new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance

Document-level event argument extraction poses new challenges of long input and cross-sentence inference compared to its sentence-level counterpart. However, most prior works focus on capturing the relations between candidate arguments and the event trigger in each event, ignoring two crucial points: a) non-argument contextual clue information; b) the relevance among argument roles. In this paper, we propose a SCPRG (Span-trigger-based Contextual Pooling and latent Role Guidance) model, which contains two novel and effective modules for the above problem. The Span-Trigger-based Contextual Pooling(STCP) adaptively selects and aggregates the information of non-argument clue words based on the context attention weights of specific argument-trigger pairs from pre-trained model. The Role-based Latent Information Guidance (RLIG) module constructs latent role representations, makes them interact through role-interactive encoding to capture semantic relevance, and merges them into candidate arguments. Both STCP and RLIG introduce no more than 1% new parameters compared with the base model and can be easily applied to other event extraction models, which are compact and transplantable. Experiments on two public datasets show that our SCPRG outperforms previous state-of-the-art methods, with 1.13 F1 and 2.64 F1 improvements on RAMS and WikiEvents respectively. Further analyses illustrate the interpretability of our model.

zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training

The recent advancements in deep learning have brought about significant changes in various aspects of people's lives. Meanwhile, these rapid developments have raised concerns about the legitimacy of the training process of deep neural networks. To protect the intellectual properties of AI developers, directly examining the training process by accessing the model parameters and training data is often prohibited for verifiers. In response to this challenge, we present zero-knowledge deep learning (zkDL), an efficient zero-knowledge proof for deep learning training. To address the long-standing challenge of verifiable computations of non-linearities in deep learning training, we introduce zkReLU, a specialized proof for the ReLU activation and its backpropagation. zkReLU turns the disadvantage of non-arithmetic relations into an advantage, leading to the creation of FAC4DNN, our specialized arithmetic circuit design for modelling neural networks. This design aggregates the proofs over different layers and training steps, without being constrained by their sequential order in the training process. With our new CUDA implementation that achieves full compatibility with the tensor structures and the aggregated proof design, zkDL enables the generation of complete and sound proofs in less than a second per batch update for an 8-layer neural network with 10M parameters and a batch size of 64, while provably ensuring the privacy of data and model parameters. To our best knowledge, we are not aware of any existing work on zero-knowledge proof of deep learning training that is scalable to million-size networks.

GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles

Recent works in Event Argument Extraction (EAE) have focused on improving model generalizability to cater to new events and domains. However, standard benchmarking datasets like ACE and ERE cover less than 40 event types and 25 entity-centric argument roles. Limited diversity and coverage hinder these datasets from adequately evaluating the generalizability of EAE models. In this paper, we first contribute by creating a large and diverse EAE ontology. This ontology is created by transforming FrameNet, a comprehensive semantic role labeling (SRL) dataset for EAE, by exploiting the similarity between these two tasks. Then, exhaustive human expert annotations are collected to build the ontology, concluding with 115 events and 220 argument roles, with a significant portion of roles not being entities. We utilize this ontology to further introduce GENEVA, a diverse generalizability benchmarking dataset comprising four test suites, aimed at evaluating models' ability to handle limited data and unseen event type generalization. We benchmark six EAE models from various families. The results show that owing to non-entity argument roles, even the best-performing model can only achieve 39% F1 score, indicating how GENEVA provides new challenges for generalization in EAE. Overall, our large and diverse EAE ontology can aid in creating more comprehensive future resources, while GENEVA is a challenging benchmarking dataset encouraging further research for improving generalizability in EAE. The code and data can be found at https://github.com/PlusLabNLP/GENEVA.

Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors

Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.

Liger: Linearizing Large Language Models to Gated Recurrent Structures

Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.

MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis

We present MeshSegmenter, a simple yet effective framework designed for zero-shot 3D semantic segmentation. This model successfully extends the powerful capabilities of 2D segmentation models to 3D meshes, delivering accurate 3D segmentation across diverse meshes and segment descriptions. Specifically, our model leverages the Segment Anything Model (SAM) model to segment the target regions from images rendered from the 3D shape. In light of the importance of the texture for segmentation, we also leverage the pretrained stable diffusion model to generate images with textures from 3D shape, and leverage SAM to segment the target regions from images with textures. Textures supplement the shape for segmentation and facilitate accurate 3D segmentation even in geometrically non-prominent areas, such as segmenting a car door within a car mesh. To achieve the 3D segments, we render 2D images from different views and conduct segmentation for both textured and untextured images. Lastly, we develop a multi-view revoting scheme that integrates 2D segmentation results and confidence scores from various views onto the 3D mesh, ensuring the 3D consistency of segmentation results and eliminating inaccuracies from specific perspectives. Through these innovations, MeshSegmenter offers stable and reliable 3D segmentation results both quantitatively and qualitatively, highlighting its potential as a transformative tool in the field of 3D zero-shot segmentation. The code is available at https://github.com/zimingzhong/MeshSegmenter.

Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural Transducers

Streaming speech recognition architectures are employed for low-latency, real-time applications. Such architectures are often characterized by their causality. Causal architectures emit tokens at each frame, relying only on current and past signal, while non-causal models are exposed to a window of future frames at each step to increase predictive accuracy. This dichotomy amounts to a trade-off for real-time Automatic Speech Recognition (ASR) system design: profit from the low-latency benefit of strictly-causal architectures while accepting predictive performance limitations, or realize the modeling benefits of future-context models accompanied by their higher latency penalty. In this work, we relax the constraints of this choice and present the Adaptive Non-Causal Attention Transducer (ANCAT). Our architecture is non-causal in the traditional sense, but executes in a low-latency, streaming manner by dynamically choosing when to rely on future context and to what degree within the audio stream. The resulting mechanism, when coupled with our novel regularization algorithms, delivers comparable accuracy to non-causal configurations while improving significantly upon latency, closing the gap with their causal counterparts. We showcase our design experimentally by reporting comparative ASR task results with measures of accuracy and latency on both publicly accessible and production-scale, voice-assistant datasets.

Efficient Unified Demosaicing for Bayer and Non-Bayer Patterned Image Sensors

As the physical size of recent CMOS image sensors (CIS) gets smaller, the latest mobile cameras are adopting unique non-Bayer color filter array (CFA) patterns (e.g., Quad, Nona, QxQ), which consist of homogeneous color units with adjacent pixels. These non-Bayer sensors are superior to conventional Bayer CFA thanks to their changeable pixel-bin sizes for different light conditions but may introduce visual artifacts during demosaicing due to their inherent pixel pattern structures and sensor hardware characteristics. Previous demosaicing methods have primarily focused on Bayer CFA, necessitating distinct reconstruction methods for non-Bayer patterned CIS with various CFA modes under different lighting conditions. In this work, we propose an efficient unified demosaicing method that can be applied to both conventional Bayer RAW and various non-Bayer CFAs' RAW data in different operation modes. Our Knowledge Learning-based demosaicing model for Adaptive Patterns, namely KLAP, utilizes CFA-adaptive filters for only 1% key filters in the network for each CFA, but still manages to effectively demosaic all the CFAs, yielding comparable performance to the large-scale models. Furthermore, by employing meta-learning during inference (KLAP-M), our model is able to eliminate unknown sensor-generic artifacts in real RAW data, effectively bridging the gap between synthetic images and real sensor RAW. Our KLAP and KLAP-M methods achieved state-of-the-art demosaicing performance in both synthetic and real RAW data of Bayer and non-Bayer CFAs.

MAVEN-Arg: Completing the Puzzle of All-in-One Event Understanding Dataset with Event Argument Annotation

Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and our code can be obtained from https://github.com/THU-KEG/MAVEN-Argument.

Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues

Linear Recurrent Neural Networks (LRNNs) such as Mamba, RWKV, GLA, mLSTM, and DeltaNet have emerged as efficient alternatives to Transformers for long sequences. However, both Transformers and LRNNs struggle to perform state-tracking, which may impair performance in tasks such as code evaluation. In one forward pass, current architectures are unable to solve even parity, the simplest state-tracking task, which non-linear RNNs can handle effectively. Recently, Sarrof et al. (2024) demonstrated that the failure of LRNNs like Mamba to solve parity stems from restricting the value range of their diagonal state-transition matrices to [0, 1] and that incorporating negative values can resolve this issue. We extend this result to non-diagonal LRNNs such as DeltaNet. We prove that finite precision LRNNs with state-transition matrices having only positive eigenvalues cannot solve parity, while non-triangular matrices are needed to count modulo 3. Notably, we also prove that LRNNs can learn any regular language when their state-transition matrices are products of identity minus vector outer product matrices, each with eigenvalues in the range [-1, 1]. Our experiments confirm that extending the eigenvalue range of Mamba and DeltaNet to include negative values not only enables them to solve parity but consistently improves their performance on state-tracking tasks. We also show that state-tracking enabled LRNNs can be pretrained stably and efficiently at scale (1.3B parameters), achieving competitive performance on language modeling and showing promise on code and math tasks.

Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction

The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.

Solar System Elemental Abundances from the Solar Photosphere and CI-Chondrites

Solar photospheric abundances and CI-chondrite compositions are reviewed and updated to obtain representative solar system abundances of the elements and their isotopes. The new photospheric abundances obtained here lead to higher solar metallicity. Full 3D NLTE photospheric analyses are only available for 11 elements. A quality index for analyses is introduced. For several elements, uncertainties remain large. Protosolar mass fractions are H (X = 0.7060), He (Y = 0.2753), and for metals Li to U (Z = 0.0187). The protosolar (C+N)/H agrees within 13% with the ratio for the solar core from the Borexino experiment. Elemental abundances in CI-chondrites were screened by analytical methods, sample sizes, and evaluated using concentration frequency distributions. Aqueously mobile elements (e.g., alkalis, alkaline earths, etc.) often deviate from normal distributions indicating mobilization and/or sequestration into carbonates, phosphates, and sulfates. Revised CI-chondrite abundances of non-volatile elements are similar to earlier estimates. The moderately volatile elements F and Sb are higher than before, as are C, Br and I, whereas the CI-abundances of Hg and N are now significantly lower. The solar system nuclide distribution curves of s-process elements agree within 4% with s-process predictions of Galactic chemical evolution models. P-process nuclide distributions are assessed. No obvious correlation of CI-chondritic to solar elemental abundance ratios with condensation temperatures is observed, nor is there one for ratios of CI-chondrites/solar wind abundances.

Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do

Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2.

Lossless Compression with Probabilistic Circuits

Despite extensive progress on image generation, common deep generative model architectures are not easily applied to lossless compression. For example, VAEs suffer from a compression cost overhead due to their latent variables. This overhead can only be partially eliminated with elaborate schemes such as bits-back coding, often resulting in poor single-sample compression rates. To overcome such problems, we establish a new class of tractable lossless compression models that permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a class of neural networks involving |p| computational units that support efficient marginalization over arbitrary subsets of the D feature dimensions, enabling efficient arithmetic coding. We derive efficient encoding and decoding schemes that both have time complexity O (log(D) cdot |p|), where a naive scheme would have linear costs in D and |p|, making the approach highly scalable. Empirically, our PC-based (de)compression algorithm runs 5-40 times faster than neural compression algorithms that achieve similar bitrates. By scaling up the traditional PC structure learning pipeline, we achieve state-of-the-art results on image datasets such as MNIST. Furthermore, PCs can be naturally integrated with existing neural compression algorithms to improve the performance of these base models on natural image datasets. Our results highlight the potential impact that non-standard learning architectures may have on neural data compression.

SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models

Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}.

EdgeMoE: Fast On-Device Inference of MoE-based Large Language Models

Large Language Models (LLMs) such as GPTs and LLaMa have ushered in a revolution in machine intelligence, owing to their exceptional capabilities in a wide range of machine learning tasks. However, the transition of LLMs from data centers to edge devices presents a set of challenges and opportunities. While this shift can enhance privacy and availability, it is hampered by the enormous parameter sizes of these models, leading to impractical runtime costs. In light of these considerations, we introduce EdgeMoE, the first on-device inference engine tailored for mixture-of-expert (MoE) LLMs, a popular variant of sparse LLMs that exhibit nearly constant computational complexity as their parameter size scales. EdgeMoE achieves both memory and computational efficiency by strategically partitioning the model across the storage hierarchy. Specifically, non-expert weights are stored in the device's memory, while expert weights are kept in external storage and are fetched into memory only when they are activated. This design is underpinned by a crucial insight that expert weights, though voluminous, are infrequently accessed due to sparse activation patterns. To further mitigate the overhead associated with expert I/O swapping, EdgeMoE incorporates two innovative techniques: (1) Expert-wise bitwidth adaptation: This method reduces the size of expert weights with an acceptable level of accuracy loss. (2) Expert management: It predicts the experts that will be activated in advance and preloads them into the compute-I/O pipeline, thus further optimizing the process. In empirical evaluations conducted on well-established MoE LLMs and various edge devices, EdgeMoE demonstrates substantial memory savings and performance improvements when compared to competitive baseline solutions.

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection

Feature pyramid networks (FPN) are widely exploited for multi-scale feature fusion in existing advanced object detection frameworks. Numerous previous works have developed various structures for bidirectional feature fusion, all of which are shown to improve the detection performance effectively. We observe that these complicated network structures require feature pyramids to be stacked in a fixed order, which introduces longer pipelines and reduces the inference speed. Moreover, semantics from non-adjacent levels are diluted in the feature pyramid since only features at adjacent pyramid levels are merged by the local fusion operation in a sequence manner. To address these issues, we propose a novel architecture named RCNet, which consists of Reverse Feature Pyramid (RevFP) and Cross-scale Shift Network (CSN). RevFP utilizes local bidirectional feature fusion to simplify the bidirectional pyramid inference pipeline. CSN directly propagates representations to both adjacent and non-adjacent levels to enable multi-scale features more correlative. Extensive experiments on the MS COCO dataset demonstrate RCNet can consistently bring significant improvements over both one-stage and two-stage detectors with subtle extra computational overhead. In particular, RetinaNet is boosted to 40.2 AP, which is 3.7 points higher than baseline, by replacing FPN with our proposed model. On COCO test-dev, RCNet can achieve very competitive performance with a single-model single-scale 50.5 AP. Codes will be made available.

LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents

The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.

On the Stability of Expressive Positional Encodings for Graph Neural Networks

Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.

FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models

Recent advances in text-to-image generation have enabled the creation of high-quality images with diverse applications. However, accurately describing desired visual attributes can be challenging, especially for non-experts in art and photography. An intuitive solution involves adopting favorable attributes from the source images. Current methods attempt to distill identity and style from source images. However, "style" is a broad concept that includes texture, color, and artistic elements, but does not cover other important attributes such as lighting and dynamics. Additionally, a simplified "style" adaptation prevents combining multiple attributes from different sources into one generated image. In this work, we formulate a more effective approach to decompose the aesthetics of a picture into specific visual attributes, allowing users to apply characteristics such as lighting, texture, and dynamics from different images. To achieve this goal, we constructed the first fine-grained visual attributes dataset (FiVA) to the best of our knowledge. This FiVA dataset features a well-organized taxonomy for visual attributes and includes around 1 M high-quality generated images with visual attribute annotations. Leveraging this dataset, we propose a fine-grained visual attribute adaptation framework (FiVA-Adapter), which decouples and adapts visual attributes from one or more source images into a generated one. This approach enhances user-friendly customization, allowing users to selectively apply desired attributes to create images that meet their unique preferences and specific content requirements.

GWQ: Gradient-Aware Weight Quantization for Large Language Models

Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters present significant challenges for the deployment and application of the model on edge devices. Compressing large language models to low bits can enable them to run on resource-constrained devices, often leading to performance degradation. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the weights corresponding to the top 1% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit format. GWQ found experimentally that utilizing the sensitive weights in the gradient localization model is more scientific compared to utilizing the sensitive weights in the Hessian matrix localization model. Compared to current quantization methods, GWQ can be applied to multiple language models and achieves lower PPL on the WikiText2 and C4 dataset. In the zero-shot task, GWQ quantized models have higher accuracy compared to other quantization methods. GWQ is also suitable for multimodal model quantization, and the quantized Qwen-VL family model is more accurate than other methods. Zero-shot target detection task dataset RefCOCO outperforms the current stat-of-the-arts method SPQR. GWQ achieves 1.2 times inference speedup in comparison to the original model, and effectively reduces the inference memory.

Offline Planning and Online Learning under Recovering Rewards

Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce and solve a general class of non-stationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to K,(ge 1) out of N different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non-parametrically recovers as the arm's idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of ``Purely Periodic Policies'' that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline problem and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains an approximation ratio that is at the order of 1-mathcal O(1/K), which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have mathcal O(NT) regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with non-stationary and recovering rewards.

RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models

Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning "bad" words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.

Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information

Graph neural networks (GNNs) have shown great power in modeling graph structured data. However, similar to other machine learning models, GNNs may make predictions biased on protected sensitive attributes, e.g., skin color and gender. Because machine learning algorithms including GNNs are trained to reflect the distribution of the training data which often contains historical bias towards sensitive attributes. In addition, the discrimination in GNNs can be magnified by graph structures and the message-passing mechanism. As a result, the applications of GNNs in sensitive domains such as crime rate prediction would be largely limited. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive attribute information. FairGNN is proposed to eliminate the bias of GNNs whilst maintaining high node classification accuracy by leveraging graph structures and limited sensitive information. Our theoretical analysis shows that FairGNN can ensure the fairness of GNNs under mild conditions given limited nodes with known sensitive attributes. Extensive experiments on real-world datasets also demonstrate the effectiveness of FairGNN in debiasing and keeping high accuracy.

Accuracy Prediction with Non-neural Model for Neural Architecture Search

Neural architecture search (NAS) with an accuracy predictor that predicts the accuracy of candidate architectures has drawn increasing attention due to its simplicity and effectiveness. Previous works usually employ neural network-based predictors which require more delicate design and are easy to overfit. Considering that most architectures are represented as sequences of discrete symbols which are more like tabular data and preferred by non-neural predictors, in this paper, we study an alternative approach which uses non-neural model for accuracy prediction. Specifically, as decision tree based models can better handle tabular data, we leverage gradient boosting decision tree (GBDT) as the predictor for NAS. We demonstrate that the GBDT predictor can achieve comparable (if not better) prediction accuracy than neural network based predictors. Moreover, considering that a compact search space can ease the search process, we propose to prune the search space gradually according to important features derived from GBDT. In this way, NAS can be performed by first pruning the search space and then searching a neural architecture, which is more efficient and effective. Experiments on NASBench-101 and ImageNet demonstrate the effectiveness of using GBDT as predictor for NAS: (1) On NASBench-101, it is 22x, 8x, and 6x more sample efficient than random search, regularized evolution, and Monte Carlo Tree Search (MCTS) in finding the global optimum; (2) It achieves 24.2% top-1 error rate on ImageNet, and further achieves 23.4% top-1 error rate on ImageNet when enhanced with search space pruning. Code is provided at https://github.com/renqianluo/GBDT-NAS.

Extremely Dense Gas around Little Red Dots and High-redshift Active Galactic Nuclei: A Non-stellar Origin of the Balmer Break and Absorption Features

The James Webb Space Telescope (JWST) has uncovered low-luminosity active galactic nuclei (AGNs) at high redshifts of zgtrsim 4-7, powered by accreting black holes (BHs) with masses of sim 10^{6-8}~M_odot. One remarkable distinction of these JWST-identified AGNs, compared to their low-redshift counterparts, is that at least sim 20% of them present Halpha and/or Hbeta absorption, which must be associated with extremely dense (gtrsim 10^9~{rm cm}^{-3}) gas in the broad-line region or its immediate surroundings. These Balmer absorption features unavoidably imply the presence of a Balmer break caused by the same dense gas. In this Letter, we quantitatively demonstrate that a Balmer break can form in AGN spectra without stellar components, when the accretion disk is heavily embedded in dense neutral gas clumps with densities of sim 10^{9-11}~{rm cm}^{-3}, where hydrogen atoms are collisionally excited to the n=2 states and effectively absorb the AGN continuum at the bluer side of the Balmer limit. The non-stellar origin of a Balmer break offers a potential solution to the large stellar masses and densities inferred for little red dots (LRDs) when assuming that their continuum is primarily due to stellar light. Our calculations indicate that the observed Balmer absorption blueshifted by a few hundreds {rm km~s}^{-1} suggests the presence of dense outflows in the nucleus at rates exceeding the Eddington value. Other spectral features such as higher equivalent widths of broad Halpha emission and presence of OI lines observed in high-redshift AGNs including LRDs align with the predicted signatures of a dense super-Eddington accretion disk.

NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search

Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.

PlainMamba: Improving Non-Hierarchical Mamba in Visual Recognition

We present PlainMamba: a simple non-hierarchical state space model (SSM) designed for general visual recognition. The recent Mamba model has shown how SSMs can be highly competitive with other architectures on sequential data and initial attempts have been made to apply it to images. In this paper, we further adapt the selective scanning process of Mamba to the visual domain, enhancing its ability to learn features from two-dimensional images by (i) a continuous 2D scanning process that improves spatial continuity by ensuring adjacency of tokens in the scanning sequence, and (ii) direction-aware updating which enables the model to discern the spatial relations of tokens by encoding directional information. Our architecture is designed to be easy to use and easy to scale, formed by stacking identical PlainMamba blocks, resulting in a model with constant width throughout all layers. The architecture is further simplified by removing the need for special tokens. We evaluate PlainMamba on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves performance gains over previous non-hierarchical models and is competitive with hierarchical alternatives. For tasks requiring high-resolution inputs, in particular, PlainMamba requires much less computing while maintaining high performance. Code and models are available at https://github.com/ChenhongyiYang/PlainMamba

Developing an Explainable Artificial Intelligent (XAI) Model for Predicting Pile Driving Vibrations in Bangkok's Subsoil

This study presents an explainable artificial intelligent (XAI) model for predicting pile driving vibrations in Bangkok's soft clay subsoil. A deep neural network was developed using a dataset of 1,018 real-world pile driving measurements, encompassing variations in pile dimensions, hammer characteristics, sensor locations, and vibration measurement axes. The model achieved a mean absolute error (MAE) of 0.276, outperforming traditional empirical methods and other machine learning approaches such as XGBoost and CatBoost. SHapley Additive exPlanations (SHAP) analysis was employed to interpret the model's predictions, revealing complex relationships between input features and peak particle velocity (PPV). Distance from the pile driving location emerged as the most influential factor, followed by hammer weight and pile size. Non-linear relationships and threshold effects were observed, providing new insights into vibration propagation in soft clay. A web-based application was developed to facilitate adoption by practicing engineers, bridging the gap between advanced machine learning techniques and practical engineering applications. This research contributes to the field of geotechnical engineering by offering a more accurate and nuanced approach to predicting pile driving vibrations, with implications for optimizing construction practices and mitigating environmental impacts in urban areas. The model and its source code are publicly available, promoting transparency and reproducibility in geotechnical research.

Multiobjective Optimization of Non-Smooth PDE-Constrained Problems

Multiobjective optimization plays an increasingly important role in modern applications, where several criteria are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. The advances in algorithms and the increasing interest in Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback control - potentially with non-smoothness both on the level of the objectives or in the system dynamics. This results in new challenges such as dealing with expensive models (e.g., governed by partial differential equations (PDEs)) and developing dedicated algorithms handling the non-smoothness. Since in contrast to single-objective optimization, the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging, which is particularly problematic when the objectives are costly to evaluate or when a solution has to be presented very quickly. This article gives an overview of recent developments in the field of multiobjective optimization of non-smooth PDE-constrained problems. In particular we report on the advances achieved within Project 2 "Multiobjective Optimization of Non-Smooth PDE-Constrained Problems - Switches, State Constraints and Model Order Reduction" of the DFG Priority Programm 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization".

Masked Audio Generation using a Single Non-Autoregressive Transformer

We introduce MAGNeT, a masked generative sequence modeling method that operates directly over several streams of audio tokens. Unlike prior work, MAGNeT is comprised of a single-stage, non-autoregressive transformer. During training, we predict spans of masked tokens obtained from a masking scheduler, while during inference we gradually construct the output sequence using several decoding steps. To further enhance the quality of the generated audio, we introduce a novel rescoring method in which, we leverage an external pre-trained model to rescore and rank predictions from MAGNeT, which will be then used for later decoding steps. Lastly, we explore a hybrid version of MAGNeT, in which we fuse between autoregressive and non-autoregressive models to generate the first few seconds in an autoregressive manner while the rest of the sequence is being decoded in parallel. We demonstrate the efficiency of MAGNeT for the task of text-to-music and text-to-audio generation and conduct an extensive empirical evaluation, considering both objective metrics and human studies. The proposed approach is comparable to the evaluated baselines, while being significantly faster (x7 faster than the autoregressive baseline). Through ablation studies and analysis, we shed light on the importance of each of the components comprising MAGNeT, together with pointing to the trade-offs between autoregressive and non-autoregressive modeling, considering latency, throughput, and generation quality. Samples are available on our demo page https://pages.cs.huji.ac.il/adiyoss-lab/MAGNeT.

Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition

Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.

VSSD: Vision Mamba with Non-Casual State Space Duality

Vision transformers have significantly advanced the field of computer vision, offering robust modeling capabilities and global receptive field. However, their high computational demands limit their applicability in processing long sequences. To tackle this issue, State Space Models (SSMs) have gained prominence in vision tasks as they offer linear computational complexity. Recently, State Space Duality (SSD), an improved variant of SSMs, was introduced in Mamba2 to enhance model performance and efficiency. However, the inherent causal nature of SSD/SSMs restricts their applications in non-causal vision tasks. To address this limitation, we introduce Visual State Space Duality (VSSD) model, which has a non-causal format of SSD. Specifically, we propose to discard the magnitude of interactions between the hidden state and tokens while preserving their relative weights, which relieves the dependencies of token contribution on previous tokens. Together with the involvement of multi-scan strategies, we show that the scanning results can be integrated to achieve non-causality, which not only improves the performance of SSD in vision tasks but also enhances its efficiency. We conduct extensive experiments on various benchmarks including image classification, detection, and segmentation, where VSSD surpasses existing state-of-the-art SSM-based models. Code and weights are available at https://github.com/YuHengsss/VSSD.

Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture

Machine learning models are increasingly being scaled in both sequence length and model dimension to reach longer contexts and better performance. However, existing architectures such as Transformers scale quadratically along both these axes. We ask: are there performant architectures that can scale sub-quadratically along sequence length and model dimension? We introduce Monarch Mixer (M2), a new architecture that uses the same sub-quadratic primitive along both sequence length and model dimension: Monarch matrices, a simple class of expressive structured matrices that captures many linear transforms, achieves high hardware efficiency on GPUs, and scales sub-quadratically. As a proof of concept, we explore the performance of M2 in three domains: non-causal BERT-style language modeling, ViT-style image classification, and causal GPT-style language modeling. For non-causal BERT-style modeling, M2 matches BERT-base and BERT-large in downstream GLUE quality with up to 27% fewer parameters, and achieves up to 9.1times higher throughput at sequence length 4K. On ImageNet, M2 outperforms ViT-b by 1% in accuracy, with only half the parameters. Causal GPT-style models introduce a technical challenge: enforcing causality via masking introduces a quadratic bottleneck. To alleviate this bottleneck, we develop a novel theoretical view of Monarch matrices based on multivariate polynomial evaluation and interpolation, which lets us parameterize M2 to be causal while remaining sub-quadratic. Using this parameterization, M2 matches GPT-style Transformers at 360M parameters in pretraining perplexity on The PILE--showing for the first time that it may be possible to match Transformer quality without attention or MLPs.

EAGAN: Efficient Two-stage Evolutionary Architecture Search for GANs

Generative adversarial networks (GANs) have proven successful in image generation tasks. However, GAN training is inherently unstable. Although many works try to stabilize it by manually modifying GAN architecture, it requires much expertise. Neural architecture search (NAS) has become an attractive solution to search GANs automatically. The early NAS-GANs search only generators to reduce search complexity but lead to a sub-optimal GAN. Some recent works try to search both generator (G) and discriminator (D), but they suffer from the instability of GAN training. To alleviate the instability, we propose an efficient two-stage evolutionary algorithm-based NAS framework to search GANs, namely EAGAN. We decouple the search of G and D into two stages, where stage-1 searches G with a fixed D and adopts the many-to-one training strategy, and stage-2 searches D with the optimal G found in stage-1 and adopts the one-to-one training and weight-resetting strategies to enhance the stability of GAN training. Both stages use the non-dominated sorting method to produce Pareto-front architectures under multiple objectives (e.g., model size, Inception Score (IS), and Fr\'echet Inception Distance (FID)). EAGAN is applied to the unconditional image generation task and can efficiently finish the search on the CIFAR-10 dataset in 1.2 GPU days. Our searched GANs achieve competitive results (IS=8.81pm0.10, FID=9.91) on the CIFAR-10 dataset and surpass prior NAS-GANs on the STL-10 dataset (IS=10.44pm0.087, FID=22.18). Source code: https://github.com/marsggbo/EAGAN.

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

Despite remarkable progress achieved, most neural architecture search (NAS) methods focus on searching for one single accurate and robust architecture. To further build models with better generalization capability and performance, model ensemble is usually adopted and performs better than stand-alone models. Inspired by the merits of model ensemble, we propose to search for multiple diverse models simultaneously as an alternative way to find powerful models. Searching for ensembles is non-trivial and has two key challenges: enlarged search space and potentially more complexity for the searched model. In this paper, we propose a one-shot neural ensemble architecture search (NEAS) solution that addresses the two challenges. For the first challenge, we introduce a novel diversity-based metric to guide search space shrinking, considering both the potentiality and diversity of candidate operators. For the second challenge, we enable a new search dimension to learn layer sharing among different models for efficiency purposes. The experiments on ImageNet clearly demonstrate that our solution can improve the supernet's capacity of ranking ensemble architectures, and further lead to better search results. The discovered architectures achieve superior performance compared with state-of-the-arts such as MobileNetV3 and EfficientNet families under aligned settings. Moreover, we evaluate the generalization ability and robustness of our searched architecture on the COCO detection benchmark and achieve a 3.1% improvement on AP compared with MobileNetV3. Codes and models are available at https://github.com/researchmm/NEAS.

LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback

Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.

MindMerger: Efficient Boosting LLM Reasoning in non-English Languages

Reasoning capabilities are crucial for Large Language Models (LLMs), yet a notable gap exists between English and non-English languages. To bridge this disparity, some works fine-tune LLMs to relearn reasoning capabilities in non-English languages, while others replace non-English inputs with an external model's outputs such as English translation text to circumvent the challenge of LLM understanding non-English. Unfortunately, these methods often underutilize the built-in skilled reasoning and useful language understanding capabilities of LLMs. In order to better utilize the minds of reasoning and language understanding in LLMs, we propose a new method, namely MindMerger, which merges LLMs with the external language understanding capabilities from multilingual models to boost the multilingual reasoning performance. Furthermore, a two-step training scheme is introduced to first train to embeded the external capabilities into LLMs and then train the collaborative utilization of the external capabilities and the built-in capabilities in LLMs. Experiments on three multilingual reasoning datasets and a language understanding dataset demonstrate that MindMerger consistently outperforms all baselines, especially in low-resource languages. Without updating the parameters of LLMs, the average accuracy improved by 6.7% and 8.0% across all languages and low-resource languages on the MGSM dataset, respectively.

Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G

Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.

Momentum Benefits Non-IID Federated Learning Simply and Provably

Federated learning is a powerful paradigm for large-scale machine learning, but it faces significant challenges due to unreliable network connections, slow communication, and substantial data heterogeneity across clients. FedAvg and SCAFFOLD are two prominent algorithms to address these challenges. In particular, FedAvg employs multiple local updates before communicating with a central server, while SCAFFOLD maintains a control variable on each client to compensate for ``client drift'' in its local updates. Various methods have been proposed to enhance the convergence of these two algorithms, but they either make impractical adjustments to the algorithmic structure or rely on the assumption of bounded data heterogeneity. This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAFFOLD. When all clients participate in the training process, we demonstrate that incorporating momentum allows FedAvg to converge without relying on the assumption of bounded data heterogeneity even using a constant local learning rate. This is novel and fairly surprising as existing analyses for FedAvg require bounded data heterogeneity even with diminishing local learning rates. In partial client participation, we show that momentum enables SCAFFOLD to converge provably faster without imposing any additional assumptions. Furthermore, we use momentum to develop new variance-reduced extensions of FedAvg and SCAFFOLD, which exhibit state-of-the-art convergence rates. Our experimental results support all theoretical findings.

Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits

Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.

What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?

Large pretrained Transformer language models have been shown to exhibit zero-shot generalization, i.e. they can perform a wide variety of tasks that they were not explicitly trained on. However, the architectures and pretraining objectives used across state-of-the-art models differ significantly, and there has been limited systematic comparison of these factors. In this work, we present a large-scale evaluation of modeling choices and their impact on zero-shot generalization. In particular, we focus on text-to-text models and experiment with three model architectures (causal/non-causal decoder-only and encoder-decoder), trained with two different pretraining objectives (autoregressive and masked language modeling), and evaluated with and without multitask prompted finetuning. We train models with over 5 billion parameters for more than 170 billion tokens, thereby increasing the likelihood that our conclusions will transfer to even larger scales. Our experiments show that causal decoder-only models trained on an autoregressive language modeling objective exhibit the strongest zero-shot generalization after purely unsupervised pretraining. However, models with non-causal visibility on their input trained with a masked language modeling objective followed by multitask finetuning perform the best among our experiments. We therefore consider the adaptation of pretrained models across architectures and objectives. We find that pretrained non-causal decoder models can be adapted into performant generative causal decoder models, using autoregressive language modeling as a downstream task. Furthermore, we find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models, ultimately achieving competitive performance after multitask finetuning. Code and checkpoints are available at https://github.com/bigscience-workshop/architecture-objective.

Faster Re-translation Using Non-Autoregressive Model For Simultaneous Neural Machine Translation

Recently, simultaneous translation has gathered a lot of attention since it enables compelling applications such as subtitle translation for a live event or real-time video-call translation. Some of these translation applications allow editing of partial translation giving rise to re-translation approaches. The current re-translation approaches are based on autoregressive sequence generation models (ReTA), which generate tar-get tokens in the (partial) translation sequentially. The multiple re-translations with sequential generation inReTAmodelslead to an increased inference time gap between the incoming source input and the corresponding target output as the source input grows. Besides, due to the large number of inference operations involved, the ReTA models are not favorable for resource-constrained devices. In this work, we propose a faster re-translation system based on a non-autoregressive sequence generation model (FReTNA) to overcome the aforementioned limitations. We evaluate the proposed model on multiple translation tasks and our model reduces the inference times by several orders and achieves a competitive BLEUscore compared to the ReTA and streaming (Wait-k) models.The proposed model reduces the average computation time by a factor of 20 when compared to the ReTA model by incurring a small drop in the translation quality. It also outperforms the streaming-based Wait-k model both in terms of computation time (1.5 times lower) and translation quality.

Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models

The development of large language models (LLMs) has expanded to multi-modal systems capable of processing text, images, and speech within a unified framework. Training these models demands significantly larger datasets and computational resources compared to text-only LLMs. To address the scaling challenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture that significantly reduces pretraining computational costs. MoT decouples non-embedding parameters of the model by modality -- including feed-forward networks, attention matrices, and layer normalization -- enabling modality-specific processing with global self-attention over the full input sequence. We evaluate MoT across multiple settings and model scales. In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline's performance using only 55.8\% of the FLOPs. When extended to include speech, MoT reaches speech performance comparable to the dense baseline with only 37.2\% of the FLOPs. In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1.4B dense baseline across key image generation metrics. System profiling further highlights MoT's practical benefits, achieving dense baseline image quality in 47.2\% of the wall-clock time and text quality in 75.6\% of the wall-clock time (measured on AWS p4de.24xlarge instances with NVIDIA A100 GPUs).

How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study

Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.

Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution

Visual data comes in various forms, ranging from small icons of just a few pixels to long videos spanning hours. Existing multi-modal LLMs usually standardize these diverse visual inputs to a fixed resolution for visual encoders and yield similar numbers of tokens for LLMs. This approach is non-optimal for multimodal understanding and inefficient for processing inputs with long and short visual contents. To solve the problem, we propose Oryx, a unified multimodal architecture for the spatial-temporal understanding of images, videos, and multi-view 3D scenes. Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths through two core innovations: 1) a pre-trained OryxViT model that can encode images at any resolution into LLM-friendly visual representations; 2) a dynamic compressor module that supports 1x to 16x compression on visual tokens by request. These design features enable Oryx to accommodate extremely long visual contexts, such as videos, with lower resolution and high compression while maintaining high recognition precision for tasks like document understanding with native resolution and no compression. Beyond the architectural improvements, enhanced data curation and specialized training on long-context retrieval and spatial-aware data help Oryx achieve strong capabilities in image, video, and 3D multimodal understanding simultaneously. Our work is open-sourced at https://github.com/Oryx-mllm/Oryx.

From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients

Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at https://github.com/VITA-Group/welore

Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly-mass dependent star formation efficiency

Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

Towards Mitigating Perceived Unfairness in Contracts from a Non-Legal Stakeholder's Perspective

Commercial contracts are known to be a valuable source for deriving project-specific requirements. However, contract negotiations mainly occur among the legal counsel of the parties involved. The participation of non-legal stakeholders, including requirement analysts, engineers, and solution architects, whose primary responsibility lies in ensuring the seamless implementation of contractual terms, is often indirect and inadequate. Consequently, a significant number of sentences in contractual clauses, though legally accurate, can appear unfair from an implementation perspective to non-legal stakeholders. This perception poses a problem since requirements indicated in the clauses are obligatory and can involve punitive measures and penalties if not implemented as committed in the contract. Therefore, the identification of potentially unfair clauses in contracts becomes crucial. In this work, we conduct an empirical study to analyze the perspectives of different stakeholders regarding contractual fairness. We then investigate the ability of Pre-trained Language Models (PLMs) to identify unfairness in contractual sentences by comparing chain of thought prompting and semi-supervised fine-tuning approaches. Using BERT-based fine-tuning, we achieved an accuracy of 84% on a dataset consisting of proprietary contracts. It outperformed chain of thought prompting using Vicuna-13B by a margin of 9%.

Bridge Diffusion Model: bridge non-English language-native text-to-image diffusion model with English communities

Text-to-Image generation (TTI) technologies are advancing rapidly, especially in the English language communities. However, English-native TTI models inherently carry biases from English world centric training data, which creates a dilemma for development of other language-native TTI models. One common choice is fine-tuning the English-native TTI model with translated samples from non-English communities. It falls short of fully addressing the model bias problem. Alternatively, training non-English language native models from scratch can effectively resolve the English world bias, but diverges from the English TTI communities, thus not able to utilize the strides continuously gaining in the English TTI communities any more. To build non-English language native TTI model meanwhile keep compatability with the English TTI communities, we propose a novel model structure referred as "Bridge Diffusion Model" (BDM). The proposed BDM employs a backbone-branch network structure to learn the non-English language semantics while keep the latent space compatible with the English-native TTI backbone, in an end-to-end manner. The unique advantages of the proposed BDM are that it's not only adept at generating images that precisely depict non-English language semantics, but also compatible with various English-native TTI plugins, such as different checkpoints, LoRA, ControlNet, Dreambooth, and Textual Inversion, etc. Moreover, BDM can concurrently generate content seamlessly combining both non-English native and English-native semantics within a single image, fostering cultural interaction. We verify our method by applying BDM to build a Chinese-native TTI model, whereas the method is generic and applicable to any other language.

Confidence-Building Measures for Artificial Intelligence: Workshop Proceedings

Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors.

AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation

Many recent machine learning tasks focus to develop models that can generalize to unseen distributions. Domain generalization (DG) has become one of the key topics in various fields. Several literatures show that DG can be arbitrarily hard without exploiting target domain information. To address this issue, test-time adaptive (TTA) methods are proposed. Existing TTA methods require offline target data or extra sophisticated optimization procedures during the inference stage. In this work, we adopt Non-Parametric Classifier to perform the test-time Adaptation (AdaNPC). In particular, we construct a memory that contains the feature and label pairs from training domains. During inference, given a test instance, AdaNPC first recalls K closed samples from the memory to vote for the prediction, and then the test feature and predicted label are added to the memory. In this way, the sample distribution in the memory can be gradually changed from the training distribution towards the test distribution with very little extra computation cost. We theoretically justify the rationality behind the proposed method. Besides, we test our model on extensive numerical experiments. AdaNPC significantly outperforms competitive baselines on various DG benchmarks. In particular, when the adaptation target is a series of domains, the adaptation accuracy of AdaNPC is 50% higher than advanced TTA methods. The code is available at https://github.com/yfzhang114/AdaNPC.

Knowledge-Aware Federated Active Learning with Non-IID Data

Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.

A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using Structure from Motion

We propose a novel hybrid cable-based robot with manipulator and camera for high-accuracy, medium-throughput plant monitoring in a vertical hydroponic farm and, as an example application, demonstrate non-destructive plant mass estimation. Plant monitoring with high temporal and spatial resolution is important to both farmers and researchers to detect anomalies and develop predictive models for plant growth. The availability of high-quality, off-the-shelf structure-from-motion (SfM) and photogrammetry packages has enabled a vibrant community of roboticists to apply computer vision for non-destructive plant monitoring. While existing approaches tend to focus on either high-throughput (e.g. satellite, unmanned aerial vehicle (UAV), vehicle-mounted, conveyor-belt imagery) or high-accuracy/robustness to occlusions (e.g. turn-table scanner or robot arm), we propose a middle-ground that achieves high accuracy with a medium-throughput, highly automated robot. Our design pairs the workspace scalability of a cable-driven parallel robot (CDPR) with the dexterity of a 4 degree-of-freedom (DoF) robot arm to autonomously image many plants from a variety of viewpoints. We describe our robot design and demonstrate it experimentally by collecting daily photographs of 54 plants from 64 viewpoints each. We show that our approach can produce scientifically useful measurements, operate fully autonomously after initial calibration, and produce better reconstructions and plant property estimates than those of over-canopy methods (e.g. UAV). As example applications, we show that our system can successfully estimate plant mass with a Mean Absolute Error (MAE) of 0.586g and, when used to perform hypothesis testing on the relationship between mass and age, produces p-values comparable to ground-truth data (p=0.0020 and p=0.0016, respectively).

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors

Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-Low Power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-Neural ML kernels that compete favorably with Deep Neural Networks (DNNs) in terms of accuracy under severe resource constraints. In this paper, we focus on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based PULP platforms, namely GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-Point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61x runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09x and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04x on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Lastly, we present a comparison with the ARM Cortex-M4 microcontroller (MCU), a widely adopted commercial solution for edge deployments, which is 12.87x slower and 98% less energy-efficient than PULP-OPEN.

Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots

The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.

ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions

ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard L1 sparse coding. The implemented algorithms are especially well-suited in cases when data consist of components that combine non-linearly and/or for data requiring flexible prior distributions. Furthermore, the implemented algorithms go beyond standard approaches by inferring prior and noise parameters of the data, and they provide rich a-posteriori approximations for inference. The library is designed to be extendable and it currently includes: Binary Sparse Coding (BSC), Ternary Sparse Coding (TSC), Discrete Sparse Coding (DSC), Maximal Causes Analysis (MCA), Maximum Magnitude Causes Analysis (MMCA), and Gaussian Sparse Coding (GSC, a recent spike-and-slab sparse coding approach). The algorithms are scalable due to a combination of variational approximations and parallelization. Implementations of all algorithms allow for parallel execution on multiple CPUs and multiple machines for medium to large-scale applications. Typical large-scale runs of the algorithms can use hundreds of CPUs to learn hundreds of dictionary elements from data with tens of millions of floating-point numbers such that models with several hundred thousand parameters can be optimized. The library is designed to have minimal dependencies and to be easy to use. It targets users of dictionary learning algorithms and Machine Learning researchers.

Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning

Deep artificial neural networks (DNNs) are typically trained via gradient-based learning algorithms, namely backpropagation. Evolution strategies (ES) can rival backprop-based algorithms such as Q-learning and policy gradients on challenging deep reinforcement learning (RL) problems. However, ES can be considered a gradient-based algorithm because it performs stochastic gradient descent via an operation similar to a finite-difference approximation of the gradient. That raises the question of whether non-gradient-based evolutionary algorithms can work at DNN scales. Here we demonstrate they can: we evolve the weights of a DNN with a simple, gradient-free, population-based genetic algorithm (GA) and it performs well on hard deep RL problems, including Atari and humanoid locomotion. The Deep GA successfully evolves networks with over four million free parameters, the largest neural networks ever evolved with a traditional evolutionary algorithm. These results (1) expand our sense of the scale at which GAs can operate, (2) suggest intriguingly that in some cases following the gradient is not the best choice for optimizing performance, and (3) make immediately available the multitude of neuroevolution techniques that improve performance. We demonstrate the latter by showing that combining DNNs with novelty search, which encourages exploration on tasks with deceptive or sparse reward functions, can solve a high-dimensional problem on which reward-maximizing algorithms (e.g.\ DQN, A3C, ES, and the GA) fail. Additionally, the Deep GA is faster than ES, A3C, and DQN (it can train Atari in {raise.17ex\scriptstyle\sim}4 hours on one desktop or {raise.17ex\scriptstyle\sim}1 hour distributed on 720 cores), and enables a state-of-the-art, up to 10,000-fold compact encoding technique.

Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data

Instruction fine-tuning is crucial for today's large language models (LLMs) to learn to follow instructions and align with human preferences. Conventionally, supervised data, including the instruction and the correct response, is required for instruction fine-tuning. To obtain such data, some researchers prompted well-trained models like GPT-4 to generate instructions and correct responses. In this paper, we propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response. Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities. This observation is verified by fine-tuning several well-known pre-trained LLMs (e.g., LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, Mistral-7B-v0.1). The "non-instructional data" also improved some models that underwent supervised fine-tuning and human preference alignment. Our LLaMA-3-70B-Instruct fine-tuned through "non-instructional data" is comparable with LLaMA-3.1-70B-Instruct on the Arena Hard leaderboard. We analyzed the "non-instructional data" and ensured it is devoid of content related to instruction fine-tuning. Our findings will inspire further investigation into how to develop instruction-following capabilities without explicit instruction-related data.

Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design

A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.

Transforming Dutch: Debiasing Dutch Coreference Resolution Systems for Non-binary Pronouns

Gender-neutral pronouns are increasingly being introduced across Western languages. Recent evaluations have however demonstrated that English NLP systems are unable to correctly process gender-neutral pronouns, with the risk of erasing and misgendering non-binary individuals. This paper examines a Dutch coreference resolution system's performance on gender-neutral pronouns, specifically hen and die. In Dutch, these pronouns were only introduced in 2016, compared to the longstanding existence of singular they in English. We additionally compare two debiasing techniques for coreference resolution systems in non-binary contexts: Counterfactual Data Augmentation (CDA) and delexicalisation. Moreover, because pronoun performance can be hard to interpret from a general evaluation metric like LEA, we introduce an innovative evaluation metric, the pronoun score, which directly represents the portion of correctly processed pronouns. Our results reveal diminished performance on gender-neutral pronouns compared to gendered counterparts. Nevertheless, although delexicalisation fails to yield improvements, CDA substantially reduces the performance gap between gendered and gender-neutral pronouns. We further show that CDA remains effective in low-resource settings, in which a limited set of debiasing documents is used. This efficacy extends to previously unseen neopronouns, which are currently infrequently used but may gain popularity in the future, underscoring the viability of effective debiasing with minimal resources and low computational costs.

Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies

In light of the burgeoning success of reinforcement learning (RL) in diverse real-world applications, considerable focus has been directed towards ensuring RL policies are robust to adversarial attacks during test time. Current approaches largely revolve around solving a minimax problem to prepare for potential worst-case scenarios. While effective against strong attacks, these methods often compromise performance in the absence of attacks or the presence of only weak attacks. To address this, we study policy robustness under the well-accepted state-adversarial attack model, extending our focus beyond only worst-case attacks. We first formalize this task at test time as a regret minimization problem and establish its intrinsic hardness in achieving sublinear regret when the baseline policy is from a general continuous policy class, Pi. This finding prompts us to refine the baseline policy class Pi prior to test time, aiming for efficient adaptation within a finite policy class Pi, which can resort to an adversarial bandit subroutine. In light of the importance of a small, finite Pi, we propose a novel training-time algorithm to iteratively discover non-dominated policies, forming a near-optimal and minimal Pi, thereby ensuring both robustness and test-time efficiency. Empirical validation on the Mujoco corroborates the superiority of our approach in terms of natural and robust performance, as well as adaptability to various attack scenarios.

Stochastic Policy Gradient Methods: Improved Sample Complexity for Fisher-non-degenerate Policies

Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a mathcal{O}(varepsilon^{-2.5}) sample complexity of this method for finding a global varepsilon-optimal policy. Improving over the previously known mathcal{O}(varepsilon^{-3}) complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to mathcal{mathcal{O} }(varepsilon^{-2}) by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are (i) simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; (ii) computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.

DEArt: Dataset of European Art

Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations. Our results show that object detectors for the cultural heritage domain can achieve a level of precision comparable to state-of-art models for generic images via transfer learning.

How Powerful are Shallow Neural Networks with Bandlimited Random Weights?

We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.

Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization

We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.

Decoding speech from non-invasive brain recordings

Decoding language from brain activity is a long-awaited goal in both healthcare and neuroscience. Major milestones have recently been reached thanks to intracranial devices: subject-specific pipelines trained on invasive brain responses to basic language tasks now start to efficiently decode interpretable features (e.g. letters, words, spectrograms). However, scaling this approach to natural speech and non-invasive brain recordings remains a major challenge. Here, we propose a single end-to-end architecture trained with contrastive learning across a large cohort of individuals to predict self-supervised representations of natural speech. We evaluate our model on four public datasets, encompassing 169 volunteers recorded with magneto- or electro-encephalography (M/EEG), while they listened to natural speech. The results show that our model can identify, from 3s of MEG signals, the corresponding speech segment with up to 72.5% top-10 accuracy out of 1,594 distinct segments (and 44% top-1 accuracy), and up to 19.1% out of 2,604 segments for EEG recordings -- hence allowing the decoding of phrases absent from the training set. Model comparison and ablation analyses show that these performances directly benefit from our original design choices, namely the use of (i) a contrastive objective, (ii) pretrained representations of speech and (iii) a common convolutional architecture simultaneously trained across several participants. Together, these results delineate a promising path to decode natural language processing in real time from non-invasive recordings of brain activity.

KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures

Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.

The Evolution of Multimodal Model Architectures

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

SwitchGPT: Adapting Large Language Models for Non-Text Outputs

Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.

Are we certain it's anomalous?

The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.

Artificial Intelligence-derived Vascular Age from Photoplethysmography: A Novel Digital Biomarker for Cardiovascular Health

With the increasing availability of wearable devices, photoplethysmography (PPG) has emerged as a promising non-invasive tool for monitoring human hemodynamics. We propose a deep learning framework to estimate vascular age (AI-vascular age) from PPG signals, incorporating a distribution-aware loss to address biases caused by imbalanced data. The model was developed using data from the UK Biobank (UKB), with 98,672 participants in the development cohort and 113,559 participants (144,683 data pairs) for clinical evaluation. After adjusting for key confounders, individuals with a vascular age gap (AI-vascular age minus calendar age) exceeding 9 years had a significantly higher risk of major adverse cardiovascular and cerebrovascular events (MACCE) (HR = 2.37, p < 0.005) and secondary outcomes, including diabetes (HR = 2.69, p < 0.005), hypertension (HR = 2.88, p < 0.005), coronary heart disease (HR = 2.20, p < 0.005), heart failure (HR = 2.15, p < 0.005), myocardial infarction (HR = 2.51, p < 0.005), stroke (HR = 2.55, p < 0.005), and all-cause mortality (HR = 2.51, p < 0.005). Conversely, participants with a vascular age gap below -9 years exhibited a significantly lower incidence of these outcomes. We further evaluated the longitudinal applicability of AI-vascular age using serial PPG data from the UKB, demonstrating its value in risk stratification by leveraging AI-vascular age at two distinct time points to predict future MACCE incidence. External validation was performed on a MIMIC-III-derived cohort (n = 2,343), where each one-year increase in vascular age gap was significantly associated with elevated in-hospital mortality risk (OR = 1.02, p < 0.005). In conclusion, our study establishes AI-vascular age as a novel, non-invasive digital biomarker for cardiovascular health assessment.

Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches

Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.

Classification of Non-native Handwritten Characters Using Convolutional Neural Network

The use of convolutional neural networks (CNNs) has accelerated the progress of handwritten character classification/recognition. Handwritten character recognition (HCR) has found applications in various domains, such as traffic signal detection, language translation, and document information extraction. However, the widespread use of existing HCR technology is yet to be seen as it does not provide reliable character recognition with outstanding accuracy. One of the reasons for unreliable HCR is that existing HCR methods do not take the handwriting styles of non-native writers into account. Hence, further improvement is needed to ensure the reliability and extensive deployment of character recognition technologies for critical tasks. In this work, the classification of English characters written by non-native users is performed by proposing a custom-tailored CNN model. We train this CNN with a new dataset called the handwritten isolated English character (HIEC) dataset. This dataset consists of 16,496 images collected from 260 persons. This paper also includes an ablation study of our CNN by adjusting hyperparameters to identify the best model for the HIEC dataset. The proposed model with five convolutional layers and one hidden layer outperforms state-of-the-art models in terms of character recognition accuracy and achieves an accuracy of 97.04%. Compared with the second-best model, the relative improvement of our model in terms of classification accuracy is 4.38%.

Surf-D: High-Quality Surface Generation for Arbitrary Topologies using Diffusion Models

In this paper, we present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Specifically, we adopt Unsigned Distance Field (UDF) as the surface representation, as it excels in handling arbitrary topologies, enabling the generation of complex shapes. While the prior methods explored shape generation with different representations, they suffer from limited topologies and geometry details. Moreover, it's non-trivial to directly extend prior diffusion models to UDF because they lack spatial continuity due to the discrete volume structure. However, UDF requires accurate gradients for mesh extraction and learning. To tackle the issues, we first leverage a point-based auto-encoder to learn a compact latent space, which supports gradient querying for any input point through differentiation to effectively capture intricate geometry at a high resolution. Since the learning difficulty for various shapes can differ, a curriculum learning strategy is employed to efficiently embed various surfaces, enhancing the whole embedding process. With pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Our approach demonstrates superior performance in shape generation across multiple modalities and conducts extensive experiments in unconditional generation, category conditional generation, 3D reconstruction from images, and text-to-shape tasks.

Generalization in diffusion models arises from geometry-adaptive harmonic representations

Deep neural networks (DNNs) trained for image denoising are able to generate high-quality samples with score-based reverse diffusion algorithms. These impressive capabilities seem to imply an escape from the curse of dimensionality, but recent reports of memorization of the training set raise the question of whether these networks are learning the "true" continuous density of the data. Here, we show that two DNNs trained on non-overlapping subsets of a dataset learn nearly the same score function, and thus the same density, when the number of training images is large enough. In this regime of strong generalization, diffusion-generated images are distinct from the training set, and are of high visual quality, suggesting that the inductive biases of the DNNs are well-aligned with the data density. We analyze the learned denoising functions and show that the inductive biases give rise to a shrinkage operation in a basis adapted to the underlying image. Examination of these bases reveals oscillating harmonic structures along contours and in homogeneous regions. We demonstrate that trained denoisers are inductively biased towards these geometry-adaptive harmonic bases since they arise not only when the network is trained on photographic images, but also when it is trained on image classes supported on low-dimensional manifolds for which the harmonic basis is suboptimal. Finally, we show that when trained on regular image classes for which the optimal basis is known to be geometry-adaptive and harmonic, the denoising performance of the networks is near-optimal.

Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration

The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field.

Generative Artificial Intelligence Consensus in a Trustless Network

We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.

Complex QA and language models hybrid architectures, Survey

This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.

Learning Non-Local Spatial-Angular Correlation for Light Field Image Super-Resolution

Exploiting spatial-angular correlation is crucial to light field (LF) image super-resolution (SR), but is highly challenging due to its non-local property caused by the disparities among LF images. Although many deep neural networks (DNNs) have been developed for LF image SR and achieved continuously improved performance, existing methods cannot well leverage the long-range spatial-angular correlation and thus suffer a significant performance drop when handling scenes with large disparity variations. In this paper, we propose a simple yet effective method to learn the non-local spatial-angular correlation for LF image SR. In our method, we adopt the epipolar plane image (EPI) representation to project the 4D spatial-angular correlation onto multiple 2D EPI planes, and then develop a Transformer network with repetitive self-attention operations to learn the spatial-angular correlation by modeling the dependencies between each pair of EPI pixels. Our method can fully incorporate the information from all angular views while achieving a global receptive field along the epipolar line. We conduct extensive experiments with insightful visualizations to validate the effectiveness of our method. Comparative results on five public datasets show that our method not only achieves state-of-the-art SR performance, but also performs robust to disparity variations. Code is publicly available at https://github.com/ZhengyuLiang24/EPIT.

ARAUS: A Large-Scale Dataset and Baseline Models of Affective Responses to Augmented Urban Soundscapes

Choosing optimal maskers for existing soundscapes to effect a desired perceptual change via soundscape augmentation is non-trivial due to extensive varieties of maskers and a dearth of benchmark datasets with which to compare and develop soundscape augmentation models. To address this problem, we make publicly available the ARAUS (Affective Responses to Augmented Urban Soundscapes) dataset, which comprises a five-fold cross-validation set and independent test set totaling 25,440 unique subjective perceptual responses to augmented soundscapes presented as audio-visual stimuli. Each augmented soundscape is made by digitally adding "maskers" (bird, water, wind, traffic, construction, or silence) to urban soundscape recordings at fixed soundscape-to-masker ratios. Responses were then collected by asking participants to rate how pleasant, annoying, eventful, uneventful, vibrant, monotonous, chaotic, calm, and appropriate each augmented soundscape was, in accordance with ISO 12913-2:2018. Participants also provided relevant demographic information and completed standard psychological questionnaires. We perform exploratory and statistical analysis of the responses obtained to verify internal consistency and agreement with known results in the literature. Finally, we demonstrate the benchmarking capability of the dataset by training and comparing four baseline models for urban soundscape pleasantness: a low-parameter regression model, a high-parameter convolutional neural network, and two attention-based networks in the literature.

Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments

Federated learning (FL) is a privacy-friendly type of machine learning where devices locally train a model on their private data and typically communicate model updates with a server. In decentralized FL (DFL), peers communicate model updates with each other instead. However, DFL is challenging since (1) the training data possessed by different peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious, or Byzantine, attackers can share arbitrary model updates with other peers to subvert the training process. We address these two challenges and present Bristle, middleware between the learning application and the decentralized network layer. Bristle leverages transfer learning to predetermine and freeze the non-output layers of a neural network, significantly speeding up model training and lowering communication costs. To securely update the output layer with model updates from other peers, we design a fast distance-based prioritizer and a novel performance-based integrator. Their combined effect results in high resilience to Byzantine attackers and the ability to handle non-i.i.d. classes. We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine environments, outperforming all evaluated baselines. In non-Byzantine environments, Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-art methods. We show that when the training classes are non-i.i.d., Bristle significantly outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reducing communication costs by 90%.

Language Models are Few-Shot Learners

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation?

Large Language Models (LLMs) have demonstrated impressive performance on Natural Language Processing (NLP) tasks, such as Question Answering, Summarization, and Classification. The use of LLMs as evaluators, that can rank or score the output of other models (usually LLMs) has become increasingly popular, due to the limitations of current evaluation techniques including the lack of appropriate benchmarks, metrics, cost, and access to human annotators. While LLMs are capable of handling approximately 100 languages, the majority of languages beyond the top 20 lack systematic evaluation across various tasks, metrics, and benchmarks. This creates an urgent need to scale up multilingual evaluation to ensure a precise understanding of LLM performance across diverse languages. LLM-based evaluators seem like the perfect solution to this problem, as they do not require human annotators, human-created references, or benchmarks and can theoretically be used to evaluate any language covered by the LLM. In this paper, we investigate whether LLM-based evaluators can help scale up multilingual evaluation. Specifically, we calibrate LLM-based evaluation against 20k human judgments of five metrics across three text-generation tasks in eight languages. Our findings indicate that LLM-based evaluators may exhibit bias towards higher scores and should be used with caution and should always be calibrated with a dataset of native speaker judgments, particularly in low-resource and non-Latin script languages.

LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs) via distilled data. To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying the consequences of synthetic data integration. We provide one of the most comprehensive studies to-date of how the source of synthetic data shapes models' internal biases, calibration and generations' textual attributes and preferences. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear "neutral". which invites the question whether this sensitivity can be exploited for good. Our findings invite the question can we explicitly steer the models towards the properties we want at test time by exploiting the data generation process? This would have historically been considered infeasible due to the cost of collecting data with a specific characteristic or objective in mind. However, improvement in the quality of synthetic data, as well as a shift towards general-purpose models designed to follow a diverse way of instructions, means this question is timely. We propose active inheritance as a term to describe intentionally constraining synthetic data according to a non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion

Event cameras offer many advantages over standard cameras due to their distinctive principle of operation: low power, low latency, high temporal resolution and high dynamic range. Nonetheless, the success of many downstream visual applications also hinges on an efficient and effective scene representation, where Neural Radiance Field (NeRF) is seen as the leading candidate. Such promise and potential of event cameras and NeRF inspired recent works to investigate on the reconstruction of NeRF from moving event cameras. However, these works are mainly limited in terms of the dependence on dense and low-noise event streams, as well as generalization to arbitrary contrast threshold values and camera speed profiles. In this work, we propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras under various real-world conditions, especially from sparse and noisy events generated under non-uniform motion. It consists of two key components: a realistic event generation model that accounts for various intrinsic parameters (e.g. time-independent, asymmetric threshold and refractory period) and non-idealities (e.g. pixel-to-pixel threshold variation), as well as a complementary pair of normalized reconstruction losses that can effectively generalize to arbitrary speed profiles and intrinsic parameter values without such prior knowledge. Experiments on real and novel realistically simulated sequences verify our effectiveness. Our code, synthetic dataset and improved event simulator are public.

Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression

Pretrained transformers exhibit the remarkable ability of in-context learning (ICL): they can learn tasks from just a few examples provided in the prompt without updating any weights. This raises a foundational question: can ICL solve fundamentally new tasks that are very different from those seen during pretraining? To probe this question, we examine ICL's performance on linear regression while varying the diversity of tasks in the pretraining dataset. We empirically demonstrate a task diversity threshold for the emergence of ICL. Below this threshold, the pretrained transformer cannot solve unseen regression tasks, instead behaving like a Bayesian estimator with the non-diverse pretraining task distribution as the prior. Beyond this threshold, the transformer significantly outperforms this estimator; its behavior aligns with that of ridge regression, corresponding to a Gaussian prior over all tasks, including those not seen during pretraining. Thus, when pretrained on data with task diversity greater than the threshold, transformers can optimally solve fundamentally new tasks in-context. Importantly, this capability hinges on it deviating from the Bayes optimal estimator with the pretraining distribution as the prior. This study also explores the effect of regularization, model capacity and task structure and underscores, in a concrete example, the critical role of task diversity, alongside data and model scale, in the emergence of ICL. Code is available at https://github.com/mansheej/icl-task-diversity.

ArtBrain: An Explainable end-to-end Toolkit for Classification and Attribution of AI-Generated Art and Style

Recently, the quality of artworks generated using Artificial Intelligence (AI) has increased significantly, resulting in growing difficulties in detecting synthetic artworks. However, limited studies have been conducted on identifying the authenticity of synthetic artworks and their source. This paper introduces AI-ArtBench, a dataset featuring 185,015 artistic images across 10 art styles. It includes 125,015 AI-generated images and 60,000 pieces of human-created artwork. This paper also outlines a method to accurately detect AI-generated images and trace them to their source model. This work proposes a novel Convolutional Neural Network model based on the ConvNeXt model called AttentionConvNeXt. AttentionConvNeXt was implemented and trained to differentiate between the source of the artwork and its style with an F1-Score of 0.869. The accuracy of attribution to the generative model reaches 0.999. To combine the scientific contributions arising from this study, a web-based application named ArtBrain was developed to enable both technical and non-technical users to interact with the model. Finally, this study presents the results of an Artistic Turing Test conducted with 50 participants. The findings reveal that humans could identify AI-generated images with an accuracy of approximately 58%, while the model itself achieved a significantly higher accuracy of around 99%.

Are Models Biased on Text without Gender-related Language?

Gender bias research has been pivotal in revealing undesirable behaviors in large language models, exposing serious gender stereotypes associated with occupations, and emotions. A key observation in prior work is that models reinforce stereotypes as a consequence of the gendered correlations that are present in the training data. In this paper, we focus on bias where the effect from training data is unclear, and instead address the question: Do language models still exhibit gender bias in non-stereotypical settings? To do so, we introduce UnStereoEval (USE), a novel framework tailored for investigating gender bias in stereotype-free scenarios. USE defines a sentence-level score based on pretraining data statistics to determine if the sentence contain minimal word-gender associations. To systematically benchmark the fairness of popular language models in stereotype-free scenarios, we utilize USE to automatically generate benchmarks without any gender-related language. By leveraging USE's sentence-level score, we also repurpose prior gender bias benchmarks (Winobias and Winogender) for non-stereotypical evaluation. Surprisingly, we find low fairness across all 28 tested models. Concretely, models demonstrate fair behavior in only 9%-41% of stereotype-free sentences, suggesting that bias does not solely stem from the presence of gender-related words. These results raise important questions about where underlying model biases come from and highlight the need for more systematic and comprehensive bias evaluation. We release the full dataset and code at https://ucinlp.github.io/unstereo-eval.

Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?

Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.

Flexible Non-intrusive Dynamic Instrumentation for WebAssembly

A key strength of managed runtimes over hardware is the ability to gain detailed insight into the dynamic execution of programs with instrumentation. Analyses such as code coverage, execution frequency, tracing, and debugging, are all made easier in a virtual setting. As a portable, low-level bytecode, WebAssembly offers inexpensive in-process sandboxing with high performance. Yet to date, Wasm engines have not offered much insight into executing programs, supporting at best bytecode-level stepping and basic source maps, but no instrumentation capabilities. In this paper, we show the first non-intrusive dynamic instrumentation system for WebAssembly in the open-source Wizard Research Engine. Our innovative design offers a flexible, complete hierarchy of instrumentation primitives that support building high-level, complex analyses in terms of low-level, programmable probes. In contrast to emulation or machine code instrumentation, injecting probes at the bytecode level increases expressiveness and vastly simplifies the implementation by reusing the engine's JIT compiler, interpreter, and deoptimization mechanism rather than building new ones. Wizard supports both dynamic instrumentation insertion and removal while providing consistency guarantees, which is key to composing multiple analyses without interference. We detail a fully-featured implementation in a high-performance multi-tier Wasm engine, show novel optimizations specifically designed to minimize instrumentation overhead, and evaluate performance characteristics under load from various analyses. This design is well-suited for production engine adoption as probes can be implemented to have no impact on production performance when not in use.

ToonAging: Face Re-Aging upon Artistic Portrait Style Transfer

Face re-aging is a prominent field in computer vision and graphics, with significant applications in photorealistic domains such as movies, advertising, and live streaming. Recently, the need to apply face re-aging to non-photorealistic images, like comics, illustrations, and animations, has emerged as an extension in various entertainment sectors. However, the absence of a network capable of seamlessly editing the apparent age on NPR images means that these tasks have been confined to a naive approach, applying each task sequentially. This often results in unpleasant artifacts and a loss of facial attributes due to domain discrepancies. In this paper, we introduce a novel one-stage method for face re-aging combined with portrait style transfer, executed in a single generative step. We leverage existing face re-aging and style transfer networks, both trained within the same PR domain. Our method uniquely fuses distinct latent vectors, each responsible for managing aging-related attributes and NPR appearance. Adopting an exemplar-based approach, our method offers greater flexibility than domain-level fine-tuning approaches, which typically require separate training or fine-tuning for each domain. This effectively addresses the limitation of requiring paired datasets for re-aging and domain-level, data-driven approaches for stylization. Our experiments show that our model can effortlessly generate re-aged images while simultaneously transferring the style of examples, maintaining both natural appearance and controllability.

Implicit Gaussian process representation of vector fields over arbitrary latent manifolds

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities

Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings -- newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from "solved", and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates.

DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network

The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.

Effective Invertible Arbitrary Image Rescaling

Great successes have been achieved using deep learning techniques for image super-resolution (SR) with fixed scales. To increase its real world applicability, numerous models have also been proposed to restore SR images with arbitrary scale factors, including asymmetric ones where images are resized to different scales along horizontal and vertical directions. Though most models are only optimized for the unidirectional upscaling task while assuming a predefined downscaling kernel for low-resolution (LR) inputs, recent models based on Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly. However, limited by the INN architecture, it is constrained to fixed integer scale factors and requires one model for each scale. Without increasing model complexity, a simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work. Using innovative components like position-aware scale encoding and preemptive channel splitting, the network is optimized to convert the non-invertible rescaling cycle to an effectively invertible process. It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs. It is also demonstrated to perform well on tests with asymmetric scales using the same network architecture.

FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation

Federated Learning (FL) is a decentralized learning paradigm, in which multiple clients collaboratively train deep learning models without centralizing their local data, and hence preserve data privacy. Real-world applications usually involve a distribution shift across the datasets of the different clients, which hurts the generalization ability of the clients to unseen samples from their respective data distributions. In this work, we address the recently proposed feature shift problem where the clients have different feature distributions, while the label distribution is the same. We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem. Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets. For that, we train a shared generative model to fuse the clients knowledge learned from their different feature distributions. This generator synthesizes client-agnostic embeddings, which are then locally transformed into client-specific embeddings by Representation Transformation Networks (RTNets). By transferring knowledge across the clients, the generated embeddings act as a regularizer for the client models and reduce overfitting to the local original datasets, hence improving generalization. Our empirical evaluation on public benchmarks and a real-world medical dataset demonstrates the effectiveness of the proposed method, which substantially outperforms the current state-of-the-art FL methods for non-IID features, including PartialFed and FedBN.

Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwritten Text Recognition

Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic information (e.g. dictionaries and language models). Thus, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human labor annotation process, requiring only few images of each alphabet symbol. The method consists in detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from any alphabet, even though different from the target domain. A second training step is then applied to diminish the gap between the source and target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the non-annotated data. The evaluation on different manuscript datasets show that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in this repository: https://github.com/dali92002/HTRbyMatching

Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56

Deep Line Art Video Colorization with a Few References

Coloring line art images based on the colors of reference images is an important stage in animation production, which is time-consuming and tedious. In this paper, we propose a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework consists of a color transform network and a temporal constraint network. The color transform network takes the target line art images as well as the line art and color images of one or more reference images as input, and generates corresponding target color images. To cope with larger differences between the target line art image and reference color images, our architecture utilizes non-local similarity matching to determine the region correspondences between the target image and the reference images, which are used to transform the local color information from the references to the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the transformation parameters obtained from a style embedding vector that describes the global color style of the references, extracted by an embedder. The temporal constraint network takes the reference images and the target image together in chronological order, and learns the spatiotemporal features through 3D convolution to ensure the temporal consistency of the target image and the reference image. Our model can achieve even better coloring results by fine-tuning the parameters with only a small amount of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset. Experiments show that our method achieves the best performance on line art video coloring compared to the state-of-the-art methods and other baselines.

From RAG to Memory: Non-Parametric Continual Learning for Large Language Models

Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Our code and data will be released at https://github.com/OSU-NLP-Group/HippoRAG.

NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking

Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.

MMBench: Is Your Multi-modal Model an All-around Player?

Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.

Large Language Models are Temporal and Causal Reasoners for Video Question Answering

Large Language Models (LLMs) have shown remarkable performances on a wide range of natural language understanding and generation tasks. We observe that the LLMs provide effective priors in exploiting linguistic shortcuts for temporal and causal reasoning in Video Question Answering (VideoQA). However, such priors often cause suboptimal results on VideoQA by leading the model to over-rely on questions, i.e., linguistic bias, while ignoring visual content. This is also known as `ungrounded guesses' or `hallucinations'. To address this problem while leveraging LLMs' prior on VideoQA, we propose a novel framework, Flipped-VQA, encouraging the model to predict all the combinations of langleV, Q, Arangle triplet by flipping the source pair and the target label to understand their complex relationships, i.e., predict A, Q, and V given a VQ, VA, and QA pairs, respectively. In this paper, we develop LLaMA-VQA by applying Flipped-VQA to LLaMA, and it outperforms both LLMs-based and non-LLMs-based models on five challenging VideoQA benchmarks. Furthermore, our Flipped-VQA is a general framework that is applicable to various LLMs (OPT and GPT-J) and consistently improves their performances. We empirically demonstrate that Flipped-VQA not only enhances the exploitation of linguistic shortcuts but also mitigates the linguistic bias, which causes incorrect answers over-relying on the question. Code is available at https://github.com/mlvlab/Flipped-VQA.

Frozen Transformers in Language Models Are Effective Visual Encoder Layers

This paper reveals that large language models (LLMs), despite being trained solely on textual data, are surprisingly strong encoders for purely visual tasks in the absence of language. Even more intriguingly, this can be achieved by a simple yet previously overlooked strategy -- employing a frozen transformer block from pre-trained LLMs as a constituent encoder layer to directly process visual tokens. Our work pushes the boundaries of leveraging LLMs for computer vision tasks, significantly departing from conventional practices that typically necessitate a multi-modal vision-language setup with associated language prompts, inputs, or outputs. We demonstrate that our approach consistently enhances performance across a diverse range of tasks, encompassing pure 2D and 3D visual recognition tasks (e.g., image and point cloud classification), temporal modeling tasks (e.g., action recognition), non-semantic tasks (e.g., motion forecasting), and multi-modal tasks (e.g., 2D/3D visual question answering and image-text retrieval). Such improvements are a general phenomenon, applicable to various types of LLMs (e.g., LLaMA and OPT) and different LLM transformer blocks. We additionally propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding -- the pre-trained LLM transformer blocks discern informative visual tokens and further amplify their effect. This hypothesis is empirically supported by the observation that the feature activation, after training with LLM transformer blocks, exhibits a stronger focus on relevant regions. We hope that our work inspires new perspectives on utilizing LLMs and deepening our understanding of their underlying mechanisms. Code is available at https://github.com/ziqipang/LM4VisualEncoding.

Leveraging Intrinsic Properties for Non-Rigid Garment Alignment

We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity constraints. While intrinsic methods based on functional maps can produce high-quality correspondences, they work under isometric assumptions and become unreliable for garment deformations which are highly non-isometric. To achieve wrinkle-level as well as texture-level alignment, we present a novel coarse-to-fine two-stage method that leverages intrinsic manifold properties with two neural deformation fields, in the 3D space and the intrinsic space, respectively. The coarse stage performs a 3D fitting, where we leverage intrinsic manifold properties to define a manifold deformation field. The coarse fitting then induces a functional map that produces an alignment of intrinsic embeddings. We further refine the intrinsic alignment with a second neural deformation field for higher accuracy. We evaluate our method with our captured garment dataset, GarmCap. The method achieves accurate wrinkle-level and texture-level alignment and works for difficult garment types such as long coats. Our project page is https://jsnln.github.io/iccv2023_intrinsic/index.html.

Fourier Contour Embedding for Arbitrary-Shaped Text Detection

One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.

AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene

Compared to frame-based methods, computational neuromorphic imaging using event cameras offers significant advantages, such as minimal motion blur, enhanced temporal resolution, and high dynamic range. The multi-view consistency of Neural Radiance Fields combined with the unique benefits of event cameras, has spurred recent research into reconstructing NeRF from data captured by moving event cameras. While showing impressive performance, existing methods rely on ideal conditions with the availability of uniform and high-quality event sequences and accurate camera poses, and mainly focus on the object level reconstruction, thus limiting their practical applications. In this work, we propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions, including non-uniform event sequences, noisy poses, and various scales of scenes. Our method exploits the density of event streams and jointly learn a pose correction module with an event-based NeRF (e-NeRF) framework for robust 3D reconstruction from inaccurate camera poses. To generalize to larger scenes, we propose hierarchical event distillation with a proposal e-NeRF network and a vanilla e-NeRF network to resample and refine the reconstruction process. We further propose an event reconstruction loss and a temporal loss to improve the view consistency of the reconstructed scene. We established a comprehensive benchmark that includes large-scale scenes to simulate practical non-ideal conditions, incorporating both synthetic and challenging real-world event datasets. The experimental results show that our method achieves a new state-of-the-art in event-based 3D reconstruction.

LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs

Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes. Although they share sequence similarities with messenger RNAs (mRNAs), lncRNAs perform entirely different roles, providing new avenues for biological research. The emergence of next-generation sequencing technologies has greatly advanced the detection and identification of lncRNA transcripts and deep learning-based approaches have been introduced to classify long non-coding RNAs (lncRNAs). These advanced methods have significantly enhanced the efficiency of identifying lncRNAs. However, many of these methods are devoid of robustness and accuracy due to the extended length of the sequences involved. To tackle this issue, we have introduced a novel pre-trained bidirectional encoder representation called LoRA-BERT. LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification, leading to more robust and satisfactory outcomes. In a comprehensive comparison with commonly used sequence prediction tools, we have demonstrated that LoRA-BERT outperforms them in terms of accuracy and efficiency. Our results indicate that, when utilizing the transformer model, LoRA-BERT achieves state-of-the-art performance in predicting both lncRNAs and mRNAs for human and mouse species. Through the utilization of LoRA-BERT, we acquire valuable insights into the traits of lncRNAs and mRNAs, offering the potential to aid in the comprehension and detection of diseases linked to lncRNAs in humans.

A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection

This review paper explores recent advances in deep learning approaches for non-invasive cognitive impairment detection. We examine various non-invasive indicators of cognitive decline, including speech and language, facial, and motoric mobility. The paper provides an overview of relevant datasets, feature-extracting techniques, and deep-learning architectures applied to this domain. We have analyzed the performance of different methods across modalities and observed that speech and language-based methods generally achieved the highest detection performance. Studies combining acoustic and linguistic features tended to outperform those using a single modality. Facial analysis methods showed promise for visual modalities but were less extensively studied. Most papers focused on binary classification (impaired vs. non-impaired), with fewer addressing multi-class or regression tasks. Transfer learning and pre-trained language models emerged as popular and effective techniques, especially for linguistic analysis. Despite significant progress, several challenges remain, including data standardization and accessibility, model explainability, longitudinal analysis limitations, and clinical adaptation. Lastly, we propose future research directions, such as investigating language-agnostic speech analysis methods, developing multi-modal diagnostic systems, and addressing ethical considerations in AI-assisted healthcare. By synthesizing current trends and identifying key obstacles, this review aims to guide further development of deep learning-based cognitive impairment detection systems to improve early diagnosis and ultimately patient outcomes.

Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents

For safety reasons, large language models (LLMs) are trained to refuse harmful user instructions, such as assisting dangerous activities. We study an open question in this work: does the desired safety refusal, typically enforced in chat contexts, generalize to non-chat and agentic use cases? Unlike chatbots, LLM agents equipped with general-purpose tools, such as web browsers and mobile devices, can directly influence the real world, making it even more crucial to refuse harmful instructions. In this work, we primarily focus on red-teaming browser agents, LLMs that manipulate information via web browsers. To this end, we introduce Browser Agent Red teaming Toolkit (BrowserART), a comprehensive test suite designed specifically for red-teaming browser agents. BrowserART is consist of 100 diverse browser-related harmful behaviors (including original behaviors and ones sourced from HarmBench [Mazeika et al., 2024] and AirBench 2024 [Zeng et al., 2024b]) across both synthetic and real websites. Our empirical study on state-of-the-art browser agents reveals that, while the backbone LLM refuses harmful instructions as a chatbot, the corresponding agent does not. Moreover, attack methods designed to jailbreak refusal-trained LLMs in the chat settings transfer effectively to browser agents. With human rewrites, GPT-4o and o1-preview-based browser agents attempted 98 and 63 harmful behaviors (out of 100), respectively. We publicly release BrowserART and call on LLM developers, policymakers, and agent developers to collaborate on improving agent safety

Natively neuromorphic LMU architecture for encoding-free SNN-based HAR on commercial edge devices

Neuromorphic models take inspiration from the human brain by adopting bio-plausible neuron models to build alternatives to traditional Machine Learning (ML) and Deep Learning (DL) solutions. The scarce availability of dedicated hardware able to actualize the emulation of brain-inspired computation, which is otherwise only simulated, yet still hinders the wide adoption of neuromorphic computing for edge devices and embedded systems. With this premise, we adopt the perspective of neuromorphic computing for conventional hardware and we present the L2MU, a natively neuromorphic Legendre Memory Unit (LMU) which entirely relies on Leaky Integrate-and-Fire (LIF) neurons. Specifically, the original recurrent architecture of LMU has been redesigned by modelling every constituent element with neural populations made of LIF or Current-Based (CuBa) LIF neurons. To couple neuromorphic computing and off-the-shelf edge devices, we equipped the L2MU with an input module for the conversion of real values into spikes, which makes it an encoding-free implementation of a Recurrent Spiking Neural Network (RSNN) able to directly work with raw sensor signals on non-dedicated hardware. As a use case to validate our network, we selected the task of Human Activity Recognition (HAR). We benchmarked our L2MU on smartwatch signals from hand-oriented activities, deploying it on three different commercial edge devices in compressed versions too. The reported results remark the possibility of considering neuromorphic models not only in an exclusive relationship with dedicated hardware but also as a suitable choice to work with common sensors and devices.

The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)

Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and marked a significant paradigm shift in how biomedical models can be developed and deployed. While these models are highly adaptable to new tasks, scaling and evaluating their usage presents new challenges not addressed in previous frameworks. In particular, the ability of these models to produce useful outputs with little to no specialized training data ("zero-" or "few-shot" approaches), as well as the open-ended nature of their outputs, necessitate the development of new guidelines for robust reporting of clinical generative model research. In response to gaps in standards and best practices for the development of clinical AI tools identified by US Executive Order 141103 and several emerging national networks for clinical AI evaluation, we begin to formalize some of these guidelines by building on the original MI-CLAIM checklist. The new checklist, MI-CLAIM-GEN (Table 1), aims to address differences in training, evaluation, interpretability, and reproducibility of new generative models compared to non-generative ("predictive") AI models. This MI-CLAIM-GEN checklist also seeks to clarify cohort selection reporting with unstructured clinical data and adds additional items on alignment with ethical standards for clinical AI research.

Pretty darn good control: when are approximate solutions better than approximate models

Existing methods for optimal control struggle to deal with the complexity commonly encountered in real-world systems, including dimensionality, process error, model bias and data heterogeneity. Instead of tackling these system complexities directly, researchers have typically sought to simplify models to fit optimal control methods. But when is the optimal solution to an approximate, stylized model better than an approximate solution to a more accurate model? While this question has largely gone unanswered owing to the difficulty of finding even approximate solutions for complex models, recent algorithmic and computational advances in deep reinforcement learning (DRL) might finally allow us to address these questions. DRL methods have to date been applied primarily in the context of games or robotic mechanics, which operate under precisely known rules. Here, we demonstrate the ability for DRL algorithms using deep neural networks to successfully approximate solutions (the "policy function" or control rule) in a non-linear three-variable model for a fishery without knowing or ever attempting to infer a model for the process itself. We find that the reinforcement learning agent discovers an effective simplification of the problem to obtain an interpretable control rule. We show that the policy obtained with DRL is both more profitable and more sustainable than any constant mortality policy -- the standard family of policies considered in fishery management.

MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability

When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.

Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation

Trustworthy Artificial Intelligence (AI) is based on seven technical requirements sustained over three main pillars that should be met throughout the system's entire life cycle: it should be (1) lawful, (2) ethical, and (3) robust, both from a technical and a social perspective. However, attaining truly trustworthy AI concerns a wider vision that comprises the trustworthiness of all processes and actors that are part of the system's life cycle, and considers previous aspects from different lenses. A more holistic vision contemplates four essential axes: the global principles for ethical use and development of AI-based systems, a philosophical take on AI ethics, a risk-based approach to AI regulation, and the mentioned pillars and requirements. The seven requirements (human agency and oversight; robustness and safety; privacy and data governance; transparency; diversity, non-discrimination and fairness; societal and environmental wellbeing; and accountability) are analyzed from a triple perspective: What each requirement for trustworthy AI is, Why it is needed, and How each requirement can be implemented in practice. On the other hand, a practical approach to implement trustworthy AI systems allows defining the concept of responsibility of AI-based systems facing the law, through a given auditing process. Therefore, a responsible AI system is the resulting notion we introduce in this work, and a concept of utmost necessity that can be realized through auditing processes, subject to the challenges posed by the use of regulatory sandboxes. Our multidisciplinary vision of trustworthy AI culminates in a debate on the diverging views published lately about the future of AI. Our reflections in this matter conclude that regulation is a key for reaching a consensus among these views, and that trustworthy and responsible AI systems will be crucial for the present and future of our society.

Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs

The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.

Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON

Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications