- Charged lepton flavor violation in light of the muon magnetic moment anomaly and colliders Any observation of charged lepton flavor violation (CLFV) implies the existence of new physics beyond the SM in charged lepton sector. CLFV interactions may also contribute to the muon magnetic moment and explain the discrepancy between the SM prediction and the recent muon g-2 precision measurement at Fermilab. We consider the most general SM gauge invariant Lagrangian of Delta L=0 bileptons with CLFV couplings and investigate the interplay of low-energy precision experiments and colliders in light of the muon magnetic moment anomaly. We go beyond previous work by demonstrating the sensitivity of the LHC, the MACE experiment, a proposed muonium-antimuonium conversion experiment, and a muon collider. Currently-available LHC data is already able to probe unexplored parameter space via the CLFV process pptogamma^*/Z^*to ell_1^pm ell_1^pm ell_2^mp ell_2^mp. 4 authors · Apr 9, 2021
1 Magnetic correction to the Anomalous Magnetic Moment of Electron We investigate the leading order correction of anomalous magnetic moment (AMM) to the electron in weak magnetic field and find that the magnetic correction is negative and magnetic field dependent, indicating a magnetic catalysis effect for the electron gas. In the laboratory to measure the g-2, the magnitude of the magnetic field B is several T, correspondingly the magnetic correction to the AMM of electron/muon is around 10^{-34}/10^{-42}, therefore the magnetic correction can be safely neglected in current measurement. However, when the magnitude of the magnetic field strength is comparable with the electron mass, the magnetic correction of electron's AMM will become considerable. This general magnetic correction to charged fermion's AMM can be extended to study QCD matter under strong magnetic field. 2 authors · Dec 2, 2021
- The Mu3e Experiment: Status and Short-Term Plans Mu3e is an experiment currently under construction at the Paul Scherrer Institute in Switzerland, designed to search for the Lepton Flavor Violating (LFV) decay mu^+ rightarrow e^+e^-e^+. In extensions of the Standard Model (SM) that account for neutrino masses, this decay is theoretically allowed but occurs only through extremely rare loop processes, with a predicted branching ratio of approximately O(10^{-54}). Such a small probability implies that any observation of this decay would provide clear evidence for physics beyond the SM. The Mu3e experiment aims to probe the mu^+ rightarrow e^+e^-e^+ decay with a sensitivity of approximately O(10^{-15}) in its Phase-1 and plans to achieve a sensitivity of O(10^{-16}) after future upgrades. To reach its Phase-1 ambitious goals, Mu3e is going to use the most intense continuous muon beam in the world, generating 10^{8} muon stops per second in the target placed at the center of the Mu3e. Mu3e will use three main technologies for particle detection. The tracking will done through ultra-thin (50 - 70 mu m) pixel detectors based on MuPix11 sensors. These are high-voltage monolithic active pixel sensors (HV-MAPS) with a sim 23~mum spatial resolution. The timing will be done through scintillating fibres (sim 250 ps) and tiles (sim 40 ps), coupled to silicon photomultipliers and read out by MuTRiG3 ASICs. A triggerless DAQ system based on FPGAs will collect data from the detectors, which will then undergo reconstruction in a GPU filter farm. The assembly of the detectors has started, with a detector commissioning beam time planned for 2025. This document reports on the status of the construction, installation, and data-taking plans for the near future. 1 authors · Jan 24
- Muon is Scalable for LLM Training Recently, the Muon optimizer based on matrix orthogonalization has demonstrated strong results in training small-scale language models, but the scalability to larger models has not been proven. We identify two crucial techniques for scaling up Muon: (1) adding weight decay and (2) carefully adjusting the per-parameter update scale. These techniques allow Muon to work out-of-the-box on large-scale training without the need of hyper-parameter tuning. Scaling law experiments indicate that Muon achieves sim!2times computational efficiency compared to AdamW with compute optimal training. Based on these improvements, we introduce Moonlight, a 3B/16B-parameter Mixture-of-Expert (MoE) model trained with 5.7T tokens using Muon. Our model improves the current Pareto frontier, achieving better performance with much fewer training FLOPs compared to prior models. We open-source our distributed Muon implementation that is memory optimal and communication efficient. We also release the pretrained, instruction-tuned, and intermediate checkpoints to support future research. 28 authors · Feb 24
- The magnetic field in quiescent star-forming filament G16.96+0.27 We present 850 {\mu}m thermal dust polarization observations with a resolution of 14.4"(~ 0.13 pc) towards an infrared dark cloud G16.96+0.27 using JCMT/POL-2. The average magnetic field orientation, which roughly agrees with the larger-scale magnetic field orientation traced by the Planck 353 GHz data, is approximately perpendicular to the filament structure. The estimated plane-of-sky magnetic field strength is ~ 96 {\mu}G and ~ 60 {\mu}G using two variants of the Davis-Chandrasekhar-Fermi methods. We calculate the virial and magnetic critical parameters to evaluate the relative importance of gravity, the magnetic field, and turbulence. The magnetic field and turbulence are both weaker than gravity, but magnetic fields and turbulence together are equal to gravity, suggesting that G16.96+0.27 is in a quasi-equilibrium state. The cloud-magnetic-field alignment is found to have a trend moving away from perpendicularity in the dense regions, which may serve as a tracer of potential fragmentation in such quiescent filaments. 23 authors · Oct 21, 2024
1 A new method for structural diagnostics with muon tomography and deep learning This work investigates the production of high-resolution images of typical support elements in concrete structures by means of the muon tomography (muography). By exploiting detailed Monte Carlo radiation-matter simulations, we demonstrate the feasibility of the reconstruction of 1 cm--thick iron tubes inside 30 cm--deep concrete blocks, regarded as an important testbed within the structural diagnostics community. In addition, we present a new method for integrating simulated data with advanced deep learning techniques in order to improve the muon imaging of concrete structures. Through deep learning enhancement techniques, this results into a dramatic improvement of the image quality, as well as into a significant reduction of the data acquisition time, which are two critical limitations within the usual practice of muography for civil engineering diagnostics. 9 authors · Feb 5
- Prompt emission of relativistic protons up to GeV energies from M6.4-class solar flare on July 17, 2023 We show evidence of particle acceleration at GEV energies associated directly with protons from the prompt emission of a long-duration M6-class solar flare on July 17, 2023, rather than from protons acceleration by shocks from its associated Coronal Mass Ejection (CME), which erupted with a speed of 1342 km/s. Solar Energetic Particles (SEP) accelerated by the blast have reached Earth, up to an almost S3 (strong) category of a radiation storm on the NOAA scale. Also, we show a temporal correlation between the fast rising of GOES-16 proton and muon excess at ground level in the count rate of the New-Tupi muon detector at the central SAA region. A Monte Carlo spectral analysis based on muon excess at New-Tupi is consistent with the acceleration of electrons and protons (ions) up to relativistic energies (GeV energy range) in the impulsive phase of the flare. In addition, we present another two marginal particle excesses (with low confidence) at ground-level detectors in correlation with the solar flare prompt emission. 3 authors · Nov 28, 2023
- e^+ e^- to μ^+ μ^- in the Asymptotically Safe Standard Model We study the electron-positron to muon--anti-muon cross-section in the asymptotically safe Standard Model. In particular, we include the graviton contributions to the scattering amplitude, which is computed from momentum-dependent time-like one-particle-irreducible correlation functions. Specifically, we employ reconstruction techniques for the graviton spectral functions. We find that the full asymptotically safe quantum cross section decreases in the ultraviolet with the centre-of-mass energy, and is compatible with unitarity bounds. Importantly, our findings provide non-trivial evidence for the unitarity of the asymptotically safe Standard Model. 4 authors · Dec 18, 2024
- Magnetic properties of the quasi-one-dimensional S = 1 spin chain antiferromagnet BaNiTe2O7 We report a quasi-one-dimensional S = 1 spin chain compound BaNiTe2O7. This magnetic system has been investigated by magnetic susceptibility, specific heat, and neutron powder diffraction. These results indicate that BaNiTe2O7 develops a short-range magnetic correlation around T ~ 22 K. With further cooling, an antiferromagnetic phase transition is observed at TN ~ 5.4 K. Neutron powder diffraction revealed antiferromagnetic noncollinear order with a commensurate propagation vector k = (1/2, 1, 0). The refined magnetic moment size of Ni2+ at 1.5 K is 1.84{\mu}B, and its noncollinear spin texture is confirmed by first-principles calculations. Inelastic neutron-scattering results and density functional theory calculations confirmed the quasi-one-dimensional nature of the spin systems. 17 authors · Oct 1, 2023
- Investigating Lorentz Invariance Violation Effects on CP Violation and Mass Hierarchy sensitivity at DUNE One of the current goals of neutrino experiments is to precisely determine standard unknown oscillation parameters such as the leptonic CP phase and mass hierarchy. Lorentz invariance violation represents a potential physics factor that could influence the experiment's ability to achieve these precise determinations. This study investigates the influence of Lorentz invariance violation (LIV) on oscillation dynamics, particularly through non-isotropic CPT-violating (a^{X}_{emu}, a^{X}_{etau}, a^{X}_{mutau}) and CPT-conserving (c^{XY}_{emu}, c^{XY}_{e tau}, c^{XY}_{mu tau}) parameters within the Deep Underground Neutrino Experiment (DUNE). We analyze the impact of these parameters on the mass hierarchy (MH) and Dirac CP phase sensitivity measurements. Our findings indicate that while MH sensitivity remains relatively unaffected, only the presence of c^{XY}_{mu tau} significantly deteriorates MH sensitivity, albeit remaining above the 5 sigma threshold. Additionally, we observe a substantial compromise in CP sensitivity due to the c^{XY}_{e mu} and c^{XY}_{e tau} parameters. 4 authors · Aug 2, 2024
- Neutrinos from muon-rich ultra high energy electromagnetic cascades: The MUNHECA code An ultra high energy electromagnetic cascade, a purely leptonic process and initiated by either photons or e^pm, can be a source of high energy neutrinos. We present a public python3 code, MUNHECA, to compute the neutrino spectrum by taking into account various QED processes, with the cascade developing either along the propagation in the cosmic microwave background in the high-redshift universe or in a predefined photon background surrounding the astrophysical source. The user can adjust various settings of MUNHECA, including the spectrum of injected high energy photons, the background photon field and the QED processes governing the cascade evolution. We improve the modeling of several processes, provide examples of the execution of MUNHECA and compare it with some earlier and more simplified estimates of the neutrino spectrum from electromagnetic cascades. 3 authors · Oct 2, 2023
5 Possible Meissner effect near room temperature in copper-substituted lead apatite With copper-substituted lead apatite below room temperature, we observe diamagnetic dc magnetization under magnetic field of 25 Oe with remarkable bifurcation between zero-field-cooling and field-cooling measurements, and under 200 Oe it changes to be paramagnetism. A glassy memory effect is found during cooling. Typical hysteresis loops for superconductors are detected below 250 K, along with an asymmetry between forward and backward sweep of magnetic field. Our experiment suggests at room temperature the Meissner effect is possibly present in this material. 9 authors · Jan 1, 2024 1
- Quarks to Cosmos: Particles and Plasma in Cosmological evolution We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field. 5 authors · Sep 26, 2024
- Lake- and Surface-Based Detectors for Forward Neutrino Physics We propose two medium-baseline, kiloton-scale neutrino experiments to study neutrinos from LHC proton-proton collisions: SINE, a surface-based scintillator panel detector observing muon neutrinos from the CMS interaction point, and UNDINE, a water Cherenkov detector submerged in lake Geneva observing all-flavor neutrinos from LHCb. Using a Monte Carlo simulation, we estimate millions of neutrino interactions during the high-luminosity LHC era. We show that these datasets can constrain neutrino cross sections, charm production in pp collisions, and strangeness enhancement as a solution to the cosmic-ray muon puzzle. SINE and UNDINE thus offer a cost-effective medium-baseline complement to the proposed short-baseline forward physics facility. 5 authors · Jan 14
- Fast Muon Tracking with Machine Learning Implemented in FPGA In this work, we present a new approach for fast tracking on multiwire proportional chambers with neural networks. The tracking networks are developed and adapted for the first-level trigger at hadron collider experiments. We use Monte Carlo samples generated by Geant4 with a custom muon chamber, which resembles part of the thin gap chambers from the ATLAS experiment, for training and performance evaluations. The chamber has a total of seven gas gaps, where the first and last gas gaps are displaced by ~1.5 m. Each gas gap has 50 channels with a size of 18-20 mm. Two neural network models are developed and presented: a convolutional neural network and a neural network optimized for the detector configuration of this study. In the latter network, a convolution layer is provided for each of three groups formed from 2-3 gas gaps of the chamber, and the outputs are fed into multilayer perceptrons in sequence. Both networks are transformed into hardware description language and implemented in Virtex UltraScale+ FPGA. The angular resolution is 2 mrad, which is comparable to the maximum resolution of the detector estimated by the minimum chi2 method. The latency achieved by the implemented firmware is less than 100 ns, and the throughput rate is 160 MHz. 5 authors · Feb 10, 2022
1 Ultra Fast Transformers on FPGAs for Particle Physics Experiments This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments. 9 authors · Feb 1, 2024
- CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs. 7 authors · Feb 27, 2023
- Magnetic Field Strength Effects on Nucleosynthesis from Neutron Star Merger Outflows Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust main r -process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of six with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal poor, r -process-enhanced stars. 4 authors · Nov 9, 2023
- Phase diagram of a three-dimensional dipolar model on a FCC lattice The magnetic phase diagram at zero external field of an ensemble of dipoles with uniaxial anisotropy on a FCC lattice is investigated from tempered Monte Carlo simulations. The uniaxial anisotropy is characterized by a random distribution of easy axes and its magnitude lambda_u is the driving force of disorder and consequently frustration. The phase diagram, separating the paramagnetic, ferromagnetic, quasi long range ordered ferromagnetic and spin-glass regions is thus considered in the temperature, lambda_u plane. This system is aimed at modeling the magnetic phase diagram of supracrystals of magnetic nanoparticles. 7 authors · Nov 2, 2020
- Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments We propose a machine learning method to model molecular tensorial quantities, namely the magnetic anisotropy tensor, based on the Gaussian-moment neural-network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3--0.4 cm^{-1} and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation. 5 authors · Dec 3, 2023
- Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test We here propose a machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothesis test. The model is based on a modern implementation of kernel methods, nonparametric algorithms that can learn any continuous function given enough data. The resulting approach is efficient and agnostic to the type of anomaly that may be present in the data. Our study demonstrates the effectiveness of this strategy on multivariate data from drift tube chamber muon detectors. 8 authors · Mar 9, 2023
- Stochastic acceleration in arbitrary astrophysical environments Turbulent magnetic fields are to some extent a universal feature in astrophysical phenomena. Charged particles that encounter these turbulence get on average accelerated according to the so-called second-order Fermi process. However, in most astrophysical environments there are additional competing processes, such as different kinds of first-order energy changes and particle escape, that effect the resulting momentum distribution of the particles. In this work we provide to our knowledge the first semi-analytical solution of the isotropic steady-state momentum diffusion equation including continuous and catastrophic momentum changes that can be applied to any arbitrary astrophysical system of interest. Here, we adopt that the assigned magnetic turbulence is constrained on a finite range and the particle flux vanishes beyond these boundaries. Consequently, we show that the so-called pile-up bump -- that has for some special cases long been established -- is a universal feature of stochastic acceleration that emerges around the momentum chi_{rm eq} where acceleration and continuous loss are in equilibrium if the particle's residence time in the system is sufficient at chi_{rm eq}. In general, the impact of continuous and catastrophic momentum changes plays a crucial role in the shape of the steady-state momentum distribution of the accelerated particles, where simplified unbroken power-law approximations are often not adequate. 2 authors · Nov 22, 2024
- The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance. 27 authors · Sep 26, 2023
- mini-TimeCube as a Neutron Scatter Camera We present Monte Carlo (MC) simulation results from a study of a compact plastic-scintillator detector suitable for imaging fast neutrons in the 1 -- 10 MeV energy range: the miniTimeCube (mTC). Originally designed for antineutrino detection, the mTC consists of 24 MultiChannel Plate (MCP) photodetectors surrounding a 13 cm cube of boron-doped plastic scintillator. Our simulation results show that waveform digitization of 1536 optically sensitive channels surrounding the scintillator should allow for spatiotemporal determination of individual neutron-proton scatters in the detector volume to thicksim100 picoseconds and thicksim5 mm. A Bayesian estimation framework is presented for multiple-scatter reconstruction, and is used to estimate the incoming direction and energy of simulated individual neutrons. Finally, we show how populations of reconstructed neutrons can be used to estimate the direction and energy spectrum of nearby simulated neutron sources. 9 authors · Mar 5, 2019
- Stacking disorder in novel ABAC-stacked brochantite In geometrically frustrated magnetic systems, weak interactions or slight changes to the structure can tip the delicate balance of exchange interactions, sending the system into a different ground state. Brochantite, Cu_4SO_4(OH)_6, has a copper sublattice composed of distorted triangles, making it a likely host for frustrated magnetism, but exhibits stacking disorder. The lack of synthetic single crystals has limited research on the magnetism in brochantite to powders and natural mineral crystals. We grew crystals which we find to be a new polytype with a tendency toward ABAC stacking and some anion disorder, alongside the expected stacking disorder. Comparison to previous results on natural mineral specimens suggests that cation disorder is more deleterious to the magnetism than anion and stacking disorder. Our specific heat data suggest a double transition on cooling into the magnetically ordered state. 12 authors · Jan 16
- Disentangling axion-like particle couplings to nucleons via a delayed signal in Super-Kamiokande from a future supernova In this work, we show that, if axion-like particles (ALPs) from core-collapse supernovae (SNe) couple to protons, they would produce very characteristic signatures in neutrino water Cherenkov detectors through their scattering off free protons via a , p rightarrow p , gamma interactions. Specifically, sub-MeV ALPs would generate photons with energies sim 30 MeV, which could be observed by Super-Kamiokande and Hyper-Kamiokande as a delayed signal after a future detection of SN neutrinos. We apply this to a hypothetical neighbouring SN (at a maximum distance of 100 kpc) and demonstrate that the region in the parameter space with ALP masses between 10^{-4} MeV and 1 MeV and ALP-proton couplings in the range 3 times 10^{-6}-4 times 10^{-5} could be probed. We argue that this new signature, combined with the one expected at sim 7 MeV from oxygen de-excitation, would allow us to disentangle ALP-neutron and ALP-proton couplings. 4 authors · Dec 27, 2024