Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeExpressive Losses for Verified Robustness via Convex Combinations
In order to train networks for verified adversarial robustness, it is common to over-approximate the worst-case loss over perturbation regions, resulting in networks that attain verifiability at the expense of standard performance. As shown in recent work, better trade-offs between accuracy and robustness can be obtained by carefully coupling adversarial training with over-approximations. We hypothesize that the expressivity of a loss function, which we formalize as the ability to span a range of trade-offs between lower and upper bounds to the worst-case loss through a single parameter (the over-approximation coefficient), is key to attaining state-of-the-art performance. To support our hypothesis, we show that trivial expressive losses, obtained via convex combinations between adversarial attacks and IBP bounds, yield state-of-the-art results across a variety of settings in spite of their conceptual simplicity. We provide a detailed analysis of the relationship between the over-approximation coefficient and performance profiles across different expressive losses, showing that, while expressivity is essential, better approximations of the worst-case loss are not necessarily linked to superior robustness-accuracy trade-offs.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
Effective Structural Encodings via Local Curvature Profiles
Structural and Positional Encodings can significantly improve the performance of Graph Neural Networks in downstream tasks. Recent literature has begun to systematically investigate differences in the structural properties that these approaches encode, as well as performance trade-offs between them. However, the question of which structural properties yield the most effective encoding remains open. In this paper, we investigate this question from a geometric perspective. We propose a novel structural encoding based on discrete Ricci curvature (Local Curvature Profiles, short LCP) and show that it significantly outperforms existing encoding approaches. We further show that combining local structural encodings, such as LCP, with global positional encodings improves downstream performance, suggesting that they capture complementary geometric information. Finally, we compare different encoding types with (curvature-based) rewiring techniques. Rewiring has recently received a surge of interest due to its ability to improve the performance of Graph Neural Networks by mitigating over-smoothing and over-squashing effects. Our results suggest that utilizing curvature information for structural encodings delivers significantly larger performance increases than rewiring.
End-to-end Training for Recommendation with Language-based User Profiles
Many online platforms maintain user profiles for personalization. Unfortunately, these profiles are typically not interpretable or easily modifiable by the user. To remedy this shortcoming, we explore natural language-based user profiles, as they promise enhanced transparency and scrutability of recommender systems. While existing work has shown that language-based profiles from standard LLMs can be effective, such generalist LLMs are unlikely to be optimal for this task. In this paper, we introduce LangPTune, the first end-to-end learning method for training LLMs to produce language-based user profiles that optimize recommendation effectiveness. Through comprehensive evaluations of LangPTune across various training configurations and benchmarks, we demonstrate that our approach significantly outperforms existing profile-based methods. In addition, it approaches performance levels comparable to state-of-the-art, less transparent recommender systems, providing a robust and interpretable alternative to conventional systems. Finally, we validate the relative interpretability of these language-based user profiles through user studies involving crowdworkers and GPT-4-based evaluations. Implementation of LangPTune can be found at https://github.com/ZhaolinGao/LangPTune.
Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles
User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
Prompt Framework for Role-playing: Generation and Evaluation
Large language models (LLM) have demonstrated remarkable abilities in generating natural language, understanding user instruction, and mimicking human language use. These capabilities have garnered considerable interest in applications such as role-playing. However, the process of collecting individual role scripts (or profiles) data and manually evaluating the performance can be costly. We introduce a framework that uses prompts to leverage the state-of-the-art (SOTA) LLMs to construct role-playing dialogue datasets and evaluate the role-playing performance. Additionally, we employ recall-oriented evaluation Rouge-L metric to support the result of the LLM evaluator.
ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning
Hyperparameters are a critical factor in reliably training well-performing reinforcement learning (RL) agents. Unfortunately, developing and evaluating automated approaches for tuning such hyperparameters is both costly and time-consuming. As a result, such approaches are often only evaluated on a single domain or algorithm, making comparisons difficult and limiting insights into their generalizability. We propose ARLBench, a benchmark for hyperparameter optimization (HPO) in RL that allows comparisons of diverse HPO approaches while being highly efficient in evaluation. To enable research into HPO in RL, even in settings with low compute resources, we select a representative subset of HPO tasks spanning a variety of algorithm and environment combinations. This selection allows for generating a performance profile of an automated RL (AutoRL) method using only a fraction of the compute previously necessary, enabling a broader range of researchers to work on HPO in RL. With the extensive and large-scale dataset on hyperparameter landscapes that our selection is based on, ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL. Both the benchmark and the dataset are available at https://github.com/automl/arlbench.
Multi Resolution Analysis (MRA) for Approximate Self-Attention
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.
PRODIGy: a PROfile-based DIalogue Generation dataset
Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.
Performance Comparison of Large Language Models on VNHSGE English Dataset: OpenAI ChatGPT, Microsoft Bing Chat, and Google Bard
This paper presents a performance comparison of three large language models (LLMs), namely OpenAI ChatGPT, Microsoft Bing Chat (BingChat), and Google Bard, on the VNHSGE English dataset. The performance of BingChat, Bard, and ChatGPT (GPT-3.5) is 92.4\%, 86\%, and 79.2\%, respectively. The results show that BingChat is better than ChatGPT and Bard. Therefore, BingChat and Bard can replace ChatGPT while ChatGPT is not yet officially available in Vietnam. The results also indicate that BingChat, Bard and ChatGPT outperform Vietnamese students in English language proficiency. The findings of this study contribute to the understanding of the potential of LLMs in English language education. The remarkable performance of ChatGPT, BingChat, and Bard demonstrates their potential as effective tools for teaching and learning English at the high school level.
Performance-aware Approximation of Global Channel Pruning for Multitask CNNs
Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.
Performance Evaluation of Deep Learning Tools in Docker Containers
With the success of deep learning techniques in a broad range of application domains, many deep learning software frameworks have been developed and are being updated frequently to adapt to new hardware features and software libraries, which bring a big challenge for end users and system administrators. To address this problem, container techniques are widely used to simplify the deployment and management of deep learning software. However, it remains unknown whether container techniques bring any performance penalty to deep learning applications. The purpose of this work is to systematically evaluate the impact of docker container on the performance of deep learning applications. We first benchmark the performance of system components (IO, CPU and GPU) in a docker container and the host system and compare the results to see if there's any difference. According to our results, we find that computational intensive jobs, either running on CPU or GPU, have small overhead indicating docker containers can be applied to deep learning programs. Then we evaluate the performance of some popular deep learning tools deployed in a docker container and the host system. It turns out that the docker container will not cause noticeable drawbacks while running those deep learning tools. So encapsulating deep learning tool in a container is a feasible solution.
Performance-Guided LLM Knowledge Distillation for Efficient Text Classification at Scale
Large Language Models (LLMs) face significant challenges at inference time due to their high computational demands. To address this, we present Performance-Guided Knowledge Distillation (PGKD), a cost-effective and high-throughput solution for production text classification applications. PGKD utilizes teacher-student Knowledge Distillation to distill the knowledge of LLMs into smaller, task-specific models. PGKD establishes an active learning routine between the student model and the LLM; the LLM continuously generates new training data leveraging hard-negative mining, student model validation performance, and early-stopping protocols to inform the data generation. By employing a cyclical, performance-aware approach tailored for highly multi-class, sparsely annotated datasets prevalent in industrial text classification, PGKD effectively addresses training challenges and outperforms traditional BERT-base models and other knowledge distillation methods on several multi-class classification datasets. Additionally, cost and latency benchmarking reveals that models fine-tuned with PGKD are up to 130X faster and 25X less expensive than LLMs for inference on the same classification task. While PGKD is showcased for text classification tasks, its versatile framework can be extended to any LLM distillation task, including language generation, making it a powerful tool for optimizing performance across a wide range of AI applications.
Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.
Performance Evaluation of Tokenizers in Large Language Models for the Assamese Language
Training of a tokenizer plays an important role in the performance of deep learning models. This research aims to understand the performance of tokenizers in five state-of-the-art (SOTA) large language models (LLMs) in the Assamese language of India. The research is important to understand the multi-lingual support for a low-resourced language such as Assamese. Our research reveals that the tokenizer of SUTRA from Two AI performs the best with an average Normalized Sequence Length (NSL) value of 0.45, closely followed by the tokenizer of GPT-4o from Open AI with an average NSL value of 0.54, followed by Gemma 2, Meta Llama 3.1, and Mistral Large Instruct 2407 with an average NSL value of 0.82, 1.4, and 1.48 respectively.
Performance Law of Large Language Models
Guided by the belief of the scaling law, large language models (LLMs) have achieved impressive performance in recent years. However, scaling law only gives a qualitative estimation of loss, which is influenced by various factors such as model architectures, data distributions, tokenizers, and computation precision. Thus, estimating the real performance of LLMs with different training settings rather than loss may be quite useful in practical development. In this article, we present an empirical equation named "Performance Law" to directly predict the MMLU score of an LLM, which is a widely used metric to indicate the general capability of LLMs in real-world conversations and applications. Based on only a few key hyperparameters of the LLM architecture and the size of training data, we obtain a quite accurate MMLU prediction of various LLMs with diverse sizes and architectures developed by different organizations in different years. Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
Performance of Recent Large Language Models for a Low-Resourced Language
Large Language Models (LLMs) have shown significant advances in the past year. In addition to new versions of GPT and Llama, several other LLMs have been introduced recently. Some of these are open models available for download and modification. Although multilingual large language models have been available for some time, their performance on low-resourced languages such as Sinhala has been poor. We evaluated four recent LLMs on their performance directly in the Sinhala language, and by translation to and from English. We also evaluated their fine-tunability with a small amount of fine-tuning data. Claude and GPT 4o perform well out-of-the-box and do significantly better than previous versions. Llama and Mistral perform poorly but show some promise of improvement with fine tuning.
Performance Analysis of Speech Encoders for Low-Resource SLU and ASR in Tunisian Dialect
Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper.
Performance Improvement of Language-Queried Audio Source Separation Based on Caption Augmentation From Large Language Models for DCASE Challenge 2024 Task 9
We present a prompt-engineering-based text-augmentation approach applied to a language-queried audio source separation (LASS) task. To enhance the performance of LASS, the proposed approach utilizes large language models (LLMs) to generate multiple captions corresponding to each sentence of the training dataset. To this end, we first perform experiments to identify the most effective prompts for caption augmentation with a smaller number of captions. A LASS model trained with these augmented captions demonstrates improved performance on the DCASE 2024 Task 9 validation set compared to that trained without augmentation. This study highlights the effectiveness of LLM-based caption augmentation in advancing language-queried audio source separation.
Performance-Aligned LLMs for Generating Fast Code
Optimizing scientific software is a difficult task because codebases are often large and complex, and performance can depend upon several factors including the algorithm, its implementation, and hardware among others. Causes of poor performance can originate from disparate sources and be difficult to diagnose. Recent years have seen a multitude of work that use large language models (LLMs) to assist in software development tasks. However, these tools are trained to model the distribution of code as text, and are not specifically designed to understand performance aspects of code. In this work, we introduce a reinforcement learning based methodology to align the outputs of code LLMs with performance. This allows us to build upon the current code modeling capabilities of LLMs and extend them to generate better performing code. We demonstrate that our fine-tuned model improves the expected speedup of generated code over base models for a set of benchmark tasks from 0.9 to 1.6 for serial code and 1.9 to 4.5 for OpenMP code.
Performance Gaps in Multi-view Clustering under the Nested Matrix-Tensor Model
We study the estimation of a planted signal hidden in a recently introduced nested matrix-tensor model, which is an extension of the classical spiked rank-one tensor model, motivated by multi-view clustering. Prior work has theoretically examined the performance of a tensor-based approach, which relies on finding a best rank-one approximation, a problem known to be computationally hard. A tractable alternative approach consists in computing instead the best rank-one (matrix) approximation of an unfolding of the observed tensor data, but its performance was hitherto unknown. We quantify here the performance gap between these two approaches, in particular by deriving the precise algorithmic threshold of the unfolding approach and demonstrating that it exhibits a BBP-type transition behavior. This work is therefore in line with recent contributions which deepen our understanding of why tensor-based methods surpass matrix-based methods in handling structured tensor data.
Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks
Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
Performance Analysis of UNet and Variants for Medical Image Segmentation
Medical imaging plays a crucial role in modern healthcare by providing non-invasive visualisation of internal structures and abnormalities, enabling early disease detection, accurate diagnosis, and treatment planning. This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation. We seek to evaluate the performance of these models across various challenging medical image segmentation tasks, addressing issues such as image normalization, resizing, architecture choices, loss function design, and hyperparameter tuning. The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model, while the Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details. The study also addresses the challenge of high class imbalance through careful preprocessing and loss function definitions. We anticipate that the results of this study will provide useful insights for researchers seeking to apply these models to new medical imaging problems and offer guidance and best practices for their implementation.
Performance Analysis of Various EfficientNet Based U-Net++ Architecture for Automatic Building Extraction from High Resolution Satellite Images
Building extraction is an essential component of study in the science of remote sensing, and applications for building extraction heavily rely on semantic segmentation of high-resolution remote sensing imagery. Semantic information extraction gap constraints in the present deep learning based approaches, however can result in inadequate segmentation outcomes. To address this issue and extract buildings with high accuracy, various efficientNet backbone based U-Net++ has been proposed in this study. The designed network, based on U-Net, can improve the sensitivity of the model by deep supervision, voluminous redesigned skip-connections and hence reducing the influence of irrelevant feature areas in the background. Various effecientNet backbone based encoders have been employed when training the network to enhance the capacity of the model to extract more relevant feature. According on the experimental findings, the suggested model significantly outperforms previous cutting-edge approaches. Among the 5 efficientNet variation Unet++ based on efficientb4 achieved the best result by scoring mean accuracy of 92.23%, mean iou of 88.32%, and mean precision of 93.2% on publicly available Massachusetts building dataset and thus showing the promises of the model for automatic building extraction from high resolution satellite images.
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
Performance limits on photonic heterostructures
Recent advances in the area of photonic optimization have made it possible to establish performance bounds on a wide range of electromagnetic objectives, albeit restricted to systems composed of single materials. In this work, motivated by interest in applications of optical heterostructures to broadband absorption, passive cooling, and ultrafast photonics, we show that these existing optimization methods can be readily extended to incorporate multi-material settings. Representative bounds on absorption in multilayer films and compact structures comprising two materials are shown to predict trends seen in topology-optimized devices, typically coming within factors of two of specific designs, and demonstrate higher achievable performance for heterostructures compared to single-material systems.
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.
Performance analysis of Volna-OP2 -- massively parallel code for tsunami modelling
The software package Volna-OP2 is a robust and efficient code capable of simulating the complete life cycle of a tsunami whilst harnessing the latest High Performance Computing (HPC) architectures. In this paper, a comprehensive error analysis and scalability study of the GPU version of the code is presented. A novel decomposition of the numerical errors into the dispersion and dissipation components is explored. Most tsunami codes exhibit amplitude smearing and/or phase lagging/leading, so the decomposition shown here is a new approach and novel tool for explaining these occurrences. It is the first time that the errors of a tsunami code have been assessed in this manner. To date, Volna-OP2 has been widely used by the tsunami modelling community. In particular its computational efficiency has allowed various sensitivity analyses and uncertainty quantification studies. Due to the number of simulations required, there is always a trade-off between accuracy and runtime when carrying out these statistical studies. The analysis presented in this paper will guide the user towards an acceptable level of accuracy within a given runtime.
Performance Limits of Network Densification
Network densification is a promising cellular deployment technique that leverages spatial reuse to enhance coverage and throughput. Recent work has identified that at some point ultra-densification will no longer be able to deliver significant throughput gains. In this paper, we provide a unified treatment of the performance limits of network densification. We develop a general framework, which incorporates multi-slope pathloss and the entire space of shadowing and small scale fading distributions, under strongest cell association in a Poisson field of interferers. First, our results show that there are three scaling regimes for the downlink signal-to-interference-plus-noise ratio (SINR), coverage probability, and average per-user rate. Specifically, depending on the near-field pathloss and the fading distribution, the user performance of 5G ultra dense networks (UDNs) would either monotonically increase, saturate, or decay with increasing network density. Second, we show that network performance in terms of coverage density and area spectral efficiency can scale with the network density better than the user performance does. Furthermore, we provide ordering results for both coverage and average rate as a means to qualitatively compare different transmission techniques that may exhibit the same performance scaling. Our results, which are verified by simulations, provide succinct insights and valuable design guidelines for the deployment of 5G UDNs.
Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
Inference Performance Optimization for Large Language Models on CPUs
Large language models (LLMs) have shown exceptional performance and vast potential across diverse tasks. However, the deployment of LLMs with high performance in low-resource environments has garnered significant attention in the industry. When GPU hardware resources are limited, we can explore alternative options on CPUs. To mitigate the financial burden and alleviate constraints imposed by hardware resources, optimizing inference performance is necessary. In this paper, we introduce an easily deployable inference performance optimization solution aimed at accelerating LLMs on CPUs. In this solution, we implement an effective way to reduce the KV cache size while ensuring precision. We propose a distributed inference optimization approach and implement it based on oneAPI Collective Communications Library. Furthermore, we propose optimization approaches for LLMs on CPU, and conduct tailored optimizations for the most commonly used models. The code is open-sourced at https://github.com/intel/xFasterTransformer.
A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models
Generative Large Language Models (LLMs) have achieved remarkable advancements in various NLP tasks. However, these advances have not been reflected in the translation task, especially those with moderate model sizes (i.e., 7B or 13B parameters), which still lag behind conventional supervised encoder-decoder translation models. Previous studies have attempted to improve the translation capabilities of these moderate LLMs, but their gains have been limited. In this study, we propose a novel fine-tuning approach for LLMs that is specifically designed for the translation task, eliminating the need for the abundant parallel data that traditional translation models usually depend on. Our approach consists of two fine-tuning stages: initial fine-tuning on monolingual data followed by subsequent fine-tuning on a small set of high-quality parallel data. We introduce the LLM developed through this strategy as Advanced Language Model-based trAnslator (ALMA). Based on LLaMA-2 as our underlying model, our results show that the model can achieve an average improvement of more than 12 BLEU and 12 COMET over its zero-shot performance across 10 translation directions from the WMT'21 (2 directions) and WMT'22 (8 directions) test datasets. The performance is significantly better than all prior work and even superior to the NLLB-54B model and GPT-3.5-text-davinci-003, with only 7B or 13B parameters. This method establishes the foundation for a novel training paradigm in machine translation.
Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.
A Performance Evaluation of a Quantized Large Language Model on Various Smartphones
This paper explores the feasibility and performance of on-device large language model (LLM) inference on various Apple iPhone models. Amidst the rapid evolution of generative AI, on-device LLMs offer solutions to privacy, security, and connectivity challenges inherent in cloud-based models. Leveraging existing literature on running multi-billion parameter LLMs on resource-limited devices, our study examines the thermal effects and interaction speeds of a high-performing LLM across different smartphone generations. We present real-world performance results, providing insights into on-device inference capabilities.
Collaborative Performance Prediction for Large Language Models
Comprehensively understanding and accurately predicting the performance of large language models across diverse downstream tasks has emerged as a pivotal challenge in NLP research. The pioneering scaling law on downstream works demonstrated intrinsic similarities within model families and utilized such similarities for performance prediction. However, they tend to overlook the similarities between model families and only consider design factors listed in the original scaling law. To overcome these limitations, we introduce a novel framework, Collaborative Performance Prediction (CPP), which significantly enhances prediction accuracy by leveraging the historical performance of various models on downstream tasks and other design factors for both model and task. We also collect a collaborative data sourced from online platforms containing both historical performance and additional design factors. With the support of the collaborative data, CPP not only surpasses traditional scaling laws in predicting the performance of scaled LLMs but also facilitates a detailed analysis of factor importance, an area previously overlooked.
We don't need no labels: Estimating post-deployment model performance under covariate shift without ground truth
The performance of machine learning models often degrades after deployment due to data distribution shifts. In many use cases, it is impossible to calculate the post-deployment performance because labels are unavailable or significantly delayed. Proxy methods for evaluating model performance stability, like drift detection techniques, do not properly quantify data distribution shift impact. As a solution, we propose a robust and accurate performance estimation method for evaluating ML classification models on unlabeled data that accurately quantifies the impact of covariate shift on model performance. We call it multi-calibrated confidence-based performance estimation (M-CBPE). It is model and data-type agnostic and works for any performance metric. It does not require access to the monitored model - it uses the model predictions and probability estimates. M-CBPE does not need user input on the nature of the covariate shift as it fully learns from the data. We evaluate it with over 600 dataset-model pairs from US census data and compare it with multiple benchmarks using several evaluation metrics. Results show that M-CBPE is the best method to estimate the performance of classification models in any evaluation context.
Rethinking Performance Gains in Image Dehazing Networks
Image dehazing is an active topic in low-level vision, and many image dehazing networks have been proposed with the rapid development of deep learning. Although these networks' pipelines work fine, the key mechanism to improving image dehazing performance remains unclear. For this reason, we do not target to propose a dehazing network with fancy modules; rather, we make minimal modifications to popular U-Net to obtain a compact dehazing network. Specifically, we swap out the convolutional blocks in U-Net for residual blocks with the gating mechanism, fuse the feature maps of main paths and skip connections using the selective kernel, and call the resulting U-Net variant gUNet. As a result, with a significantly reduced overhead, gUNet is superior to state-of-the-art methods on multiple image dehazing datasets. Finally, we verify these key designs to the performance gain of image dehazing networks through extensive ablation studies.
Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection
In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying.
High Performance Unstructured SpMM Computation Using Tensor Cores
High-performance sparse matrix-matrix (SpMM) multiplication is paramount for science and industry, as the ever-increasing sizes of data prohibit using dense data structures. Yet, existing hardware, such as Tensor Cores (TC), is ill-suited for SpMM, as it imposes strict constraints on data structures that cannot be met by unstructured sparsity found in many applications. To address this, we introduce (S)parse (Ma)trix Matrix (T)ensor Core-accelerated (SMaT): a novel SpMM library that utilizes TCs for unstructured sparse matrices. Our block-sparse library leverages the low-level CUDA MMA (matrix-matrix-accumulate) API, maximizing the performance offered by modern GPUs. Algorithmic optimizations such as sparse matrix permutation further improve performance by minimizing the number of non-zero blocks. The evaluation on NVIDIA A100 shows that SMaT outperforms SotA libraries (DASP, cuSPARSE, and Magicube) by up to 125x (on average 2.6x). SMaT can be used to accelerate many workloads in scientific computing, large-model training, inference, and others.
A Performance Study of LLM-Generated Code on Leetcode
This study evaluates the efficiency of code generation by Large Language Models (LLMs) and measures their performance against human-crafted solutions using a dataset from Leetcode. We compare 18 LLMs, considering factors such as model temperature and success rate, and their impact on code performance. This research introduces a novel method for measuring and comparing the speed of LLM-generated code, revealing that LLMs produce code with comparable performance, irrespective of the adopted LLM. We also find that LLMs are capable of generating code that is, on average, more efficient than the code written by humans. The paper further discusses the use of Leetcode as a benchmarking dataset, the limitations imposed by potential data contamination, and the platform's measurement reliability. We believe that our findings contribute to a better understanding of LLM capabilities in code generation and set the stage for future optimizations in the field.
Towards CPU Performance Prediction: New Challenge Benchmark Dataset and Novel Approach
CPU performance prediction, which involves forecasting the performance scores of a CPU based on its hardware characteristics during its operation, is a critical technology for computational system design and resource management in the big data era. However, this research field currently faces two significant challenges. First, collecting real-world data is challenging due to the wide variety of CPU products on the market and the highly specialized nature of relevant hardware characteristics. In the research process, this field lacks a standard dataset with unified hardware characteristics, wide data coverage, and comprehensive benchmarks. Second, existing methods based on hardware simulation models or machine learning exhibit notable shortcomings, such as lengthy simulation test cycles and low prediction accuracy. To bridge these gaps, we first collect, preprocess, and standardize historical data from the 4th Generation Intel Xeon Scalable Processors across multiple benchmark suites to create a new dataset, named PerfCastDB. Subsequently, we design a deep learning based model called Nova CPU Performance Predictor (NCPP) as the baseline for this new dataset. The NCPP network is designed based on group attention mechanism. It effectively quantifies the implicit relationships between hardware characteristics within and across groups and comprehensively models the impact of various hardware characteristics on CPU performance prediction. We conduct comparative experiments using the proposed PerfCastDB dataset. Compared to existing approaches, NCPP achieves superior evaluation results, demonstrating its effectiveness. Furthermore, we have open-sourced part of the dataset and the NCPP network code to facilitate subsequent research. The resources can be accessed at https://github.com/xiaoman-liu/NCPP.
Object Remover Performance Evaluation Methods using Class-wise Object Removal Images
Object removal refers to the process of erasing designated objects from an image while preserving the overall appearance, and it is one area where image inpainting is widely used in real-world applications. The performance of an object remover is quantitatively evaluated by measuring the quality of object removal results, similar to how the performance of an image inpainter is gauged. Current works reporting quantitative performance evaluations utilize original images as references. In this letter, to validate the current evaluation methods cannot properly evaluate the performance of an object remover, we create a dataset with object removal ground truth and compare the evaluations made by the current methods using original images to those utilizing object removal ground truth images. The disparities between two evaluation sets validate that the current methods are not suitable for measuring the performance of an object remover. Additionally, we propose new evaluation methods tailored to gauge the performance of an object remover. The proposed methods evaluate the performance through class-wise object removal results and utilize images without the target class objects as a comparison set. We confirm that the proposed methods can make judgments consistent with human evaluators in the COCO dataset, and that they can produce measurements aligning with those using object removal ground truth in the self-acquired dataset.
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
Scalable Performance Analysis for Vision-Language Models
Joint vision-language models have shown great performance over a diverse set of tasks. However, little is known about their limitations, as the high dimensional space learned by these models makes it difficult to identify semantic errors. Recent work has addressed this problem by designing highly controlled probing task benchmarks. Our paper introduces a more scalable solution that relies on already annotated benchmarks. Our method consists of extracting a large set of diverse features from a vision-language benchmark and measuring their correlation with the output of the target model. We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs; we also uncover novel insights such as CLIP getting confused by concrete words. Our framework is available at https://github.com/MichiganNLP/Scalable-VLM-Probing and can be used with other multimodal models and benchmarks.
Learning Performance-Improving Code Edits
The waning of Moore's Law has shifted the focus of the tech industry towards alternative methods for continued performance gains. While optimizing compilers are a standard tool to help increase program efficiency, programmers continue to shoulder much responsibility in crafting and refactoring code with better performance characteristics. In this paper, we investigate the ability of large language models (LLMs) to suggest functionally correct, performance improving code edits. We hypothesize that language models can suggest such edits in ways that would be impractical for static analysis alone. We investigate these questions by curating a large-scale dataset of Performance-Improving Edits, PIE. PIE contains trajectories of programs, where a programmer begins with an initial, slower version and iteratively makes changes to improve the program's performance. We use PIE to evaluate and improve the capacity of large language models. Specifically, use examples from PIE to fine-tune multiple variants of CODEGEN, a billion-scale Transformer-decoder model. Additionally, we use examples from PIE to prompt OpenAI's CODEX using a few-shot prompting. By leveraging PIE, we find that both CODEX and CODEGEN can generate performance-improving edits, with speedups of more than 2.5x for over 25% of the programs, for C++ and Python, even after the C++ programs were compiled using the O3 optimization level. Crucially, we show that PIE allows CODEGEN, an open-sourced and 10x smaller model than CODEX, to match the performance of CODEX on this challenging task. Overall, this work opens new doors for creating systems and methods that can help programmers write efficient code.
Improving performance of real-time full-band blind packet-loss concealment with predictive network
Packet loss concealment (PLC) is a tool for enhancing speech degradation caused by poor network conditions or underflow/overflow in audio processing pipelines. We propose a real-time recurrent method that leverages previous outputs to mitigate artefact of lost packets without the prior knowledge of loss mask. The proposed full-band recurrent network (FRN) model operates at 48 kHz, which is suitable for high-quality telecommunication applications. Experiment results highlight the superiority of FRN over an offline non-causal baseline and a top performer in a recent PLC challenge.
Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market
The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone.
Deep Performer: Score-to-Audio Music Performance Synthesis
Music performance synthesis aims to synthesize a musical score into a natural performance. In this paper, we borrow recent advances in text-to-speech synthesis and present the Deep Performer -- a novel system for score-to-audio music performance synthesis. Unlike speech, music often contains polyphony and long notes. Hence, we propose two new techniques for handling polyphonic inputs and providing a fine-grained conditioning in a transformer encoder-decoder model. To train our proposed system, we present a new violin dataset consisting of paired recordings and scores along with estimated alignments between them. We show that our proposed model can synthesize music with clear polyphony and harmonic structures. In a listening test, we achieve competitive quality against the baseline model, a conditional generative audio model, in terms of pitch accuracy, timbre and noise level. Moreover, our proposed model significantly outperforms the baseline on an existing piano dataset in overall quality.
Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia Classification in Diabetic Foot Ulcers
Diabetic foot ulcers are a common manifestation of lesions on the diabetic foot, a syndrome acquired as a long-term complication of diabetes mellitus. Accompanying neuropathy and vascular damage promote acquisition of pressure injuries and tissue death due to ischaemia. Affected areas are prone to infections, hindering the healing progress. The research at hand investigates an approach on classification of infection and ischaemia, conducted as part of the Diabetic Foot Ulcer Challenge (DFUC) 2021. Different models of the EfficientNet family are utilized in ensembles. An extension strategy for the training data is applied, involving pseudo-labeling for unlabeled images, and extensive generation of synthetic images via pix2pixHD to cope with severe class imbalances. The resulting extended training dataset features 8.68 times the size of the baseline and shows a real to synthetic image ratio of 1:3. Performances of models and ensembles trained on the baseline and extended training dataset are compared. Synthetic images featured a broad qualitative variety. Results show that models trained on the extended training dataset as well as their ensemble benefit from the large extension. F1-Scores for rare classes receive outstanding boosts, while those for common classes are either not harmed or boosted moderately. A critical discussion concretizes benefits and identifies limitations, suggesting improvements. The work concludes that classification performance of individual models as well as that of ensembles can be boosted utilizing synthetic images. Especially performance for rare classes benefits notably.
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
Evaluating the Performance of Some Local Optimizers for Variational Quantum Classifiers
In this paper, we have studied the performance and role of local optimizers in quantum variational circuits. We studied the performance of the two most popular optimizers and compared their results with some popular classical machine learning algorithms. The classical algorithms we used in our study are support vector machine (SVM), gradient boosting (GB), and random forest (RF). These were compared with a variational quantum classifier (VQC) using two sets of local optimizers viz AQGD and COBYLA. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit was used while for classical machine learning models, sci-kit learn was used. The results show that machine learning on noisy immediate scale quantum machines can produce comparable results as on classical machines. For our experiments, we have used a popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs on using EfficientSU2 variational circuit. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score. In all the cases AQGD optimizer-based model with 100 Epochs performed better than all other models. It produced an accuracy of 77% and an F-Score of 0.785 which were highest across all the trained models.
High-Performance Large-Scale Image Recognition Without Normalization
Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at https://github.com/deepmind/ deepmind-research/tree/master/nfnets
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties -- most frequently, that particular features are important or unimportant. These attribution priors are often based on attribution methods that are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here, we introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms. This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene expression, and health care data sets. We believe this work motivates and provides the necessary tools to support the widespread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results have been made freely available to academic communities.
High-Performance Neural Networks for Visual Object Classification
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.
HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian Splatting
We have recently seen tremendous progress in photo-real human modeling and rendering. Yet, efficiently rendering realistic human performance and integrating it into the rasterization pipeline remains challenging. In this paper, we present HiFi4G, an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage. Our core intuition is to marry the 3D Gaussian representation with non-rigid tracking, achieving a compact and compression-friendly representation. We first propose a dual-graph mechanism to obtain motion priors, with a coarse deformation graph for effective initialization and a fine-grained Gaussian graph to enforce subsequent constraints. Then, we utilize a 4D Gaussian optimization scheme with adaptive spatial-temporal regularizers to effectively balance the non-rigid prior and Gaussian updating. We also present a companion compression scheme with residual compensation for immersive experiences on various platforms. It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame. Extensive experiments demonstrate the effectiveness of our approach, which significantly outperforms existing approaches in terms of optimization speed, rendering quality, and storage overhead.
Improving Classification Performance With Human Feedback: Label a few, we label the rest
In the realm of artificial intelligence, where a vast majority of data is unstructured, obtaining substantial amounts of labeled data to train supervised machine learning models poses a significant challenge. To address this, we delve into few-shot and active learning, where are goal is to improve AI models with human feedback on a few labeled examples. This paper focuses on understanding how a continuous feedback loop can refine models, thereby enhancing their accuracy, recall, and precision through incremental human input. By employing Large Language Models (LLMs) such as GPT-3.5, BERT, and SetFit, we aim to analyze the efficacy of using a limited number of labeled examples to substantially improve model accuracy. We benchmark this approach on the Financial Phrasebank, Banking, Craigslist, Trec, Amazon Reviews datasets to prove that with just a few labeled examples, we are able to surpass the accuracy of zero shot large language models to provide enhanced text classification performance. We demonstrate that rather than needing to manually label millions of rows of data, we just need to label a few and the model can effectively predict the rest.
Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference
The task of abductive natural language inference (nli), to decide which hypothesis is the more likely explanation for a set of observations, is a particularly difficult type of NLI. Instead of just determining a causal relationship, it requires common sense to also evaluate how reasonable an explanation is. All recent competitive systems build on top of contextualized representations and make use of transformer architectures for learning an NLI model. When somebody is faced with a particular NLI task, they need to select the best model that is available. This is a time-consuming and resource-intense endeavour. To solve this practical problem, we propose a simple method for predicting the performance without actually fine-tuning the model. We do this by testing how well the pre-trained models perform on the nli task when just comparing sentence embeddings with cosine similarity to what the performance that is achieved when training a classifier on top of these embeddings. We show that the accuracy of the cosine similarity approach correlates strongly with the accuracy of the classification approach with a Pearson correlation coefficient of 0.65. Since the similarity computation is orders of magnitude faster to compute on a given dataset (less than a minute vs. hours), our method can lead to significant time savings in the process of model selection.
Leeroo Orchestrator: Elevating LLMs Performance Through Model Integration
In this paper, we propose an architecture to harness the collective knowledge of multiple trained LLMs to create a new state-of-the-art. At the core of this framework is a LLM-based orchestrator that is adept at picking the right underlying LLM experts for optimal task execution. Inspired by self-play in reinforcement learning, we created a loop of query generation, orchestration, and evaluation to generate training data for the orchestrator. Our evaluation focused on the MMLU benchmark, employing models with 7B, 13B, and 34B parameters available on Hugging Face. The results demonstrate new state-of-the-art open-source models: Our Leeroo orchestrator achieves performance on par with the Mixtral model while incurring only two-thirds of its cost. Moreover, increasing the allowed cost surpasses Mixtral's accuracy by over 5% at the same cost level, reaching an accuracy of 75.9%. Further enhancements were observed when integrating GPT4 into the underlying model pool. The Leeroo orchestrator nearly matches GPT4's performance at half the cost and even exceeds GPT4's results with a 25% cost reduction. These findings illustrate the potential of our architecture in creating state-of-the-art and cost-effective LLMs by optimizing the synergy between multiple LLMs to achieve superior performance outcomes.
Norm Tweaking: High-performance Low-bit Quantization of Large Language Models
As the size of large language models (LLMs) continues to grow, model compression without sacrificing accuracy has become a crucial challenge for deployment. While some quantization methods, such as GPTQ, have made progress in achieving acceptable 4-bit weight-only quantization, attempts at lower bit quantization often result in severe performance degradation. In this paper, we introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision while being cost-efficient. Our approach is inspired by the observation that rectifying the quantized activation distribution to match its float counterpart can readily restore accuracy for LLMs. To achieve this, we carefully design a tweaking strategy that includes calibration data generation and channel-wise distance constraint to update the weights of normalization layers for better generalization. We conduct extensive experiments on various datasets using several open-sourced LLMs. Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations, surpassing existing PTQ methods. On GLM-130B and OPT-66B, our method even achieves the same level of accuracy at 2-bit quantization as their float ones. Our simple and effective approach makes it more practical for real-world applications.
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos
Camera-based 3D object detection in BEV (Bird's Eye View) space has drawn great attention over the past few years. Dense detectors typically follow a two-stage pipeline by first constructing a dense BEV feature and then performing object detection in BEV space, which suffers from complex view transformations and high computation cost. On the other side, sparse detectors follow a query-based paradigm without explicit dense BEV feature construction, but achieve worse performance than the dense counterparts. In this paper, we find that the key to mitigate this performance gap is the adaptability of the detector in both BEV and image space. To achieve this goal, we propose SparseBEV, a fully sparse 3D object detector that outperforms the dense counterparts. SparseBEV contains three key designs, which are (1) scale-adaptive self attention to aggregate features with adaptive receptive field in BEV space, (2) adaptive spatio-temporal sampling to generate sampling locations under the guidance of queries, and (3) adaptive mixing to decode the sampled features with dynamic weights from the queries. On the test split of nuScenes, SparseBEV achieves the state-of-the-art performance of 67.5 NDS. On the val split, SparseBEV achieves 55.8 NDS while maintaining a real-time inference speed of 23.5 FPS. Code is available at https://github.com/MCG-NJU/SparseBEV.
Improving Question Answering Performance through Manual Annotation: Costs, Benefits and Strategies
Recently proposed systems for open-domain question answering (OpenQA) require large amounts of training data to achieve state-of-the-art performance. However, data annotation is known to be time-consuming and therefore expensive to acquire. As a result, the appropriate datasets are available only for a handful of languages (mainly English and Chinese). In this work, we introduce and publicly release PolQA, the first Polish dataset for OpenQA. It consists of 7,000 questions, 87,525 manually labeled evidence passages, and a corpus of over 7,097,322 candidate passages. Each question is classified according to its formulation, type, as well as entity type of the answer. This resource allows us to evaluate the impact of different annotation choices on the performance of the QA system and propose an efficient annotation strategy that increases the passage retrieval performance by 10.55 p.p. while reducing the annotation cost by 82%.
GPT-4's assessment of its performance in a USMLE-based case study
This study investigates GPT-4's assessment of its performance in healthcare applications. A simple prompting technique was used to prompt the LLM with questions taken from the United States Medical Licensing Examination (USMLE) questionnaire and it was tasked to evaluate its confidence score before posing the question and after asking the question. The questionnaire was categorized into two groups-questions with feedback (WF) and questions with no feedback(NF) post-question. The model was asked to provide absolute and relative confidence scores before and after each question. The experimental findings were analyzed using statistical tools to study the variability of confidence in WF and NF groups. Additionally, a sequential analysis was conducted to observe the performance variation for the WF and NF groups. Results indicate that feedback influences relative confidence but doesn't consistently increase or decrease it. Understanding the performance of LLM is paramount in exploring its utility in sensitive areas like healthcare. This study contributes to the ongoing discourse on the reliability of AI, particularly of LLMs like GPT-4, within healthcare, offering insights into how feedback mechanisms might be optimized to enhance AI-assisted medical education and decision support.
Do Object Detection Localization Errors Affect Human Performance and Trust?
Bounding boxes are often used to communicate automatic object detection results to humans, aiding humans in a multitude of tasks. We investigate the relationship between bounding box localization errors and human task performance. We use observer performance studies on a visual multi-object counting task to measure both human trust and performance with different levels of bounding box accuracy. The results show that localization errors have no significant impact on human accuracy or trust in the system. Recall and precision errors impact both human performance and trust, suggesting that optimizing algorithms based on the F1 score is more beneficial in human-computer tasks. Lastly, the paper offers an improvement on bounding boxes in multi-object counting tasks with center dots, showing improved performance and better resilience to localization inaccuracy.
Comparative Study on the Performance of Categorical Variable Encoders in Classification and Regression Tasks
Categorical variables often appear in datasets for classification and regression tasks, and they need to be encoded into numerical values before training. Since many encoders have been developed and can significantly impact performance, choosing the appropriate encoder for a task becomes a time-consuming yet important practical issue. This study broadly classifies machine learning models into three categories: 1) ATI models that implicitly perform affine transformations on inputs, such as multi-layer perceptron neural network; 2) Tree-based models that are based on decision trees, such as random forest; and 3) the rest, such as kNN. Theoretically, we prove that the one-hot encoder is the best choice for ATI models in the sense that it can mimic any other encoders by learning suitable weights from the data. We also explain why the target encoder and its variants are the most suitable encoders for tree-based models. This study conducted comprehensive computational experiments to evaluate 14 encoders, including one-hot and target encoders, along with eight common machine-learning models on 28 datasets. The computational results agree with our theoretical analysis. The findings in this study shed light on how to select the suitable encoder for data scientists in fields such as fraud detection, disease diagnosis, etc.
Efficient Transformer Knowledge Distillation: A Performance Review
As pretrained transformer language models continue to achieve state-of-the-art performance, the Natural Language Processing community has pushed for advances in model compression and efficient attention mechanisms to address high computational requirements and limited input sequence length. Despite these separate efforts, no investigation has been done into the intersection of these two fields. In this work, we provide an evaluation of model compression via knowledge distillation on efficient attention transformers. We provide cost-performance trade-offs for the compression of state-of-the-art efficient attention architectures and the gains made in performance in comparison to their full attention counterparts. Furthermore, we introduce a new long-context Named Entity Recognition dataset, GONERD, to train and test the performance of NER models on long sequences. We find that distilled efficient attention transformers can preserve a significant amount of original model performance, preserving up to 98.6% across short-context tasks (GLUE, SQUAD, CoNLL-2003), up to 94.6% across long-context Question-and-Answering tasks (HotpotQA, TriviaQA), and up to 98.8% on long-context Named Entity Recognition (GONERD), while decreasing inference times by up to 57.8%. We find that, for most models on most tasks, performing knowledge distillation is an effective method to yield high-performing efficient attention models with low costs.
Surgical Gym: A high-performance GPU-based platform for reinforcement learning with surgical robots
Recent advances in robot-assisted surgery have resulted in progressively more precise, efficient, and minimally invasive procedures, sparking a new era of robotic surgical intervention. This enables doctors, in collaborative interaction with robots, to perform traditional or minimally invasive surgeries with improved outcomes through smaller incisions. Recent efforts are working toward making robotic surgery more autonomous which has the potential to reduce variability of surgical outcomes and reduce complication rates. Deep reinforcement learning methodologies offer scalable solutions for surgical automation, but their effectiveness relies on extensive data acquisition due to the absence of prior knowledge in successfully accomplishing tasks. Due to the intensive nature of simulated data collection, previous works have focused on making existing algorithms more efficient. In this work, we focus on making the simulator more efficient, making training data much more accessible than previously possible. We introduce Surgical Gym, an open-source high performance platform for surgical robot learning where both the physics simulation and reinforcement learning occur directly on the GPU. We demonstrate between 100-5000x faster training times compared with previous surgical learning platforms. The code is available at: https://github.com/SamuelSchmidgall/SurgicalGym.
Improving Online Continual Learning Performance and Stability with Temporal Ensembles
Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
ML-SUPERB: Multilingual Speech Universal PERformance Benchmark
Speech processing Universal PERformance Benchmark (SUPERB) is a leaderboard to benchmark the performance of Self-Supervised Learning (SSL) models on various speech processing tasks. However, SUPERB largely considers English speech in its evaluation. This paper presents multilingual SUPERB (ML-SUPERB), covering 143 languages (ranging from high-resource to endangered), and considering both automatic speech recognition and language identification. Following the concept of SUPERB, ML-SUPERB utilizes frozen SSL features and employs a simple framework for multilingual tasks by learning a shallow downstream model. Similar to the SUPERB benchmark, we find speech SSL models can significantly improve performance compared to FBANK features. Furthermore, we find that multilingual models do not always perform better than their monolingual counterparts. We will release ML-SUPERB as a challenge with organized datasets and reproducible training scripts for future multilingual representation research.
SUPERB: Speech processing Universal PERformance Benchmark
Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing.
Enhancing Large Language Model Performance To Answer Questions and Extract Information More Accurately
Large Language Models (LLMs) generate responses to questions; however, their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions. To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models. The objective is to enhance AI models through continuous feedback loops, utilizing metrics such as cosine similarity, LLM evaluation and Rouge-L scores to evaluate the models. Leveraging LLMs like GPT-3.5, GPT4ALL, and LLaMA2, and Claude, this approach is benchmarked on financial datasets, including the FinanceBench and RAG Instruct Benchmark Tester Dataset, illustrating the necessity of fine-tuning. The results showcase the capability of fine-tuned models to surpass the accuracy of zero-shot LLMs, providing superior question and answering capabilities. Notably, the combination of fine-tuning the LLM with a process known as Retrieval Augmented Generation (RAG) proves to generate responses with improved accuracy.
Data Similarity is Not Enough to Explain Language Model Performance
Large language models achieve high performance on many but not all downstream tasks. The interaction between pretraining data and task data is commonly assumed to determine this variance: a task with data that is more similar to a model's pretraining data is assumed to be easier for that model. We test whether distributional and example-specific similarity measures (embedding-, token- and model-based) correlate with language model performance through a large-scale comparison of the Pile and C4 pretraining datasets with downstream benchmarks. Similarity correlates with performance for multilingual datasets, but in other benchmarks, we surprisingly find that similarity metrics are not correlated with accuracy or even each other. This suggests that the relationship between pretraining data and downstream tasks is more complex than often assumed.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
A Comprehensive Performance Study of Large Language Models on Novel AI Accelerators
Artificial intelligence (AI) methods have become critical in scientific applications to help accelerate scientific discovery. Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems because of their superior generalization capabilities across domains. The effectiveness of the models and the accuracy of the applications is contingent upon their efficient execution on the underlying hardware infrastructure. Specialized AI accelerator hardware systems have recently become available for accelerating AI applications. However, the comparative performance of these AI accelerators on large language models has not been previously studied. In this paper, we systematically study LLMs on multiple AI accelerators and GPUs and evaluate their performance characteristics for these models. We evaluate these systems with (i) a micro-benchmark using a core transformer block, (ii) a GPT- 2 model, and (iii) an LLM-driven science use case, GenSLM. We present our findings and analyses of the models' performance to better understand the intrinsic capabilities of AI accelerators. Furthermore, our analysis takes into account key factors such as sequence lengths, scaling behavior, sparsity, and sensitivity to gradient accumulation steps.
Boosting Multi-modal Model Performance with Adaptive Gradient Modulation
While the field of multi-modal learning keeps growing fast, the deficiency of the standard joint training paradigm has become clear through recent studies. They attribute the sub-optimal performance of the jointly trained model to the modality competition phenomenon. Existing works attempt to improve the jointly trained model by modulating the training process. Despite their effectiveness, those methods can only apply to late fusion models. More importantly, the mechanism of the modality competition remains unexplored. In this paper, we first propose an adaptive gradient modulation method that can boost the performance of multi-modal models with various fusion strategies. Extensive experiments show that our method surpasses all existing modulation methods. Furthermore, to have a quantitative understanding of the modality competition and the mechanism behind the effectiveness of our modulation method, we introduce a novel metric to measure the competition strength. This metric is built on the mono-modal concept, a function that is designed to represent the competition-less state of a modality. Through systematic investigation, our results confirm the intuition that the modulation encourages the model to rely on the more informative modality. In addition, we find that the jointly trained model typically has a preferred modality on which the competition is weaker than other modalities. However, this preferred modality need not dominate others. Our code will be available at https://github.com/lihong2303/AGM_ICCV2023.
Hallucination Improves the Performance of Unsupervised Visual Representation Learning
Contrastive learning models based on Siamese structure have demonstrated remarkable performance in self-supervised learning. Such a success of contrastive learning relies on two conditions, a sufficient number of positive pairs and adequate variations between them. If the conditions are not met, these frameworks will lack semantic contrast and be fragile on overfitting. To address these two issues, we propose Hallucinator that could efficiently generate additional positive samples for further contrast. The Hallucinator is differentiable and creates new data in the feature space. Thus, it is optimized directly with the pre-training task and introduces nearly negligible computation. Moreover, we reduce the mutual information of hallucinated pairs and smooth them through non-linear operations. This process helps avoid over-confident contrastive learning models during the training and achieves more transformation-invariant feature embeddings. Remarkably, we empirically prove that the proposed Hallucinator generalizes well to various contrastive learning models, including MoCoV1&V2, SimCLR and SimSiam. Under the linear classification protocol, a stable accuracy gain is achieved, ranging from 0.3% to 3.0% on CIFAR10&100, Tiny ImageNet, STL-10 and ImageNet. The improvement is also observed in transferring pre-train encoders to the downstream tasks, including object detection and segmentation.
Multi-Task Learning Improves Performance In Deep Argument Mining Models
The successful analysis of argumentative techniques from user-generated text is central to many downstream tasks such as political and market analysis. Recent argument mining tools use state-of-the-art deep learning methods to extract and annotate argumentative techniques from various online text corpora, however each task is treated as separate and different bespoke models are fine-tuned for each dataset. We show that different argument mining tasks share common semantic and logical structure by implementing a multi-task approach to argument mining that achieves better performance than state-of-the-art methods for the same problems. Our model builds a shared representation of the input text that is common to all tasks and exploits similarities between tasks in order to further boost performance via parameter-sharing. Our results are important for argument mining as they show that different tasks share substantial similarities and suggest a holistic approach to the extraction of argumentative techniques from text.
Waffling around for Performance: Visual Classification with Random Words and Broad Concepts
The visual classification performance of vision-language models such as CLIP has been shown to benefit from additional semantic knowledge from large language models (LLMs) such as GPT-3. In particular, averaging over LLM-generated class descriptors, e.g. "waffle, which has a round shape", can notably improve generalization performance. In this work, we critically study this behavior and propose WaffleCLIP, a framework for zero-shot visual classification which simply replaces LLM-generated descriptors with random character and word descriptors. Without querying external models, we achieve comparable performance gains on a large number of visual classification tasks. This allows WaffleCLIP to both serve as a low-cost alternative, as well as a sanity check for any future LLM-based vision-language model extensions. We conduct an extensive experimental study on the impact and shortcomings of additional semantics introduced with LLM-generated descriptors, and showcase how - if available - semantic context is better leveraged by querying LLMs for high-level concepts, which we show can be done to jointly resolve potential class name ambiguities. Code is available here: https://github.com/ExplainableML/WaffleCLIP.
LLM-powered Data Augmentation for Enhanced Cross-lingual Performance
This paper explores the potential of leveraging Large Language Models (LLMs) for data augmentation in multilingual commonsense reasoning datasets where the available training data is extremely limited. To achieve this, we utilise several LLMs, namely Dolly-v2, StableVicuna, ChatGPT, and GPT-4, to augment three datasets: XCOPA, XWinograd, and XStoryCloze. Subsequently, we evaluate the effectiveness of fine-tuning smaller multilingual models, mBERT and XLMR, using the synthesised data. We compare the performance of training with data generated in English and target languages, as well as translated English-generated data, revealing the overall advantages of incorporating data generated by LLMs, e.g. a notable 13.4 accuracy score improvement for the best case. Furthermore, we conduct a human evaluation by asking native speakers to assess the naturalness and logical coherence of the generated examples across different languages. The results of the evaluation indicate that LLMs such as ChatGPT and GPT-4 excel at producing natural and coherent text in most languages, however, they struggle to generate meaningful text in certain languages like Tamil. We also observe that ChatGPT falls short in generating plausible alternatives compared to the original dataset, whereas examples from GPT-4 exhibit competitive logical consistency.
Evaluating the Performance of Large Language Models on GAOKAO Benchmark
Large language models have demonstrated remarkable performance across various natural language processing tasks; however, their efficacy in more challenging and domain-specific tasks remains less explored. This paper introduces the GAOKAO-Benchmark (GAOKAO-Bench), an intuitive benchmark that employs questions from the Chinese Gaokao examination as test samples for evaluating large language models.In order to align the evaluation results with humans as much as possible, we designed a method based on zero-shot prompts to analyze the accuracy and scoring rate of the model by dividing the questions into subjective and objective types. We evaluated the ChatGPT model on GAOKAO-Benchmark performance.Our findings reveal that the ChatGPT model excels in tackling objective questions, while also shedding light on its shortcomings and areas for improvement. To further scrutinize the model's responses, we incorporate human evaluations.In conclusion, this research contributes a robust evaluation benchmark for future large-scale language models and offers valuable insights into the limitations of such models.
Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations
Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of model improvement on performance in different subpopulations, and has the potential to inform the development of more equitable and responsible machine learning models.
A Meta-Learning Approach to Predicting Performance and Data Requirements
We propose an approach to estimate the number of samples required for a model to reach a target performance. We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset (e.g., 5 samples per class) for extrapolation. This is because the log-performance error against the log-dataset size follows a nonlinear progression in the few-shot regime followed by a linear progression in the high-shot regime. We introduce a novel piecewise power law (PPL) that handles the two data regimes differently. To estimate the parameters of the PPL, we introduce a random forest regressor trained via meta learning that generalizes across classification/detection tasks, ResNet/ViT based architectures, and random/pre-trained initializations. The PPL improves the performance estimation on average by 37% across 16 classification and 33% across 10 detection datasets, compared to the power law. We further extend the PPL to provide a confidence bound and use it to limit the prediction horizon that reduces over-estimation of data by 76% on classification and 91% on detection datasets.
ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs
Transformers have become keystone models in natural language processing over the past decade. They have achieved great popularity in deep learning applications, but the increasing sizes of the parameter spaces required by transformer models generate a commensurate need to accelerate performance. Natural language processing problems are also routinely faced with variable-length sequences, as word counts commonly vary among sentences. Existing deep learning frameworks pad variable-length sequences to a maximal length, which adds significant memory and computational overhead. In this paper, we present ByteTransformer, a high-performance transformer boosted for variable-length inputs. We propose a padding-free algorithm that liberates the entire transformer from redundant computations on zero padded tokens. In addition to algorithmic-level optimization, we provide architecture-aware optimizations for transformer functional modules, especially the performance-critical algorithm Multi-Head Attention (MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end performance of ByteTransformer for a forward BERT transformer surpasses state-of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA FasterTransformer, by 87\%, 131\%, 138\%, 74\% and 55\%, respectively. We also demonstrate the general applicability of our optimization methods to other BERT-like models, including ALBERT, DistilBERT, and DeBERTa.
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank
Joint-Embedding Self Supervised Learning (JE-SSL) has seen a rapid development, with the emergence of many method variations but only few principled guidelines that would help practitioners to successfully deploy them. The main reason for that pitfall comes from JE-SSL's core principle of not employing any input reconstruction therefore lacking visual cues of unsuccessful training. Adding non informative loss values to that, it becomes difficult to deploy SSL on a new dataset for which no labels can help to judge the quality of the learned representation. In this study, we develop a simple unsupervised criterion that is indicative of the quality of the learned JE-SSL representations: their effective rank. Albeit simple and computationally friendly, this method -- coined RankMe -- allows one to assess the performance of JE-SSL representations, even on different downstream datasets, without requiring any labels. A further benefit of RankMe is that it does not have any training or hyper-parameters to tune. Through thorough empirical experiments involving hundreds of training episodes, we demonstrate how RankMe can be used for hyperparameter selection with nearly no reduction in final performance compared to the current selection method that involve a dataset's labels. We hope that RankMe will facilitate the deployment of JE-SSL towards domains that do not have the opportunity to rely on labels for representations' quality assessment.
Boosting Distributed Training Performance of the Unpadded BERT Model
Pre-training models are an important tool in Natural Language Processing (NLP), while the BERT model is a classic pre-training model whose structure has been widely adopted by followers. It was even chosen as the reference model for the MLPerf training benchmark. The distributed training performance optimization of BERT models plays an important role in accelerating the solutions of most NLP tasks. BERT model often uses padding tensors as its inputs, leading to excessive redundant computations. Thus, removing these redundant computations is essential to improve the distributed training performance. This paper designs a new approach to train BERT models with variable-length inputs efficiently. Firstly, we propose a general structure for the variable-length BERT models, and accelerate the encoder layer via our grouped multi-stream FMHA (Fused Multi-Head Attention) method. Secondly, through data exchange, we address the unbalanced workload problem caused by the variable-length inputs, which overlaps highly with the training process. Finally, we optimize the overall performance of the BERT model, such as kernel fusion, and operator optimization. Our experimental results show that our highly optimized BERT model achieves state-of-the-art throughput and ranks first in MLPerf Training v2.0 within the same GPU configuration. The optimizations in this paper can be applied to more BERT-like models in our future works.
Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models
A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies.
At the Locus of Performance: A Case Study in Enhancing CPUs with Copious 3D-Stacked Cache
Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of LARC, a processor fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a board set of proxy-applications and benchmarks, we aim to reveal where HPC CPU performance could be circa 2028, and conclude an average boost of 9.77x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.
Where Does the Performance Improvement Come From? -- A Reproducibility Concern about Image-Text Retrieval
This article aims to provide the information retrieval community with some reflections on recent advances in retrieval learning by analyzing the reproducibility of image-text retrieval models. Due to the increase of multimodal data over the last decade, image-text retrieval has steadily become a major research direction in the field of information retrieval. Numerous researchers train and evaluate image-text retrieval algorithms using benchmark datasets such as MS-COCO and Flickr30k. Research in the past has mostly focused on performance, with multiple state-of-the-art methodologies being suggested in a variety of ways. According to their assertions, these techniques provide improved modality interactions and hence more precise multimodal representations. In contrast to previous works, we focus on the reproducibility of the approaches and the examination of the elements that lead to improved performance by pretrained and nonpretrained models in retrieving images and text. To be more specific, we first examine the related reproducibility concerns and explain why our focus is on image-text retrieval tasks. Second, we systematically summarize the current paradigm of image-text retrieval models and the stated contributions of those approaches. Third, we analyze various aspects of the reproduction of pretrained and nonpretrained retrieval models. To complete this, we conducted ablation experiments and obtained some influencing factors that affect retrieval recall more than the improvement claimed in the original paper. Finally, we present some reflections and challenges that the retrieval community should consider in the future. Our source code is publicly available at https://github.com/WangFei-2019/Image-text-Retrieval.
Dissecting graph measure performance for node clustering in LFR parameter space
Graph measures that express closeness or distance between nodes can be employed for graph nodes clustering using metric clustering algorithms. There are numerous measures applicable to this task, and which one performs better is an open question. We study the performance of 25 graph measures on generated graphs with different parameters. While usually measure comparisons are limited to general measure ranking on a particular dataset, we aim to explore the performance of various measures depending on graph features. Using an LFR graph generator, we create a dataset of 11780 graphs covering the whole LFR parameter space. For each graph, we assess the quality of clustering with k-means algorithm for each considered measure. Based on this, we determine the best measure for each area of the parameter space. We find that the parameter space consists of distinct zones where one particular measure is the best. We analyze the geometry of the resulting zones and describe it with simple criteria. Given particular graph parameters, this allows us to recommend a particular measure to use for clustering.
Jointly Optimizing Query Encoder and Product Quantization to Improve Retrieval Performance
Recently, Information Retrieval community has witnessed fast-paced advances in Dense Retrieval (DR), which performs first-stage retrieval with embedding-based search. Despite the impressive ranking performance, previous studies usually adopt brute-force search to acquire candidates, which is prohibitive in practical Web search scenarios due to its tremendous memory usage and time cost. To overcome these problems, vector compression methods have been adopted in many practical embedding-based retrieval applications. One of the most popular methods is Product Quantization (PQ). However, although existing vector compression methods including PQ can help improve the efficiency of DR, they incur severely decayed retrieval performance due to the separation between encoding and compression. To tackle this problem, we present JPQ, which stands for Joint optimization of query encoding and Product Quantization. It trains the query encoder and PQ index jointly in an end-to-end manner based on three optimization strategies, namely ranking-oriented loss, PQ centroid optimization, and end-to-end negative sampling. We evaluate JPQ on two publicly available retrieval benchmarks. Experimental results show that JPQ significantly outperforms popular vector compression methods. Compared with previous DR models that use brute-force search, JPQ almost matches the best retrieval performance with 30x compression on index size. The compressed index further brings 10x speedup on CPU and 2x speedup on GPU in query latency.
Measuring Domain Knowledge for Early Prediction of Student Performance: A Semantic Approach
The growing popularity of data mining catalyses the researchers to explore various exciting aspects of education. Early prediction of student performance is an emerging area among them. The researchers have used various predictors in performance modelling studies. Although prior cognition can affect student performance, establishing their relationship is still an open research challenge. Quantifying the knowledge from readily available data is the major challenge here. We have proposed a semantic approach for this purpose. Association mining on nearly 0.35 million observations establishes that prior cognition impacts the student performance. The proposed approach of measuring domain knowledge can help the early performance modelling studies to use it as a predictor.
TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems
We present a data-driven, end-to-end approach to transaction-based dialog systems that performs at near-human levels in terms of verbal response quality and factual grounding accuracy. We show that two essential components of the system produce these results: a sufficiently large and diverse, in-domain labeled dataset, and a neural network-based, pre-trained model that generates both verbal responses and API call predictions. In terms of data, we introduce TicketTalk, a movie ticketing dialog dataset with 23,789 annotated conversations. The movie ticketing conversations range from completely open-ended and unrestricted to more structured, both in terms of their knowledge base, discourse features, and number of turns. In qualitative human evaluations, model-generated responses trained on just 10,000 TicketTalk dialogs were rated to "make sense" 86.5 percent of the time, almost the same as human responses in the same contexts. Our simple, API-focused annotation schema results in a much easier labeling task making it faster and more cost effective. It is also the key component for being able to predict API calls accurately. We handle factual grounding by incorporating API calls in the training data, allowing our model to learn which actions to take and when. Trained on the same 10,000-dialog set, the model's API call predictions were rated to be correct 93.9 percent of the time in our evaluations, surpassing the ratings for the corresponding human labels. We show how API prediction and response generation scores improve as the dataset size incrementally increases from 5000 to 21,000 dialogs. Our analysis also clearly illustrates the benefits of pre-training. We are publicly releasing the TicketTalk dataset with this paper to facilitate future work on transaction-based dialogs.
FreezeNet: Full Performance by Reduced Storage Costs
Pruning generates sparse networks by setting parameters to zero. In this work we improve one-shot pruning methods, applied before training, without adding any additional storage costs while preserving the sparse gradient computations. The main difference to pruning is that we do not sparsify the network's weights but learn just a few key parameters and keep the other ones fixed at their random initialized value. This mechanism is called freezing the parameters. Those frozen weights can be stored efficiently with a single 32bit random seed number. The parameters to be frozen are determined one-shot by a single for- and backward pass applied before training starts. We call the introduced method FreezeNet. In our experiments we show that FreezeNets achieve good results, especially for extreme freezing rates. Freezing weights preserves the gradient flow throughout the network and consequently, FreezeNets train better and have an increased capacity compared to their pruned counterparts. On the classification tasks MNIST and CIFAR-10/100 we outperform SNIP, in this setting the best reported one-shot pruning method, applied before training. On MNIST, FreezeNet achieves 99.2% performance of the baseline LeNet-5-Caffe architecture, while compressing the number of trained and stored parameters by a factor of x 157.
TResNet: High Performance GPU-Dedicated Architecture
Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count. While FLOPs are often seen as a proxy for network efficiency, when measuring actual GPU training and inference throughput, vanilla ResNet50 is usually significantly faster than its recent competitors, offering better throughput-accuracy trade-off. In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency. We first demonstrate and discuss the bottlenecks induced by FLOPs-optimizations. We then suggest alternative designs that better utilize GPU structure and assets. Finally, we introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets. Using a TResNet model, with similar GPU throughput to ResNet50, we reach 80.8 top-1 accuracy on ImageNet. Our TResNet models also transfer well and achieve state-of-the-art accuracy on competitive single-label classification datasets such as Stanford cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and Oxford-Flowers (99.1%). They also perform well on multi-label classification and object detection tasks. Implementation is available at: https://github.com/mrT23/TResNet.
How Many Parameters Does it Take to Change a Light Bulb? Evaluating Performance in Self-Play of Conversational Games as a Function of Model Characteristics
What makes a good Large Language Model (LLM)? That it performs well on the relevant benchmarks -- which hopefully measure, with some validity, the presence of capabilities that are also challenged in real application. But what makes the model perform well? What gives a model its abilities? We take a recently introduced type of benchmark that is meant to challenge capabilities in a goal-directed, agentive context through self-play of conversational games, and analyse how performance develops as a function of model characteristics like number of parameters, or type of training. We find that while there is a clear relationship between number of parameters and performance, there is still a wide spread of performance points within a given size bracket, which is to be accounted for by training parameters such as fine-tuning data quality and method. From a more practical angle, we also find a certain degree of unpredictability about performance across access methods, possible due to unexposed sampling parameters, and a, very welcome, performance stability against at least moderate weight quantisation during inference.
Uncovering Factor Level Preferences to Improve Human-Model Alignment
Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.
Mind the Gap! Static and Interactive Evaluations of Large Audio Models
As AI chatbots become ubiquitous, voice interaction presents a compelling way to enable rapid, high-bandwidth communication for both semantic and social signals. This has driven research into Large Audio Models (LAMs) to power voice-native experiences. However, aligning LAM development with user goals requires a clear understanding of user needs and preferences to establish reliable progress metrics. This study addresses these challenges by introducing an interactive approach to evaluate LAMs and collecting 7,500 LAM interactions from 484 participants. Through topic modeling of user queries, we identify primary use cases for audio interfaces. We then analyze user preference rankings and qualitative feedback to determine which models best align with user needs. Finally, we evaluate how static benchmarks predict interactive performance - our analysis reveals no individual benchmark strongly correlates with interactive results (tau leq 0.33 for all benchmarks). While combining multiple coarse-grained features yields modest predictive power (R^2=0.30), only two out of twenty datasets on spoken question answering and age prediction show significantly positive correlations. This suggests a clear need to develop LAM evaluations that better correlate with user preferences.
A Persona-Based Neural Conversation Model
We present persona-based models for handling the issue of speaker consistency in neural response generation. A speaker model encodes personas in distributed embeddings that capture individual characteristics such as background information and speaking style. A dyadic speaker-addressee model captures properties of interactions between two interlocutors. Our models yield qualitative performance improvements in both perplexity and BLEU scores over baseline sequence-to-sequence models, with similar gains in speaker consistency as measured by human judges.
"All of Me": Mining Users' Attributes from their Public Spotify Playlists
In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. These publicly accessible playlists transcend the boundaries of mere musical preferences: they serve as sources of rich insights into users' attributes and identities. For example, the musical preferences of elderly individuals may lean more towards Frank Sinatra, while Billie Eilish remains a favored choice among teenagers. These playlists thus become windows into the diverse and evolving facets of one's musical identity. In this work, we investigate the relationship between Spotify users' attributes and their public playlists. In particular, we focus on identifying recurring musical characteristics associated with users' individual attributes, such as demographics, habits, or personality traits. To this end, we conducted an online survey involving 739 Spotify users, yielding a dataset of 10,286 publicly shared playlists encompassing over 200,000 unique songs and 55,000 artists. Through extensive statistical analyses, we first assess a deep connection between a user's Spotify playlists and their real-life attributes. For instance, we found individuals high in openness often create playlists featuring a diverse array of artists, while female users prefer Pop and K-pop music genres. Building upon these observed associations, we create accurate predictive models for users' attributes, presenting a novel DeepSet application that outperforms baselines in most of these users' attributes.
PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits
Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents which we refer to as LLM personas and present a case study with GPT-3.5 and GPT-4 to investigate whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we simulate distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, LLM personas' writings have emerging representative linguistic patterns for personality traits when compared with a human writing corpus. Furthermore, human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80\%. Interestingly, the accuracy drops significantly when the annotators were informed of the AI's authorship.
Partial Diacritization: A Context-Contrastive Inference Approach
Diacritization plays a pivotal role in improving readability and disambiguating the meaning of Arabic texts. Efforts have so far focused on marking every eligible character (Full Diacritization). Comparatively overlooked, Partial Diacritzation (PD) is the selection of a subset of characters to be marked to aid comprehension where needed. Research has indicated that excessive diacritic marks can hinder skilled readers--reducing reading speed and accuracy. We conduct a behavioral experiment and show that partially marked text is often easier to read than fully marked text, and sometimes easier than plain text. In this light, we introduce Context-Contrastive Partial Diacritization (CCPD)--a novel approach to PD which integrates seamlessly with existing Arabic diacritization systems. CCPD processes each word twice, once with context and once without, and diacritizes only the characters with disparities between the two inferences. Further, we introduce novel indicators for measuring partial diacritization quality (SR, PDER, HDER, ERE), essential for establishing this as a machine learning task. Lastly, we introduce TD2, a Transformer-variant of an established model which offers a markedly different per formance profile on our proposed indicators compared to all other known systems.
How does the teacher rate? Observations from the NeuroPiano dataset
This paper provides a detailed analysis of the NeuroPiano dataset, which comprise 104 audio recordings of student piano performances accompanied with 2255 textual feedback and ratings given by professional pianists. We offer a statistical overview of the dataset, focusing on the standardization of annotations and inter-annotator agreement across 12 evaluative questions concerning performance quality. We also explore the predictive relationship between audio features and teacher ratings via machine learning, as well as annotations provided for text analysis of the responses.
How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench
We investigate the predictability of large language model (LLM) capabilities: given records of past experiments using different model families, numbers of parameters, tasks, and numbers of in-context examples, can we accurately predict LLM performance on new experiment configurations? Answering this question has practical implications for LLM users (e.g., deciding which models to try), developers (e.g., prioritizing evaluation on representative tasks), and the research community (e.g., identifying hard-to-predict capabilities that warrant further investigation). We study the performance prediction problem on experiment records from BIG-bench. On a random train-test split, an MLP-based predictor achieves an R^2 score greater than 95%, indicating the presence of learnable patterns within the experiment records. We then formulate the problem of searching for "small-bench," an informative subset of BIG-bench tasks from which the performance on the full set can be maximally recovered. We find a subset as informative as BIG-bench Hard for evaluating new model families, while being 3times smaller. Additionally, we find competitive subsets by clustering task representations learned by our MLP-based predictor and selecting tasks close to cluster centroids, highlighting the importance of task diversity in constructing "small-bench."
Character-LLM: A Trainable Agent for Role-Playing
Large language models (LLMs) can be used to serve as agents to simulate human behaviors, given the powerful ability to understand human instructions and provide high-quality generated texts. Such ability stimulates us to wonder whether LLMs can simulate a person in a higher form than simple human behaviors. Therefore, we aim to train an agent with the profile, experience, and emotional states of a specific person instead of using limited prompts to instruct ChatGPT API. In this work, we introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc. Our method focuses on editing profiles as experiences of a certain character and training models to be personal simulacra with these experiences. To assess the effectiveness of our approach, we build a test playground that interviews trained agents and evaluates whether the agents memorize their characters and experiences. Experimental results show interesting observations that help build future simulacra of humankind.
PERSONA: A Reproducible Testbed for Pluralistic Alignment
The rapid advancement of language models (LMs) necessitates robust alignment with diverse user values. However, current preference optimization approaches often fail to capture the plurality of user opinions, instead reinforcing majority viewpoints and marginalizing minority perspectives. We introduce PERSONA, a reproducible test bed designed to evaluate and improve pluralistic alignment of LMs. We procedurally generate diverse user profiles from US census data, resulting in 1,586 synthetic personas with varied demographic and idiosyncratic attributes. We then generate a large-scale evaluation dataset containing 3,868 prompts and 317,200 feedback pairs obtained from our synthetic personas. Leveraging this dataset, we systematically evaluate LM capabilities in role-playing diverse users, verified through human judges, and the establishment of both a benchmark, PERSONA Bench, for pluralistic alignment approaches as well as an extensive dataset to create new and future benchmarks. The full dataset and benchmarks are available here: https://www.synthlabs.ai/research/persona.
TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences
The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others.
Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding
Current researches on spoken language understanding (SLU) heavily are limited to a simple setting: the plain text-based SLU that takes the user utterance as input and generates its corresponding semantic frames (e.g., intent and slots). Unfortunately, such a simple setting may fail to work in complex real-world scenarios when an utterance is semantically ambiguous, which cannot be achieved by the text-based SLU models. In this paper, we first introduce a new and important task, Profile-based Spoken Language Understanding (ProSLU), which requires the model that not only relies on the plain text but also the supporting profile information to predict the correct intents and slots. To this end, we further introduce a large-scale human-annotated Chinese dataset with over 5K utterances and their corresponding supporting profile information (Knowledge Graph (KG), User Profile (UP), Context Awareness (CA)). In addition, we evaluate several state-of-the-art baseline models and explore a multi-level knowledge adapter to effectively incorporate profile information. Experimental results reveal that all existing text-based SLU models fail to work when the utterances are semantically ambiguous and our proposed framework can effectively fuse the supporting information for sentence-level intent detection and token-level slot filling. Finally, we summarize key challenges and provide new points for future directions, which hopes to facilitate the research.
MetaMetrics: Calibrating Metrics For Generation Tasks Using Human Preferences
Understanding the quality of a performance evaluation metric is crucial for ensuring that model outputs align with human preferences. However, it remains unclear how well each metric captures the diverse aspects of these preferences, as metrics often excel in one particular area but not across all dimensions. To address this, it is essential to systematically calibrate metrics to specific aspects of human preference, catering to the unique characteristics of each aspect. We introduce MetaMetrics, a calibrated meta-metric designed to evaluate generation tasks across different modalities in a supervised manner. MetaMetrics optimizes the combination of existing metrics to enhance their alignment with human preferences. Our metric demonstrates flexibility and effectiveness in both language and vision downstream tasks, showing significant benefits across various multilingual and multi-domain scenarios. MetaMetrics aligns closely with human preferences and is highly extendable and easily integrable into any application. This makes MetaMetrics a powerful tool for improving the evaluation of generation tasks, ensuring that metrics are more representative of human judgment across diverse contexts.
Editable User Profiles for Controllable Text Recommendation
Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile.