 18% of the weights remaining in the network.
Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., 1/v). We find that geq 90% of these learning rates in v could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on 2times A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
Make Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning
Parameter-efficient fine-tuning (PEFT) of pre-trained language models (PLMs) has emerged as a highly successful approach, with training only a small number of parameters without sacrificing performance and becoming the de-facto learning paradigm with the increasing size of PLMs. However, existing PEFT methods are not memory-efficient, because they still require caching most of the intermediate activations for the gradient calculation, akin to fine-tuning. One effective way to reduce the activation memory is to apply a reversible model, so the intermediate activations are not necessary to be cached and can be recomputed. Nevertheless, modifying a PLM to its reversible variant is not straightforward, since the reversible model has a distinct architecture from the currently released PLMs. In this paper, we first investigate what is a key factor for the success of existing PEFT methods, and realize that it's essential to preserve the PLM's starting point when initializing a PEFT method. With this finding, we propose memory-efficient fine-tuning (MEFT) that inserts adapters into a PLM, preserving the PLM's starting point and making it reversible without additional pre-training. We evaluate MEFT on the GLUE benchmark and five question-answering tasks with various backbones, BERT, RoBERTa, BART and OPT. MEFT significantly reduces the activation memory up to 84% of full fine-tuning with a negligible amount of trainable parameters. Moreover, MEFT achieves the same score on GLUE and a comparable score on the question-answering tasks as full fine-tuning. A similar finding is also observed for the image classification task.
Working Memory Capacity of ChatGPT: An Empirical Study
Working memory is a critical aspect of both human intelligence and artificial intelligence, serving as a workspace for the temporary storage and manipulation of information. In this paper, we systematically assess the working memory capacity of ChatGPT (gpt-3.5-turbo), a large language model developed by OpenAI, by examining its performance in verbal and spatial n-back tasks under various conditions. Our experiments reveal that ChatGPT experiences significant declines in performance as n increases (which necessitates more information to be stored in working memory), suggesting a limit to the working memory capacity strikingly similar to that of humans. Furthermore, we investigate the impact of different instruction strategies on ChatGPT's performance and observe that the fundamental patterns of a capacity limit persist. From our empirical findings, we propose that n-back tasks may serve as tools for benchmarking the working memory capacity of large language models and hold potential for informing future efforts aimed at enhancing AI working memory and deepening our understanding of human working memory through AI models.
LLM in a flash: Efficient Large Language Model Inference with Limited Memory
Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their intensive computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters on flash memory but bringing them on demand to DRAM. Our method involves constructing an inference cost model that harmonizes with the flash memory behavior, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this flash memory-informed framework, we introduce two principal techniques. First, "windowing'" strategically reduces data transfer by reusing previously activated neurons, and second, "row-column bundling", tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.
Efficient Memory Management for Deep Neural Net Inference
While deep neural net inference was considered a task for servers only, latest advances in technology allow the task of inference to be moved to mobile and embedded devices, desired for various reasons ranging from latency to privacy. These devices are not only limited by their compute power and battery, but also by their inferior physical memory and cache, and thus, an efficient memory manager becomes a crucial component for deep neural net inference at the edge. We explore various strategies to smartly share memory buffers among intermediate tensors in deep neural nets. Employing these can result in up to 11% smaller memory footprint than the state of the art.
Attendre: Wait To Attend By Retrieval With Evicted Queries in Memory-Based Transformers for Long Context Processing
As LLMs have become capable of processing more complex types of inputs, researchers have recently studied how to efficiently and affordably process possibly arbitrarily long sequences. One effective approach is to use a FIFO memory to store keys and values of an attention sublayer from past chunks to allow subsequent queries to attend. However, this approach requires a large memory and/or takes into the consideration the specific LM architecture. Moreover, due to the causal nature between the key-values in prior context and the queries at present, this approach cannot be extended to bidirectional attention such as in an encoder-decoder or PrefixLM decoder-only architecture. In this paper, we propose to use eviction policies, such as LRA and LFA, to reduce the memory size and adapt to various architectures, and we also propose the Attendre layer, a wait-to-attend mechanism by retrieving the key-value memory (K/V memory) with evicted queries in the query memory (Q memory). As a first step, we evaluate this method in the context length extension setup using the TriviaQA reading comprehension task, and show the effectiveness of the approach.
Disentangling Memory and Reasoning Ability in Large Language Models
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
CItruS: Chunked Instruction-aware State Eviction for Long Sequence Modeling
Long sequence modeling has gained broad interest as large language models (LLMs) continue to advance. Recent research has identified that a large portion of hidden states within the key-value caches of Transformer models can be discarded (also termed evicted) without affecting the perplexity performance in generating long sequences. However, we show that these methods, despite preserving perplexity performance, often drop information that is important for solving downstream tasks, a problem which we call information neglect. To address this issue, we introduce Chunked Instruction-aware State Eviction (CItruS), a novel modeling technique that integrates the attention preferences useful for a downstream task into the eviction process of hidden states. In addition, we design a method for chunked sequence processing to further improve efficiency. Our training-free method exhibits superior performance on long sequence comprehension and retrieval tasks over several strong baselines under the same memory budget, while preserving language modeling perplexity.
MemoryPrompt: A Light Wrapper to Improve Context Tracking in Pre-trained Language Models
Transformer-based language models (LMs) track contextual information through large, hard-coded input windows. We introduce MemoryPrompt, a leaner approach in which the LM is complemented by a small auxiliary recurrent network that passes information to the LM by prefixing its regular input with a sequence of vectors, akin to soft prompts, without requiring LM finetuning. Tested on a task designed to probe a LM's ability to keep track of multiple fact updates, a MemoryPrompt-augmented LM outperforms much larger LMs that have access to the full input history. We also test MemoryPrompt on a long-distance dialogue dataset, where its performance is comparable to that of a model conditioned on the entire conversation history. In both experiments we also observe that, unlike full-finetuning approaches, MemoryPrompt does not suffer from catastrophic forgetting when adapted to new tasks, thus not disrupting the generalist capabilities of the underlying LM.
Reinforcement Learning with Fast and Forgetful Memory
Nearly all real world tasks are inherently partially observable, necessitating the use of memory in Reinforcement Learning (RL). Most model-free approaches summarize the trajectory into a latent Markov state using memory models borrowed from Supervised Learning (SL), even though RL tends to exhibit different training and efficiency characteristics. Addressing this discrepancy, we introduce Fast and Forgetful Memory, an algorithm-agnostic memory model designed specifically for RL. Our approach constrains the model search space via strong structural priors inspired by computational psychology. It is a drop-in replacement for recurrent neural networks (RNNs) in recurrent RL algorithms, achieving greater reward than RNNs across various recurrent benchmarks and algorithms without changing any hyperparameters. Moreover, Fast and Forgetful Memory exhibits training speeds two orders of magnitude faster than RNNs, attributed to its logarithmic time and linear space complexity. Our implementation is available at https://github.com/proroklab/ffm.
Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks
Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.
Spatially-Aware Transformer for Embodied Agents
Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.
RelayAttention for Efficient Large Language Model Serving with Long System Prompts
Practical large language model (LLM) services may involve a long system prompt, which specifies the instructions, examples, and knowledge documents of the task and is reused across numerous requests. However, the long system prompt causes throughput/latency bottlenecks as the cost of generating the next token grows w.r.t. the sequence length. This paper aims to improve the efficiency of LLM services that involve long system prompts. Our key observation is that handling these system prompts requires heavily redundant memory accesses in existing causal attention computation algorithms. Specifically, for batched requests, the cached hidden states (i.e., key-value pairs) of system prompts are transferred from off-chip DRAM to on-chip SRAM multiple times, each corresponding to an individual request. To eliminate such a redundancy, we propose RelayAttention, an attention algorithm that allows reading these hidden states from DRAM exactly once for a batch of input tokens. RelayAttention is a free lunch: it maintains the generation quality while requiring no model retraining, as it is based on a mathematical reformulation of causal attention.
Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism of Language Models
Memory is one of the most essential cognitive functions serving as a repository of world knowledge and episodes of activities. In recent years, large-scale pre-trained language models have shown remarkable memorizing ability. On the contrary, vanilla neural networks without pre-training have been long observed suffering from the catastrophic forgetting problem. To investigate such a retentive-forgetful contradiction and understand the memory mechanism of language models, we conduct thorough experiments by controlling the target knowledge types, the learning strategies and the learning schedules. We find that: 1) Vanilla language models are forgetful; 2) Pre-training leads to retentive language models; 3) Knowledge relevance and diversification significantly influence the memory formation. These conclusions are useful for understanding the abilities of pre-trained language models and shed light on designing and evaluating new learning and inference algorithms of language models.
Breaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Large language models (LLMs) have shown impressive performance across a range of natural language processing tasks. However, their vast number of parameters introduces significant memory challenges during training, particularly when using memory-intensive optimizers like Adam. Existing memory-efficient algorithms often rely on techniques such as singular value decomposition projection or weight freezing. While these approaches help alleviate memory constraints, they generally produce suboptimal results compared to full-rank updates. In this paper, we investigate the memory-efficient method beyond low-rank training, proposing a novel solution called Gradient Wavelet Transform (GWT), which applies wavelet transforms to gradients in order to significantly reduce the memory requirements for maintaining optimizer states. We demonstrate that GWT can be seamlessly integrated with memory-intensive optimizers, enabling efficient training without sacrificing performance. Through extensive experiments on both pre-training and fine-tuning tasks, we show that GWT achieves state-of-the-art performance compared with advanced memory-efficient optimizers and full-rank approaches in terms of both memory usage and training performance.
Scaling Laws and Interpretability of Learning from Repeated Data
Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.
Memory-Augmented LLM Personalization with Short- and Long-Term Memory Coordination
Large Language Models (LLMs), such as GPT3.5, have exhibited remarkable proficiency in comprehending and generating natural language. However, their unpersonalized generation paradigm may result in suboptimal user-specific outcomes. Typically, users converse differently based on their knowledge and preferences. This necessitates the task of enhancing user-oriented LLM which remains unexplored. While one can fully train an LLM for this objective, the resource consumption is unaffordable. Prior research has explored memory-based methods to store and retrieve knowledge to enhance generation without retraining for new queries. However, we contend that a mere memory module is inadequate to comprehend a user's preference, and fully training an LLM can be excessively costly. In this study, we propose a novel computational bionic memory mechanism, equipped with a parameter-efficient fine-tuning schema, to personalize LLMs. Our extensive experimental results demonstrate the effectiveness and superiority of the proposed approach. To encourage further research into this area, we are releasing a new conversation dataset generated entirely by LLM based on an open-source medical corpus, as well as our implementation code.
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
MEMORYLLM: Towards Self-Updatable Large Language Models
Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates.
Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory and none can simultaneously mitigate memory footprint for all three sources. In this paper, we present Quantized Side Tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM's model weights into 4-bit to reduce the memory footprint of the LLM's original weights; QST also introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing backpropagation through the LLM, thus reducing the memory requirement of the intermediate activations. Furthermore, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3 times and speed up the finetuning process by up to 3 times while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7 times.
Does Continual Learning Equally Forget All Parameters?
Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL. Our proposed metrics show that only a few modules are more task-specific and sensitively alter between tasks, while others can be shared across tasks as common knowledge. Hence, we attribute forgetting mainly to the former and find that finetuning them only on a small buffer at the end of any CL method can bring non-trivial improvement. Due to the small number of finetuned parameters, such ``Forgetting Prioritized Finetuning (FPF)'' is efficient in computation. We further propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only k-times of FPF periodically triggered during CL. Surprisingly, this ``k-FPF'' performs comparably to FPF and outperforms the SOTA CL methods but significantly reduces their computational overhead and cost. In experiments on several benchmarks of class- and domain-incremental CL, FPF consistently improves existing CL methods by a large margin, and k-FPF further excels in efficiency without degrading the accuracy. We also empirically studied the impact of buffer size, epochs per task, and finetuning modules on the cost and accuracy of our methods.
Preventing Verbatim Memorization in Language Models Gives a False Sense of Privacy
Studying data memorization in neural language models helps us understand the risks (e.g., to privacy or copyright) associated with models regurgitating training data and aids in the development of countermeasures. Many prior works -- and some recently deployed defenses -- focus on "verbatim memorization", defined as a model generation that exactly matches a substring from the training set. We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization. Specifically, we design and implement an efficient defense that perfectly prevents all verbatim memorization. And yet, we demonstrate that this "perfect" filter does not prevent the leakage of training data. Indeed, it is easily circumvented by plausible and minimally modified "style-transfer" prompts -- and in some cases even the non-modified original prompts -- to extract memorized information. We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.
CMT: A Memory Compression Method for Continual Knowledge Learning of Large Language Models
Large Language Models (LLMs) need to adapt to the continuous changes in data, tasks, and user preferences. Due to their massive size and the high costs associated with training, LLMs are not suitable for frequent retraining. However, updates are necessary to keep them in sync with rapidly evolving human knowledge. To address these challenges, this paper proposes the Compression Memory Training (CMT) method, an efficient and effective online adaptation framework for LLMs that features robust knowledge retention capabilities. Inspired by human memory mechanisms, CMT compresses and extracts information from new documents to be stored in a memory bank. When answering to queries related to these new documents, the model aggregates these document memories from the memory bank to better answer user questions. The parameters of the LLM itself do not change during training and inference, reducing the risk of catastrophic forgetting. To enhance the encoding, retrieval, and aggregation of memory, we further propose three new general and flexible techniques, including memory-aware objective, self-matching and top-aggregation. Extensive experiments conducted on three continual learning datasets (i.e., StreamingQA, SQuAD and ArchivalQA) demonstrate that the proposed method improves model adaptability and robustness across multiple base LLMs (e.g., +4.07 EM & +4.19 F1 in StreamingQA with Llama-2-7b).
FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training
With the increase in the number of parameters in large language models, the process of pre-training and fine-tuning increasingly demands larger volumes of GPU memory. A significant portion of this memory is typically consumed by the optimizer state. To overcome this challenge, recent approaches such as low-rank adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao et al., 2024)), and blockwise optimization (BAdam (Luo et al., 2024)) have been proposed. However, in all these algorithms, the effective rank of the weight updates remains low-rank, which can lead to a substantial loss of information from the gradient. This loss can be critically important, especially during the pre-training stage. In this paper, we introduce FRUGAL (Full-Rank Updates with GrAdient spLitting), a new memory-efficient optimization framework. FRUGAL leverages gradient splitting to perform low-dimensional updates using advanced algorithms (such as Adam), while updates along the remaining directions are executed via state-free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be integrated with various low-rank update selection techniques, including GaLore and BAdam. We provide theoretical convergence guarantees for our framework when using SGDM for low-dimensional updates and SGD for state-free updates. Additionally, our method consistently outperforms concurrent approaches across various fixed memory budgets, achieving state-of-the-art results in pre-training and fine-tuning tasks while balancing memory efficiency and performance metrics.
LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models Fine-tuning
The low-rank adaptation (LoRA) method can largely reduce the amount of trainable parameters for fine-tuning large language models (LLMs), however, it still requires expensive activation memory to update low-rank weights. Reducing the number of LoRA layers or using activation recomputation could harm the fine-tuning performance or increase the computational overhead. In this work, we present LoRA-FA, a memory-efficient fine-tuning method that reduces the activation memory without performance degradation and expensive recomputation. LoRA-FA chooses to freeze the projection-down weight of A and update the projection-up weight of B in each LoRA layer. It ensures the change of model weight reside in a low-rank space during LLMs fine-tuning, while eliminating the requirement to store full-rank input activations. We conduct extensive experiments across multiple model types (RoBERTa, T5, LLaMA) and model scales. Our results show that LoRA-FA can always achieve close fine-tuning accuracy across different tasks compared to full parameter fine-tuning and LoRA. Furthermore, LoRA-FA can reduce the overall memory cost by up to 1.4times compared to LoRA.
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
Recently, integrating video foundation models and large language models to build a video understanding system overcoming the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle videos with very few frames. For long videos, the computation complexity, memory cost, and long-term temporal connection are the remaining challenges. Inspired by Atkinson-Shiffrin memory model, we develop an memory mechanism including a rapidly updated short-term memory and a compact thus sustained long-term memory. We employ tokens in Transformers as the carriers of memory. MovieChat achieves state-of-the-art performace in long video understanding.
TrimLLM: Progressive Layer Dropping for Domain-Specific LLMs
Specializing large language models (LLMs) for local deployment in domain-specific use cases is necessary for strong performance while meeting latency and privacy constraints. However, conventional task-specific adaptation approaches do not show simultaneous memory saving and inference speedup at deployment time. Practical compression techniques like quantization and pruning require dedicated hardware or kernel support to achieve measured inference speedup. We develop TrimLLM based on the layer-wise specialization phenomenon we empirically observed and verified on contemporary LLMs. TrimLLM reduces the depth of LLMs via progressive layer dropping. We show it retains LLMs' capacity in specific domains and achieves inference speedup irrespective of hardware and deep learning frameworks. We evaluated TrimLLM on LLMs of various sizes for inference; models adapted on medical, legal, and financial datasets all demonstrate 2.1-5.7times inference speedup on consumer GPUs and up to 3.1times speedup on A100 when compared to state-of-the-art model compression algorithms, with no loss in accuracy at 50sim60\% model compression ratio.
Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models
Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81times (16.95times), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B).
Towards mental time travel: a hierarchical memory for reinforcement learning agents
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Chunk Attention Memory (HCAM), which helps agents to remember the past in detail. HCAM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HCAM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HCAM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HCAM can extrapolate to task sequences much longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HCAM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.
Is Retain Set All You Need in Machine Unlearning? Restoring Performance of Unlearned Models with Out-Of-Distribution Images
In this paper, we introduce Selective-distillation for Class and Architecture-agnostic unleaRning (SCAR), a novel approximate unlearning method. SCAR efficiently eliminates specific information while preserving the model's test accuracy without using a retain set, which is a key component in state-of-the-art approximate unlearning algorithms. Our approach utilizes a modified Mahalanobis distance to guide the unlearning of the feature vectors of the instances to be forgotten, aligning them to the nearest wrong class distribution. Moreover, we propose a distillation-trick mechanism that distills the knowledge of the original model into the unlearning model with out-of-distribution images for retaining the original model's test performance without using any retain set. Importantly, we propose a self-forget version of SCAR that unlearns without having access to the forget set. We experimentally verified the effectiveness of our method, on three public datasets, comparing it with state-of-the-art methods. Our method obtains performance higher than methods that operate without the retain set and comparable w.r.t the best methods that rely on the retain set.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data- and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware. We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8.3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create the world's largest language model (Turing-NLG, 17B parameters) with record breaking accuracy.
Banishing LLM Hallucinations Requires Rethinking Generalization
Despite their powerful chat, coding, and reasoning abilities, Large Language Models (LLMs) frequently hallucinate. Conventional wisdom suggests that hallucinations are a consequence of a balance between creativity and factuality, which can be mitigated, but not eliminated, by grounding the LLM in external knowledge sources. Through extensive systematic experiments, we show that these traditional approaches fail to explain why LLMs hallucinate in practice. Specifically, we show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers. We corroborate these experimental findings with a theoretical construction showing that simple neural networks trained to predict the next token hallucinate when the training loss is above a threshold as it usually does in practice when training on internet scale data. We interpret our findings by comparing against traditional retrieval methods for mitigating hallucinations. We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts that are retrieved dynamically.
MemControl: Mitigating Memorization in Diffusion Models via Automated Parameter Selection
Diffusion models excel in generating images that closely resemble their training data but are also susceptible to data memorization, raising privacy, ethical, and legal concerns, particularly in sensitive domains such as medical imaging. We hypothesize that this memorization stems from the overparameterization of deep models and propose that regularizing model capacity during fine-tuning can mitigate this issue. Firstly, we empirically show that regulating the model capacity via Parameter-efficient fine-tuning (PEFT) mitigates memorization to some extent, however, it further requires the identification of the exact parameter subsets to be fine-tuned for high-quality generation. To identify these subsets, we introduce a bi-level optimization framework, MemControl, that automates parameter selection using memorization and generation quality metrics as rewards during fine-tuning. The parameter subsets discovered through MemControl achieve a superior tradeoff between generation quality and memorization. For the task of medical image generation, our approach outperforms existing state-of-the-art memorization mitigation strategies by fine-tuning as few as 0.019% of model parameters. Moreover, we demonstrate that the discovered parameter subsets are transferable to non-medical domains. Our framework is scalable to large datasets, agnostic to reward functions, and can be integrated with existing approaches for further memorization mitigation. To the best of our knowledge, this is the first study to empirically evaluate memorization in medical images and propose a targeted yet universal mitigation strategy. The code is available at https://github.com/Raman1121/Diffusion_Memorization_HPO.
End-To-End Memory Networks
We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.
Learning an evolved mixture model for task-free continual learning
Recently, continual learning (CL) has gained significant interest because it enables deep learning models to acquire new knowledge without forgetting previously learnt information. However, most existing works require knowing the task identities and boundaries, which is not realistic in a real context. In this paper, we address a more challenging and realistic setting in CL, namely the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information. To address TFCL, we introduce an evolved mixture model whose network architecture is dynamically expanded to adapt to the data distribution shift. We implement this expansion mechanism by evaluating the probability distance between the knowledge stored in each mixture model component and the current memory buffer using the Hilbert Schmidt Independence Criterion (HSIC). We further introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload while preserving memory diversity. Empirical results demonstrate that the proposed approach achieves excellent performance.
Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
Fine-tuning pretrained large models to downstream tasks is an important problem, which however suffers from huge memory overhead due to large-scale parameters. This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization. To this end, we propose the Approximate Backpropagation (Approx-BP) theory, which provides the theoretical feasibility of decoupling the forward and backward passes. We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions, which use derivative functions of ReLUs in the backward pass while keeping their forward pass unchanged. In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers, thereby removing activation memory usage redundancy. Our method neither induces extra computation nor reduces training efficiency. We conduct extensive experiments with pretrained vision and language models, and the results demonstrate that our proposal can reduce up to sim30% of the peak memory usage. Our code is released at https://github.com/yyyyychen/LowMemoryBP.
Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness.
Augmenting Language Models with Long-Term Memory
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.
The Pitfalls of Memorization: When Memorization Hurts Generalization
Neural networks often learn simple explanations that fit the majority of the data while memorizing exceptions that deviate from these explanations.This behavior leads to poor generalization when the learned explanations rely on spurious correlations. In this work, we formalize the interplay between memorization and generalization, showing that spurious correlations would particularly lead to poor generalization when are combined with memorization. Memorization can reduce training loss to zero, leaving no incentive to learn robust, generalizable patterns. To address this, we propose memorization-aware training (MAT), which uses held-out predictions as a signal of memorization to shift a model's logits. MAT encourages learning robust patterns invariant across distributions, improving generalization under distribution shifts.
Relational recurrent neural networks
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Enhancing LLM Intelligence with ARM-RAG: Auxiliary Rationale Memory for Retrieval Augmented Generation
Large Language Models (LLMs) are smart but forgetful. Recent studies, (e.g., (Bubeck et al., 2023)) on modern LLMs have shown that they are capable of performing amazing tasks typically necessitating human-level intelligence. However, unlike humans, frozen LLMs do not improve over time; they neither acquire new knowledge nor learn from their successes or failures. Some approaches to improving the intelligence of LLMs include fine-tuning models based on problem-solving performance (Zelikman et al., 2022), and building bigger and more sophisticated models (Bubeck et al., 2023). However, these methods have the drawback of requiring substantial data and computational resources to retrain existing models. In this paper, we explore the use of Retrieval Augmented Generation, also known as RAG (Lewis et al., 2021) to improve problem-solving performance. We propose ARM-RAG (Auxiliary Rationale Memory for Retrieval Augmented Generation), a system that learns from its successes without incurring high training costs. We demonstrate that the storage and subsequent retrieval of reasoning chains have a positive influence on performance in grade-school math problems.
Pipeline Parallelism with Controllable Memory
Pipeline parallelism has been widely explored, but most existing schedules lack a systematic methodology. In this paper, we propose a framework to decompose pipeline schedules as repeating a building block and we show that the lifespan of the building block decides the peak activation memory of the pipeline schedule. Guided by the observations, we find that almost all existing pipeline schedules, to the best of our knowledge, are memory inefficient. To address this, we introduce a family of memory efficient building blocks with controllable activation memory, which can reduce the peak activation memory to 1/2 of 1F1B without sacrificing efficiency, and even to 1/3 with comparable throughput. We can also achieve almost zero pipeline bubbles while maintaining the same activation memory as 1F1B. Our evaluations demonstrate that in pure pipeline parallelism settings, our methods outperform 1F1B by from 7% to 55% in terms of throughput. When employing a grid search over hybrid parallelism hyperparameters in practical scenarios, our proposed methods demonstrate a 16% throughput improvement over the 1F1B baseline for large language models.
Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.
Gradient Episodic Memory for Continual Learning
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
Detoxifying Large Language Models via Knowledge Editing
This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments to compare knowledge editing approaches with previous baselines, indicating that knowledge editing has the potential to efficiently detoxify LLMs with limited impact on general performance. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxify approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs. Code and benchmark are available at https://github.com/zjunlp/EasyEdit.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
Measuring memorization in RLHF for code completion
Reinforcement learning with human feedback (RLHF) has become the dominant method to align large models to user preferences. Unlike fine-tuning, for which there are many studies regarding training data memorization, it is not clear how memorization is affected by or introduced in the RLHF alignment process. Understanding this relationship is important as real user data may be collected and used to align large models; if user data is memorized during RLHF and later regurgitated, this could raise privacy concerns. In this work, we analyze how training data memorization can surface and propagate through each phase of RLHF. We focus our study on code completion models, as code completion is one of the most popular use cases for large language models. We find that RLHF significantly decreases the chance that data used for reward modeling and reinforcement learning is memorized, in comparison to aligning via directly fine-tuning on this data, but that examples already memorized during the fine-tuning stage of RLHF, will, in the majority of cases, remain memorized after RLHF.
Examining Forgetting in Continual Pre-training of Aligned Large Language Models
Recent advances in Large Language Models (LLMs) have exhibited remarkable proficiency across various tasks. Given the potent applications of LLMs in numerous fields, there has been a surge in LLM development. In developing LLMs, a common practice involves continual pre-training on previously fine-tuned models. However, this can lead to catastrophic forgetting. In our work, we investigate the phenomenon of forgetting that occurs during continual pre-training on an existing fine-tuned LLM. We evaluate the impact of continuous pre-training on the fine-tuned LLM across various dimensions, including output format, knowledge, and reliability. Experiment results highlight the non-trivial challenge of addressing catastrophic forgetting during continual pre-training, especially the repetition issue.
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs). This requires deleting or "forgetting" a set of data points from an already-trained model, which typically degrades its performance on other data points. Thus, a balance must be struck between removing information and keeping the model's other abilities intact, with a failure to balance this trade-off leading to poor deletion or an unusable model. To this end, we propose UPCORE (Utility-Preserving Coreset Selection), a method-agnostic data selection framework for mitigating collateral damage during unlearning. Finding that the model damage is correlated with the variance of the model's representations on the forget set, we selectively prune the forget set to remove outliers, thereby minimizing model degradation after unlearning. We evaluate UPCORE across three standard unlearning methods consistently achieving a superior balance between the competing objectives of deletion efficacy and model preservation. To better evaluate this trade-off, we introduce a new metric, measuring the area-under-the-curve (AUC) across standard metrics. We find that UPCORE improves both standard metrics and AUC, benefitting from positive transfer between the coreset and pruned points while reducing negative transfer from the forget set to points outside of it.
Titans: Learning to Memorize at Test Time
Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Continual Learning with Strong Experience Replay
Continual Learning (CL) aims at incrementally learning new tasks without forgetting the knowledge acquired from old ones. Experience Replay (ER) is a simple and effective rehearsal-based strategy, which optimizes the model with current training data and a subset of old samples stored in a memory buffer. To further reduce forgetting, recent approaches extend ER with various techniques, such as model regularization and memory sampling. However, the prediction consistency between the new model and the old one on current training data has been seldom explored, resulting in less knowledge preserved when few previous samples are available. To address this issue, we propose a CL method with Strong Experience Replay (SER), which additionally utilizes future experiences mimicked on the current training data, besides distilling past experience from the memory buffer. In our method, the updated model will produce approximate outputs as its original ones, which can effectively preserve the acquired knowledge. Experimental results on multiple image classification datasets show that our SER method surpasses the state-of-the-art methods by a noticeable margin.
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO
Memory-assisted prompt editing to improve GPT-3 after deployment
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at https://www.memprompt.com/.
The Joint Effect of Task Similarity and Overparameterization on Catastrophic Forgetting -- An Analytical Model
In continual learning, catastrophic forgetting is affected by multiple aspects of the tasks. Previous works have analyzed separately how forgetting is affected by either task similarity or overparameterization. In contrast, our paper examines how task similarity and overparameterization jointly affect forgetting in an analyzable model. Specifically, we focus on two-task continual linear regression, where the second task is a random orthogonal transformation of an arbitrary first task (an abstraction of random permutation tasks). We derive an exact analytical expression for the expected forgetting - and uncover a nuanced pattern. In highly overparameterized models, intermediate task similarity causes the most forgetting. However, near the interpolation threshold, forgetting decreases monotonically with the expected task similarity. We validate our findings with linear regression on synthetic data, and with neural networks on established permutation task benchmarks.
Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning
In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.
LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory
Recent large language model (LLM)-driven chat assistant systems have integrated memory components to track user-assistant chat histories, enabling more accurate and personalized responses. However, their long-term memory capabilities in sustained interactions remain underexplored. This paper introduces LongMemEval, a comprehensive benchmark designed to evaluate five core long-term memory abilities of chat assistants: information extraction, multi-session reasoning, temporal reasoning, knowledge updates, and abstention. With 500 meticulously curated questions embedded within freely scalable user-assistant chat histories, LongMemEval presents a significant challenge to existing long-term memory systems, with commercial chat assistants and long-context LLMs showing 30% accuracy drop on memorizing information across sustained interactions. We then present a unified framework that breaks down the long-term memory design into four design choices across the indexing, retrieval, and reading stages. Built upon key experimental insights, we propose several memory designs including session decomposition for optimizing value granularity, fact-augmented key expansion for enhancing the index structure, and time-aware query expansion for refining the search scope. Experiment results show that these optimizations greatly improve both memory recall and downstream question answering on LongMemEval. Overall, our study provides valuable resources and guidance for advancing the long-term memory capabilities of LLM-based chat assistants, paving the way toward more personalized and reliable conversational AI.
Interpretable Catastrophic Forgetting of Large Language Model Fine-tuning via Instruction Vector
Fine-tuning large language models (LLMs) can cause them to lose their general capabilities. However, the intrinsic mechanisms behind such forgetting remain unexplored. In this paper, we begin by examining this phenomenon by focusing on knowledge understanding and instruction following, with the latter identified as the main contributor to forgetting during fine-tuning. Consequently, we propose the Instruction Vector (IV) framework to capture model representations highly related to specific instruction-following capabilities, thereby making it possible to understand model-intrinsic forgetting. Through the analysis of IV dynamics pre and post-training, we suggest that fine-tuning mostly adds specialized reasoning patterns instead of erasing previous skills, which may appear as forgetting. Building on this insight, we develop IV-guided training, which aims to preserve original computation graph, thereby mitigating catastrophic forgetting. Empirical tests on three benchmarks confirm the efficacy of this new approach, supporting the relationship between IVs and forgetting. Our code will be made available soon.
Towards MoE Deployment: Mitigating Inefficiencies in Mixture-of-Expert (MoE) Inference
Mixture-of-Experts (MoE) models have gained popularity in achieving state-of-the-art performance in a wide range of tasks in computer vision and natural language processing. They effectively expand the model capacity while incurring a minimal increase in computation cost during training. However, deploying such models for inference is difficult due to their large size and complex communication pattern. In this work, we provide a characterization of two MoE workloads, namely Language Modeling (LM) and Machine Translation (MT) and identify their sources of inefficiencies at deployment. We propose three optimization techniques to mitigate sources of inefficiencies, namely (1) Dynamic gating, (2) Expert Buffering, and (3) Expert load balancing. We show that dynamic gating improves maximum throughput by 6.21-11.23times for LM, 5.75-10.98times for MT Encoder and 2.58-5.71times for MT Decoder. It also reduces memory usage by up to 1.36times for LM and up to 1.1times for MT. We further propose Expert Buffering, a new caching mechanism that only keeps hot, active experts in GPU memory while buffering the rest in CPU memory. This reduces static memory allocation by up to 1.47times. We finally propose a load balancing methodology that provides additional scalability to the workload.
Spurious Forgetting in Continual Learning of Language Models
Recent advancements in large language models (LLMs) reveal a perplexing phenomenon in continual learning: despite extensive training, models experience significant performance declines, raising questions about task alignment and underlying knowledge retention. This study first explores the concept of "spurious forgetting", proposing that such performance drops often reflect a decline in task alignment rather than true knowledge loss. Through controlled experiments with a synthesized dataset, we investigate the dynamics of model performance during the initial training phases of new tasks, discovering that early optimization steps can disrupt previously established task alignments. Our theoretical analysis connects these shifts to orthogonal updates in model weights, providing a robust framework for understanding this behavior. Ultimately, we introduce a Freezing strategy that fix the bottom layers of the model, leading to substantial improvements in four continual learning scenarios. Our findings underscore the critical distinction between task alignment and knowledge retention, paving the way for more effective strategies in continual learning.
Schrodinger's Memory: Large Language Models
Memory is the foundation of LLMs' functionality, yet past research has lacked an in-depth exploration of their memory capabilities and underlying theory. In this paper, we apply UAT theory to explain the memory mechanism of LLMs and propose a new approach for evaluating LLM performance by comparing the memory capacities of different models. Through extensive experiments, we validate our theory and the memory abilities of LLMs. Finally, we compare the capabilities of the human brain and LLMs, highlighting both their similarities and differences in terms of working mechanisms.
INT2.1: Towards Fine-Tunable Quantized Large Language Models with Error Correction through Low-Rank Adaptation
We introduce a method that dramatically reduces fine-tuning VRAM requirements and rectifies quantization errors in quantized Large Language Models. First, we develop an extremely memory-efficient fine-tuning (EMEF) method for quantized models using Low-Rank Adaptation (LoRA), and drawing upon it, we construct an error-correcting algorithm designed to minimize errors induced by the quantization process. Our method reduces the memory requirements by up to 5.6 times, which enables fine-tuning a 7 billion parameter Large Language Model (LLM) on consumer laptops. At the same time, we propose a Low-Rank Error Correction (LREC) method that exploits the added LoRA layers to ameliorate the gap between the quantized model and its float point counterpart. Our error correction framework leads to a fully functional INT2 quantized LLM with the capacity to generate coherent English text. To the best of our knowledge, this is the first INT2 Large Language Model that has been able to reach such a performance. The overhead of our method is merely a 1.05 times increase in model size, which translates to an effective precision of INT2.1. Also, our method readily generalizes to other quantization standards, such as INT3, INT4, and INT8, restoring their lost performance, which marks a significant milestone in the field of model quantization. The strategies delineated in this paper hold promising implications for the future development and optimization of quantized models, marking a pivotal shift in the landscape of low-resource machine learning computations.
HMT: Hierarchical Memory Transformer for Long Context Language Processing
Transformer-based large language models (LLM) have been widely used in language processing applications. However, most of them restrict the context window that permits the model to attend to every token in the inputs. Previous works in recurrent models can memorize past tokens to enable unlimited context and maintain effectiveness. However, they have "flat" memory architectures, which have limitations in selecting and filtering information. Since humans are good at learning and self-adjustment, we speculate that imitating brain memory hierarchy is beneficial for model memorization. We propose the Hierarchical Memory Transformer (HMT), a novel framework that enables and improves models' long-context processing ability by imitating human memorization behavior. Leveraging memory-augmented segment-level recurrence, we organize the memory hierarchy by preserving tokens from early input token segments, passing memory embeddings along the sequence, and recalling relevant information from history. Evaluating general language modeling (Wikitext-103, PG-19) and question-answering tasks (PubMedQA), we show that HMT steadily improves the long-context processing ability of context-constrained and long-context models. With an additional 0.5% - 2% of parameters, HMT can easily plug in and augment future LLMs to handle long context effectively. Our code is open-sourced on Github: https://github.com/OswaldHe/HMT-pytorch.
MemoryBank: Enhancing Large Language Models with Long-Term Memory
Revolutionary advancements in Large Language Models have drastically reshaped our interactions with artificial intelligence systems. Despite this, a notable hindrance remains-the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems and psychological counseling. Therefore, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory, which permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a human-like memory mechanism. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models like ChatGLM. We exemplify application of MemoryBank through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialogs, SiliconFriend displays heightened empathy in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.
PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism{this url}.
Emergent and Predictable Memorization in Large Language Models
Memorization, or the tendency of large language models (LLMs) to output entire sequences from their training data verbatim, is a key concern for safely deploying language models. In particular, it is vital to minimize a model's memorization of sensitive datapoints such as those containing personal identifiable information (PII). The prevalence of such undesirable memorization can pose issues for model trainers, and may even require discarding an otherwise functional model. We therefore seek to predict which sequences will be memorized before a large model's full train-time by extrapolating the memorization behavior of lower-compute trial runs. We measure memorization of the Pythia model suite and plot scaling laws for forecasting memorization, allowing us to provide equi-compute recommendations to maximize the reliability (recall) of such predictions. We additionally provide further novel discoveries on the distribution of memorization scores across models and data. We release all code and data necessary to reproduce the results in this paper at https://github.com/EleutherAI/pythia
Simple and Scalable Strategies to Continually Pre-train Large Language Models
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by final loss and language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (EnglishrightarrowEnglish) and a stronger distribution shift (EnglishrightarrowGerman) at the 405M parameter model scale with large dataset sizes (hundreds of billions of tokens). Selecting the weak but realistic shift for larger-scale experiments, we also find that our continual learning strategies match the re-training baseline for a 10B parameter LLM. Our results demonstrate that LLMs can be successfully updated via simple and scalable continual learning strategies, matching the re-training baseline using only a fraction of the compute. Finally, inspired by previous work, we propose alternatives to the cosine learning rate schedule that help circumvent forgetting induced by LR re-warming and that are not bound to a fixed token budget.
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference
As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.
Compressed Context Memory For Online Language Model Interaction
This paper presents a novel context compression method for Transformer language models in online scenarios such as ChatGPT, where the context continually expands. As the context lengthens, the attention process requires more memory and computational resources, which in turn reduces the throughput of the language model. To this end, we propose a compressed context memory system that continually compresses the growing context into a compact memory space. The compression process simply involves integrating a lightweight conditional LoRA into the language model's forward pass during inference. Based on the compressed context memory, the language model can perform inference with reduced memory and attention operations. Through evaluations on conversation, personalization, and multi-task learning, we demonstrate that our approach achieves the performance level of a full context model with 5times smaller context memory space. Codes are available at https://github.com/snu-mllab/context-memory.
CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks
Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all.
Challenging Common Assumptions about Catastrophic Forgetting
Building learning agents that can progressively learn and accumulate knowledge is the core goal of the continual learning (CL) research field. Unfortunately, training a model on new data usually compromises the performance on past data. In the CL literature, this effect is referred to as catastrophic forgetting (CF). CF has been largely studied, and a plethora of methods have been proposed to address it on short sequences of non-overlapping tasks. In such setups, CF always leads to a quick and significant drop in performance in past tasks. Nevertheless, despite CF, recent work showed that SGD training on linear models accumulates knowledge in a CL regression setup. This phenomenon becomes especially visible when tasks reoccur. We might then wonder if DNNs trained with SGD or any standard gradient-based optimization accumulate knowledge in such a way. Such phenomena would have interesting consequences for applying DNNs to real continual scenarios. Indeed, standard gradient-based optimization methods are significantly less computationally expensive than existing CL algorithms. In this paper, we study the progressive knowledge accumulation (KA) in DNNs trained with gradient-based algorithms in long sequences of tasks with data re-occurrence. We propose a new framework, SCoLe (Scaling Continual Learning), to investigate KA and discover that catastrophic forgetting has a limited effect on DNNs trained with SGD. When trained on long sequences with data sparsely re-occurring, the overall accuracy improves, which might be counter-intuitive given the CF phenomenon. We empirically investigate KA in DNNs under various data occurrence frequencies and propose simple and scalable strategies to increase knowledge accumulation in DNNs.
ZeroFlow: Overcoming Catastrophic Forgetting is Easier than You Think
Backpropagation provides a generalized configuration for overcoming catastrophic forgetting. Like, SGD and Adam are commonly used for weight updates in continual learning and continual pre-training. In practice, permission to access gradient information is not always granted (the gradient ban), such as black-box APIs, hardware limitations, and non-differentiable systems. To bridge this gap, we introduce the first benchmark ZeroFlow to evaluate gradient-free optimization algorithms for overcoming forgetting. This benchmark examines a suite of forward pass methods across multiple methods, forgetting scenarios, and datasets. We find that forward passes alone are enough to overcome forgetting. Our findings reveal new optimization principles that highlight the potential of forward-pass in mitigating forgetting, managing task conflicts, and reducing memory demands, alongside novel enhancements that further mitigate forgetting with just one forward pass. This work provides essential insights and tools for advancing forward pass methods to overcome forgetting.
LeMo: Enabling LEss Token Involvement for MOre Context Fine-tuning
The escalating demand for long-context applications has intensified the necessity of extending the LLM context windows. Despite recent fine-tuning approaches successfully expanding context lengths, their high memory footprints, especially for activations, present a critical practical limitation. Current parameter-efficient fine-tuning methods prioritize reducing parameter update overhead over addressing activation memory constraints. Similarly, existing sparsity mechanisms improve computational efficiency but overlook activation memory optimization due to the phenomenon of Shadowy Activation. In this paper, we propose LeMo, the first LLM fine-tuning system that explores and exploits a new token-level sparsity mechanism inherent in long-context scenarios, termed Contextual Token Sparsity. LeMo minimizes redundant token involvement by assessing the informativeness of token embeddings while preserving model accuracy. Specifically, LeMo introduces three key techniques: (1) Token Elimination, dynamically identifying and excluding redundant tokens across varying inputs and layers. (2) Pattern Prediction, utilizing well-trained predictors to approximate token sparsity patterns with minimal overhead. (3) Kernel Optimization, employing permutation-free and segment-based strategies to boost system performance. We implement LeMo as an end-to-end fine-tuning system compatible with various LLM architectures and other optimization techniques. Comprehensive evaluations demonstrate that LeMo reduces memory consumption by up to 1.93x and achieves up to 1.36x speedups, outperforming state-of-the-art fine-tuning systems.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
Q-Tuning: Queue-based Prompt Tuning for Lifelong Few-shot Language Learning
This paper introduces Q-tuning, a novel approach for continual prompt tuning that enables the lifelong learning of a pre-trained language model. When learning a new task, Q-tuning trains a task-specific prompt by adding it to a prompt queue consisting of the prompts from older tasks. To better transfer the knowledge of old tasks, we design an adaptive knowledge aggregation technique that reweighs previous prompts in the queue with a learnable low-rank matrix. Once the prompt queue reaches its maximum capacity, we leverage a PCA-based eviction rule to reduce the queue's size, allowing the newly trained prompt to be added while preserving the primary knowledge of old tasks. In order to mitigate the accumulation of information loss caused by the eviction, we additionally propose a globally shared prefix prompt and a memory retention regularization based on information theory. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods substantially on continual prompt tuning benchmarks. Moreover, our approach enables lifelong learning on linearly growing task sequences while requiring constant complexity for training and inference.
Reducing Activation Recomputation in Large Transformer Models
Training large transformer models is one of the most important computational challenges of modern AI. In this paper, we show how to significantly accelerate training of large transformer models by reducing activation recomputation. Activation recomputation is commonly used to work around memory capacity constraints. Rather than storing activations for backpropagation, they are traditionally recomputed, which saves memory but adds redundant compute. In this work, we show most of this redundant compute is unnecessary because we can reduce memory consumption sufficiently without it. We present two novel yet very simple techniques: sequence parallelism and selective activation recomputation. In conjunction with tensor parallelism, these techniques almost eliminate the need to recompute activations. We evaluate our approach on language models up to one trillion parameters in scale and show that our method reduces activation memory by 5x, while reducing execution time overhead from activation recomputation by over 90%. For example, when training a 530B parameter GPT-3 style model on 2240 NVIDIA A100 GPUs, we achieve a Model Flops Utilization of 54.2%, which is 29% faster than the 42.1% we achieve using recomputation. Our implementation will be available in both Megatron-LM and NeMo-Megatron.
Human-inspired Perspectives: A Survey on AI Long-term Memory
With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by systematically introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
LLM Task Interference: An Initial Study on the Impact of Task-Switch in Conversational History
With the recent emergence of powerful instruction-tuned large language models (LLMs), various helpful conversational Artificial Intelligence (AI) systems have been deployed across many applications. When prompted by users, these AI systems successfully perform a wide range of tasks as part of a conversation. To provide some sort of memory and context, such approaches typically condition their output on the entire conversational history. Although this sensitivity to the conversational history can often lead to improved performance on subsequent tasks, we find that performance can in fact also be negatively impacted, if there is a task-switch. To the best of our knowledge, our work makes the first attempt to formalize the study of such vulnerabilities and interference of tasks in conversational LLMs caused by task-switches in the conversational history. Our experiments across 5 datasets with 15 task switches using popular LLMs reveal that many of the task-switches can lead to significant performance degradation.
Erase to Enhance: Data-Efficient Machine Unlearning in MRI Reconstruction
Machine unlearning is a promising paradigm for removing unwanted data samples from a trained model, towards ensuring compliance with privacy regulations and limiting harmful biases. Although unlearning has been shown in, e.g., classification and recommendation systems, its potential in medical image-to-image translation, specifically in image recon-struction, has not been thoroughly investigated. This paper shows that machine unlearning is possible in MRI tasks and has the potential to benefit for bias removal. We set up a protocol to study how much shared knowledge exists between datasets of different organs, allowing us to effectively quantify the effect of unlearning. Our study reveals that combining training data can lead to hallucinations and reduced image quality in the reconstructed data. We use unlearning to remove hallucinations as a proxy exemplar of undesired data removal. Indeed, we show that machine unlearning is possible without full retraining. Furthermore, our observations indicate that maintaining high performance is feasible even when using only a subset of retain data. We have made our code publicly accessible.
DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning
Rehearsal-based approaches are a mainstay of continual learning (CL). They mitigate the catastrophic forgetting problem by maintaining a small fixed-size buffer with a subset of data from past tasks. While most rehearsal-based approaches study how to effectively exploit the knowledge from the buffered past data, little attention is paid to the inter-task relationships with the critical task-specific and task-invariant knowledge. By appropriately leveraging inter-task relationships, we propose a novel CL method named DualHSIC to boost the performance of existing rehearsal-based methods in a simple yet effective way. DualHSIC consists of two complementary components that stem from the so-called Hilbert Schmidt independence criterion (HSIC): HSIC-Bottleneck for Rehearsal (HBR) lessens the inter-task interference and HSIC Alignment (HA) promotes task-invariant knowledge sharing. Extensive experiments show that DualHSIC can be seamlessly plugged into existing rehearsal-based methods for consistent performance improvements, and also outperforms recent state-of-the-art regularization-enhanced rehearsal methods. Source code will be released.
Small batch deep reinforcement learning
In value-based deep reinforcement learning with replay memories, the batch size parameter specifies how many transitions to sample for each gradient update. Although critical to the learning process, this value is typically not adjusted when proposing new algorithms. In this work we present a broad empirical study that suggests {\em reducing} the batch size can result in a number of significant performance gains; this is surprising, as the general tendency when training neural networks is towards larger batch sizes for improved performance. We complement our experimental findings with a set of empirical analyses towards better understanding this phenomenon.
SlimFit: Memory-Efficient Fine-Tuning of Transformer-based Models Using Training Dynamics
Transformer-based models, such as BERT and ViT, have achieved state-of-the-art results across different natural language processing (NLP) and computer vision (CV) tasks. However, these models are extremely memory intensive during their fine-tuning process, making them difficult to deploy on GPUs with limited memory resources. To address this issue, we introduce a new tool called SlimFit that reduces the memory requirements of these models by dynamically analyzing their training dynamics and freezing less-contributory layers during fine-tuning. The layers to freeze are chosen using a runtime inter-layer scheduling algorithm. SlimFit adopts quantization and pruning for particular layers to balance the load of dynamic activations and to minimize the memory footprint of static activations, where static activations refer to those that cannot be discarded regardless of freezing. This allows SlimFit to freeze up to 95% of layers and reduce the overall on-device GPU memory usage of transformer-based models such as ViT and BERT by an average of 2.2x, across different NLP and CV benchmarks/datasets such as GLUE, SQuAD 2.0, CIFAR-10, CIFAR-100 and ImageNet with an average degradation of 0.2% in accuracy. For such NLP and CV tasks, SlimFit can reduce up to 3.1x the total on-device memory usage with an accuracy degradation of only up to 0.4%. As a result, while fine-tuning of ViT on ImageNet and BERT on SQuAD 2.0 with a batch size of 128 requires 3 and 2 32GB GPUs respectively, SlimFit enables their fine-tuning on a single 32GB GPU without any significant accuracy degradation.
Quantifying Memorization Across Neural Language Models
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized training data verbatim. This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others). We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data. Memorization significantly grows as we increase (1) the capacity of a model, (2) the number of times an example has been duplicated, and (3) the number of tokens of context used to prompt the model. Surprisingly, we find the situation becomes more complicated when generalizing these results across model families. On the whole, we find that memorization in LMs is more prevalent than previously believed and will likely get worse as models continues to scale, at least without active mitigations.
The Tensor Brain: Semantic Decoding for Perception and Memory
We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.
HFT: Half Fine-Tuning for Large Language Models
Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.
Machine Unlearning Methodology base on Stochastic Teacher Network
The rise of the phenomenon of the "right to be forgotten" has prompted research on machine unlearning, which grants data owners the right to actively withdraw data that has been used for model training, and requires the elimination of the contribution of that data to the model. A simple method to achieve this is to use the remaining data to retrain the model, but this is not acceptable for other data owners who continue to participate in training. Existing machine unlearning methods have been found to be ineffective in quickly removing knowledge from deep learning models. This paper proposes using a stochastic network as a teacher to expedite the mitigation of the influence caused by forgotten data on the model. We performed experiments on three datasets, and the findings demonstrate that our approach can efficiently mitigate the influence of target data on the model within a single epoch. This allows for one-time erasure and reconstruction of the model, and the reconstruction model achieves the same performance as the retrained model.
AdaLomo: Low-memory Optimization with Adaptive Learning Rate
Large language models have achieved remarkable success, but their extensive parameter size necessitates substantial memory for training, thereby setting a high threshold. While the recently proposed low-memory optimization (LOMO) reduces memory footprint, its optimization technique, akin to stochastic gradient descent, is sensitive to hyper-parameters and exhibits suboptimal convergence, failing to match the performance of the prevailing optimizer for large language models, AdamW. Through empirical analysis of the Adam optimizer, we found that, compared to momentum, the adaptive learning rate is more critical for bridging the gap. Building on this insight, we introduce the low-memory optimization with adaptive learning rate (AdaLomo), which offers an adaptive learning rate for each parameter. To maintain memory efficiency, we employ non-negative matrix factorization for the second-order moment estimation in the optimizer state. Additionally, we suggest the use of a grouped update normalization to stabilize convergence. Our experiments with instruction-tuning and further pre-training demonstrate that AdaLomo achieves results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
How BPE Affects Memorization in Transformers
Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case.
Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation
Large language models (LLMs) can suggest missing elements from items listed in a prompt, which can be used for list completion or recommendations based on users' history. However, their performance degrades when presented with too many items, as they start to suggest items already included in the input list. This occurs at around 100 items for mid-2024 flagship LLMs. We evaluate this phenomenon on both synthetic problems (e.g., finding missing numbers in a given range of shuffled integers) and realistic movie recommendation scenarios. We refer to this issue as attention overflow, as preventing repetition requires attending to all items simultaneously. Although iterative loops can mitigate this problem, their costs increase with the repetition rate, affecting the language models' ability to derive novelty from lengthy inputs.
Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations
Existing retrieval-based methods have made significant strides in maintaining long-term conversations. However, these approaches face challenges in memory database management and accurate memory retrieval, hindering their efficacy in dynamic, real-world interactions. This study introduces a novel framework, COmpressive Memory-Enhanced Dialogue sYstems (COMEDY), which eschews traditional retrieval modules and memory databases. Instead, COMEDY adopts a ''One-for-All'' approach, utilizing a single language model to manage memory generation, compression, and response generation. Central to this framework is the concept of compressive memory, which intergrates session-specific summaries, user-bot dynamics, and past events into a concise memory format. To support COMEDY, we curated a large-scale Chinese instruction-tuning dataset, Dolphin, derived from real user-chatbot interactions. Comparative evaluations demonstrate COMEDY's superiority over traditional retrieval-based methods in producing more nuanced and human-like conversational experiences. Our codes are available at https://github.com/nuochenpku/COMEDY.
Lowering PyTorch's Memory Consumption for Selective Differentiation
Memory is a limiting resource for many deep learning tasks. Beside the neural network weights, one main memory consumer is the computation graph built up by automatic differentiation (AD) for backpropagation. We observe that PyTorch's current AD implementation neglects information about parameter differentiability when storing the computation graph. This information is useful though to reduce memory whenever gradients are requested for a parameter subset, as is the case in many modern fine-tuning tasks. Specifically, inputs to layers that act linearly in their parameters (dense, convolution, or normalization layers) can be discarded whenever the parameters are marked as non-differentiable. We provide a drop-in, differentiability-agnostic implementation of such layers and demonstrate its ability to reduce memory without affecting run time.
Meta-learning of Sequential Strategies
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.
Boundary Unlearning
The practical needs of the ``right to be forgotten'' and poisoned data removal call for efficient machine unlearning techniques, which enable machine learning models to unlearn, or to forget a fraction of training data and its lineage. Recent studies on machine unlearning for deep neural networks (DNNs) attempt to destroy the influence of the forgetting data by scrubbing the model parameters. However, it is prohibitively expensive due to the large dimension of the parameter space. In this paper, we refocus our attention from the parameter space to the decision space of the DNN model, and propose Boundary Unlearning, a rapid yet effective way to unlearn an entire class from a trained DNN model. The key idea is to shift the decision boundary of the original DNN model to imitate the decision behavior of the model retrained from scratch. We develop two novel boundary shift methods, namely Boundary Shrink and Boundary Expanding, both of which can rapidly achieve the utility and privacy guarantees. We extensively evaluate Boundary Unlearning on CIFAR-10 and Vggface2 datasets, and the results show that Boundary Unlearning can effectively forget the forgetting class on image classification and face recognition tasks, with an expected speed-up of 17times and 19times, respectively, compared with retraining from the scratch.
REMIND Your Neural Network to Prevent Catastrophic Forgetting
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND's robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND's generality by pioneering online learning for Visual Question Answering (VQA).
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method -- *retrieval-augmented thoughts* (RAT) -- revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated. Applying RAT to GPT-3.5, GPT-4, and CodeLLaMA-7b substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning. The demo page can be found at https://craftjarvis.github.io/RAT
MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning
Fine-tuning large pre-trained models on downstream tasks has been adopted in a variety of domains recently. However, it is costly to update the entire parameter set of large pre-trained models. Although recently proposed parameter-efficient transfer learning (PETL) techniques allow updating a small subset of parameters (e.g. only using 2% of parameters) inside a pre-trained backbone network for a new task, they only reduce the training memory requirement by up to 30%. This is because the gradient computation for the trainable parameters still requires backpropagation through the large pre-trained backbone model. To address this, we propose Ladder Side-Tuning (LST), a new PETL technique that can reduce training memory requirements by more substantial amounts. Unlike existing parameter-efficient methods that insert additional parameters inside backbone networks, we train a ladder side network, a small and separate network that takes intermediate activations as input via shortcut connections (called ladders) from backbone networks and makes predictions. LST has significantly lower memory requirements than previous methods, because it does not require backpropagation through the backbone network, but instead only through the side network and ladder connections. We evaluate our method with various models (T5 and CLIP-T5) on both NLP (GLUE) and vision-and-language (VQA, GQA, NLVR2 , MSCOCO) tasks. LST saves 69% of the memory costs to fine-tune the whole network, while other methods only save 26% of that in similar parameter usages (hence, 2.7x more memory savings). Moreover, LST achieves higher accuracy than Adapter and LoRA in a low-memory regime. To further show the advantage of this better memory efficiency, we also apply LST to larger T5 models, attaining better GLUE performance than full fine-tuning and other PETL methods. The accuracy-efficiency trade-off also holds on VL tasks.
Maybe Only 0.5% Data is Needed: A Preliminary Exploration of Low Training Data Instruction Tuning
Instruction tuning for large language models (LLMs) has gained attention from researchers due to its ability to unlock the potential of LLMs in following instructions. While instruction tuning offers advantages for facilitating the adaptation of large language models (LLMs) to downstream tasks as a fine-tuning approach, training models with tens of millions or even billions of parameters on large amounts of data results in unaffordable computational costs. To address this, we focus on reducing the data used in LLM instruction tuning to decrease training costs and improve data efficiency, dubbed as Low Training Data Instruction Tuning (LTD Instruction Tuning). Specifically, this paper conducts a preliminary exploration into reducing the data used in LLM training and identifies several observations regarding task specialization for LLM training, such as the optimization of performance for a specific task, the number of instruction types required for instruction tuning, and the amount of data required for task-specific models. The results suggest that task-specific models can be trained using less than 0.5% of the original dataset, with a 2% improvement in performance over those trained on full task-related data.
ZigZagkv: Dynamic KV Cache Compression for Long-context Modeling based on Layer Uncertainty
Large Language models (LLMs) have become a research hotspot. To accelerate the inference of LLMs, storing computed caches in memory has become the standard technique. However, as the inference length increases, growing KV caches might lead to out-of-memory issues. Many existing methods address this issue through KV cache compression, primarily by preserving key tokens throughout all layers to reduce information loss. Most of them allocate a uniform budget size for each layer to retain. However, we observe that the minimum budget sizes needed to retain essential information vary across layers and models based on the perspectives of attention and hidden state output. Building on this observation, this paper proposes a simple yet effective KV cache compression method that leverages layer uncertainty to allocate budget size for each layer. Experimental results show that the proposed method can reduce memory usage of the KV caches to only sim20\% when compared to Full KV inference while achieving nearly lossless performance.
Why Lift so Heavy? Slimming Large Language Models by Cutting Off the Layers
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks. However, the sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking. While traditional approaches such as model pruning or distillation offer ways for reducing model size, they often come at the expense of performance retention. In our investigation, we systematically explore the approach of reducing the number of layers in LLMs. Surprisingly, we observe that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks. Remarkably, in certain cases, models with a single layer outperform their fully layered counterparts. These findings offer valuable insights for future work aimed at mitigating the size constraints of LLMs while preserving their performance, thereby opening avenues for significantly more efficient use of LLMs.
PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Synthesis in Question Answering
Long-term memory plays a critical role in personal interaction, considering long-term memory can better leverage world knowledge, historical information, and preferences in dialogues. Our research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories, including world knowledge, profiles, social relationships, events, and dialogues. This dataset is collected to investigate the use of personalized memories, focusing on social interactions and events in the QA task. PerLTQA features two types of memory and a comprehensive benchmark of 8,593 questions for 30 characters, facilitating the exploration and application of personalized memories in Large Language Models (LLMs). Based on PerLTQA, we propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate that BERT-based classification models significantly outperform LLMs such as ChatGLM3 and ChatGPT in the memory classification task. Furthermore, our study highlights the importance of effective memory integration in the QA task.
SparQ Attention: Bandwidth-Efficient LLM Inference
Generative large language models (LLMs) have opened up numerous novel possibilities, but due to their significant computational requirements their ubiquitous use remains challenging. Some of the most useful applications require processing large numbers of samples at a time and using long contexts, both significantly increasing the memory communication load of the models. We introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by reducing the memory bandwidth requirements within the attention blocks through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show how SparQ Attention can decrease the attention memory bandwidth requirements up to eight times without any loss in accuracy by evaluating Llama 2 and Pythia models on a wide range of downstream tasks.
Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity
Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large Language Models using only forward passes. However, the application of ZO fine-tuning in memory-constrained settings such as mobile phones and laptops is still challenging since full precision forward passes are infeasible. In this study, we address this limitation by integrating sparsity and quantization into ZO fine-tuning of LLMs. Specifically, we investigate the feasibility of fine-tuning an extremely small subset of LLM parameters using ZO. This approach allows the majority of un-tuned parameters to be quantized to accommodate the constraint of limited device memory. Our findings reveal that the pre-training process can identify a set of "sensitive parameters" that can guide the ZO fine-tuning of LLMs on downstream tasks. Our results demonstrate that fine-tuning 0.1% sensitive parameters in the LLM with ZO can outperform the full ZO fine-tuning performance, while offering wall-clock time speedup. Additionally, we show that ZO fine-tuning targeting these 0.1% sensitive parameters, combined with 4 bit quantization, enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device with less than 8 GiB of memory and notably reduced latency.
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
In this work we identify the dormant neuron phenomenon in deep reinforcement learning, where an agent's network suffers from an increasing number of inactive neurons, thereby affecting network expressivity. We demonstrate the presence of this phenomenon across a variety of algorithms and environments, and highlight its effect on learning. To address this issue, we propose a simple and effective method (ReDo) that Recycles Dormant neurons throughout training. Our experiments demonstrate that ReDo maintains the expressive power of networks by reducing the number of dormant neurons and results in improved performance.
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Neural Networks can be efficiently compressed through pruning, significantly reducing storage and computational demands while maintaining predictive performance. Simple yet effective methods like Iterative Magnitude Pruning (IMP, Han et al., 2015) remove less important parameters and require a costly retraining procedure to recover performance after pruning. However, with the rise of Large Language Models (LLMs), full retraining has become infeasible due to memory and compute constraints. In this study, we challenge the practice of retraining all parameters by demonstrating that updating only a small subset of highly expressive parameters is often sufficient to recover or even improve performance compared to full retraining. Surprisingly, retraining as little as 0.27%-0.35% of the parameters of GPT-architectures (OPT-2.7B/6.7B/13B/30B) achieves comparable performance to One Shot IMP across various sparsity levels. Our method, Parameter-Efficient Retraining after Pruning (PERP), drastically reduces compute and memory demands, enabling pruning and retraining of up to 30 billion parameter models on a single NVIDIA A100 GPU within minutes. Despite magnitude pruning being considered as unsuited for pruning LLMs, our findings show that PERP positions it as a strong contender against state-of-the-art retraining-free approaches such as Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023), opening up a promising alternative to avoiding retraining.
Approximating Two-Layer Feedforward Networks for Efficient Transformers
How to reduce compute and memory requirements of neural networks (NNs) without sacrificing performance? Many recent works use sparse Mixtures of Experts (MoEs) to build resource-efficient large language models (LMs). Here we introduce several novel perspectives on MoEs, presenting a general framework that unifies various methods to approximate two-layer NNs (e.g., feedforward blocks of Transformers), including product-key memories (PKMs). Leveraging insights from this framework, we propose methods to improve both MoEs and PKMs. Unlike prior work that compares MoEs with dense baselines under the compute-equal condition, our evaluation condition is parameter-equal, which is crucial to properly evaluate LMs. We show that our MoEs are competitive with the dense Transformer-XL on both the WikiText-103 and enwiki8 datasets at two different scales, while being much more resource efficient. This demonstrates that MoEs are relevant not only to extremely large LMs but also to any-scale resource-efficient LMs. Our code is public.
SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
Key-Value (KV) cache has become a bottleneck of LLMs for long-context generation. Despite the numerous efforts in this area, the optimization for the decoding phase is generally ignored. However, we believe such optimization is crucial, especially for long-output generation tasks based on the following two observations: (i) Excessive compression during the prefill phase, which requires specific full context impairs the comprehension of the reasoning task; (ii) Deviation of heavy hitters occurs in the reasoning tasks with long outputs. Therefore, SCOPE, a simple yet efficient framework that separately performs KV cache optimization during the prefill and decoding phases, is introduced. Specifically, the KV cache during the prefill phase is preserved to maintain the essential information, while a novel strategy based on sliding is proposed to select essential heavy hitters for the decoding phase. Memory usage and memory transfer are further optimized using adaptive and discontinuous strategies. Extensive experiments on LongGenBench show the effectiveness and generalization of SCOPE and its compatibility as a plug-in to other prefill-only KV compression methods.
Recurrent Memory Transformer
Transformer-based models show their effectiveness across multiple domains and tasks. The self-attention allows to combine information from all sequence elements into context-aware representations. However, global and local information has to be stored mostly in the same element-wise representations. Moreover, the length of an input sequence is limited by quadratic computational complexity of self-attention. In this work, we propose and study a memory-augmented segment-level recurrent Transformer (RMT). Memory allows to store and process local and global information as well as to pass information between segments of the long sequence with the help of recurrence. We implement a memory mechanism with no changes to Transformer model by adding special memory tokens to the input or output sequence. Then the model is trained to control both memory operations and sequence representations processing. Results of experiments show that RMT performs on par with the Transformer-XL on language modeling for smaller memory sizes and outperforms it for tasks that require longer sequence processing. We show that adding memory tokens to Tr-XL is able to improve its performance. This makes Recurrent Memory Transformer a promising architecture for applications that require learning of long-term dependencies and general purpose in memory processing, such as algorithmic tasks and reasoning.
Beyond Anti-Forgetting: Multimodal Continual Instruction Tuning with Positive Forward Transfer
Multimodal Continual Instruction Tuning (MCIT) enables Multimodal Large Language Models (MLLMs) to meet continuously emerging requirements without expensive retraining. MCIT faces two major obstacles: catastrophic forgetting (where old knowledge is forgotten) and negative forward transfer (where the performance of future tasks is degraded). Although existing methods have greatly alleviated catastrophic forgetting, they still suffer from negative forward transfer. We discover a large discrepancy in different input embeddings by performing singular value decomposition (SVD) on input embeddings. This discrepancy results in the model learning irrelevant information for old and pre-trained tasks, leading to catastrophic forgetting and negative forward transfer. To address these issues, we propose Prompt Tuning with Positive Forward Transfer (Fwd-Prompt), a prompt-based method that projects the prompt gradient to the residual space to minimize interference between tasks and to the pre-trained subspace for reusing pre-trained knowledge. Our experiments demonstrate that Fwd-Prompt achieves state-of-the-art performance while updating fewer parameters and requiring no old samples. Our research illuminates the potential of continuously adapting MLLMs to new tasks under the instruction tuning paradigm and encourages future studies to explore MCIT.
The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction
Transformer-based Large Language Models (LLMs) have become a fixture in modern machine learning. Correspondingly, significant resources are allocated towards research that aims to further advance this technology, typically resulting in models of increasing size that are trained on increasing amounts of data. This work, however, demonstrates the surprising result that it is often possible to significantly improve the performance of LLMs by selectively removing higher-order components of their weight matrices. This simple intervention, which we call LAyer-SElective Rank reduction (LASER), can be done on a model after training has completed, and requires no additional parameters or data. We show extensive experiments demonstrating the generality of this finding across language models and datasets, and provide in-depth analyses offering insights into both when LASER is effective and the mechanism by which it operates.