- Phoneme Boundary Detection using Learnable Segmental Features Phoneme boundary detection plays an essential first step for a variety of speech processing applications such as speaker diarization, speech science, keyword spotting, etc. In this work, we propose a neural architecture coupled with a parameterized structured loss function to learn segmental representations for the task of phoneme boundary detection. First, we evaluated our model when the spoken phonemes were not given as input. Results on the TIMIT and Buckeye corpora suggest that the proposed model is superior to the baseline models and reaches state-of-the-art performance in terms of F1 and R-value. We further explore the use of phonetic transcription as additional supervision and show this yields minor improvements in performance but substantially better convergence rates. We additionally evaluate the model on a Hebrew corpus and demonstrate such phonetic supervision can be beneficial in a multi-lingual setting. 4 authors · Feb 11, 2020
- REBORN: Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR Unsupervised automatic speech recognition (ASR) aims to learn the mapping between the speech signal and its corresponding textual transcription without the supervision of paired speech-text data. A word/phoneme in the speech signal is represented by a segment of speech signal with variable length and unknown boundary, and this segmental structure makes learning the mapping between speech and text challenging, especially without paired data. In this paper, we propose REBORN, Reinforcement-Learned Boundary Segmentation with Iterative Training for Unsupervised ASR. REBORN alternates between (1) training a segmentation model that predicts the boundaries of the segmental structures in speech signals and (2) training the phoneme prediction model, whose input is a segmental structure segmented by the segmentation model, to predict a phoneme transcription. Since supervised data for training the segmentation model is not available, we use reinforcement learning to train the segmentation model to favor segmentations that yield phoneme sequence predictions with a lower perplexity. We conduct extensive experiments and find that under the same setting, REBORN outperforms all prior unsupervised ASR models on LibriSpeech, TIMIT, and five non-English languages in Multilingual LibriSpeech. We comprehensively analyze why the boundaries learned by REBORN improve the unsupervised ASR performance. 7 authors · Feb 6, 2024
1 AI-generated text boundary detection with RoFT Due to the rapid development of large language models, people increasingly often encounter texts that may start as written by a human but continue as machine-generated. Detecting the boundary between human-written and machine-generated parts of such texts is a challenging problem that has not received much attention in literature. We attempt to bridge this gap and examine several ways to adapt state of the art artificial text detection classifiers to the boundary detection setting. We push all detectors to their limits, using the Real or Fake text benchmark that contains short texts on several topics and includes generations of various language models. We use this diversity to deeply examine the robustness of all detectors in cross-domain and cross-model settings to provide baselines and insights for future research. In particular, we find that perplexity-based approaches to boundary detection tend to be more robust to peculiarities of domain-specific data than supervised fine-tuning of the RoBERTa model; we also find which features of the text confuse boundary detection algorithms and negatively influence their performance in cross-domain settings. 9 authors · Nov 14, 2023
- MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available. 3 authors · May 2, 2023 1
1 Unsupervised Speech Segmentation: A General Approach Using Speech Language Models In this paper, we introduce an unsupervised approach for Speech Segmentation, which builds on previously researched approaches, e.g., Speaker Diarization, while being applicable to an inclusive set of acoustic-semantic distinctions, paving a path towards a general Unsupervised Speech Segmentation approach. Unlike traditional speech and audio segmentation, which mainly focuses on spectral changes in the input signal, e.g., phone segmentation, our approach tries to segment the spoken utterance into chunks with differing acoustic-semantic styles, focusing on acoustic-semantic information that does not translate well into text, e.g., emotion or speaker. While most Speech Segmentation tasks only handle one style change, e.g., emotion diarization, our approach tries to handle multiple acoustic-semantic style changes. Leveraging recent advances in Speech Language Models (SLMs), we propose a simple unsupervised method to segment a given speech utterance. We empirically demonstrate the effectiveness of the proposed approach by considering several setups. Results suggest that the proposed method is superior to the evaluated baselines on boundary detection, segment purity, and over-segmentation. Code is available at https://github.com/avishaiElmakies/unsupervised_speech_segmentation_using_slm. 3 authors · Jan 7
- Good Neighbors Are All You Need for Chinese Grapheme-to-Phoneme Conversion Most Chinese Grapheme-to-Phoneme (G2P) systems employ a three-stage framework that first transforms input sequences into character embeddings, obtains linguistic information using language models, and then predicts the phonemes based on global context about the entire input sequence. However, linguistic knowledge alone is often inadequate. Language models frequently encode overly general structures of a sentence and fail to cover specific cases needed to use phonetic knowledge. Also, a handcrafted post-processing system is needed to address the problems relevant to the tone of the characters. However, the system exhibits inconsistency in the segmentation of word boundaries which consequently degrades the performance of the G2P system. To address these issues, we propose the Reinforcer that provides strong inductive bias for language models by emphasizing the phonological information between neighboring characters to help disambiguate pronunciations. Experimental results show that the Reinforcer boosts the cutting-edge architectures by a large margin. We also combine the Reinforcer with a large-scale pre-trained model and demonstrate the validity of using neighboring context in knowledge transfer scenarios. 4 authors · Mar 14, 2023
- TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area. 2 authors · Mar 31, 2024
- A systematic comparison of grapheme-based vs. phoneme-based label units for encoder-decoder-attention models Following the rationale of end-to-end modeling, CTC, RNN-T or encoder-decoder-attention models for automatic speech recognition (ASR) use graphemes or grapheme-based subword units based on e.g. byte-pair encoding (BPE). The mapping from pronunciation to spelling is learned completely from data. In contrast to this, classical approaches to ASR employ secondary knowledge sources in the form of phoneme lists to define phonetic output labels and pronunciation lexica. In this work, we do a systematic comparison between grapheme- and phoneme-based output labels for an encoder-decoder-attention ASR model. We investigate the use of single phonemes as well as BPE-based phoneme groups as output labels of our model. To preserve a simplified and efficient decoder design, we also extend the phoneme set by auxiliary units to be able to distinguish homophones. Experiments performed on the Switchboard 300h and LibriSpeech benchmarks show that phoneme-based modeling is competitive to grapheme-based encoder-decoder-attention modeling. 6 authors · May 19, 2020
- Opencpop: A High-Quality Open Source Chinese Popular Song Corpus for Singing Voice Synthesis This paper introduces Opencpop, a publicly available high-quality Mandarin singing corpus designed for singing voice synthesis (SVS). The corpus consists of 100 popular Mandarin songs performed by a female professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100 Hz and the corresponding lyrics and musical scores are provided. All singing recordings have been phonetically annotated with phoneme boundaries and syllable (note) boundaries. To demonstrate the reliability of the released data and to provide a baseline for future research, we built baseline deep neural network-based SVS models and evaluated them with both objective metrics and subjective mean opinion score (MOS) measure. Experimental results show that the best SVS model trained on our database achieves 3.70 MOS, indicating the reliability of the provided corpus. Opencpop is released to the open-source community WeNet, and the corpus, as well as synthesized demos, can be found on the project homepage. 9 authors · Jan 19, 2022
- SpeechBlender: Speech Augmentation Framework for Mispronunciation Data Generation The lack of labeled second language (L2) speech data is a major challenge in designing mispronunciation detection models. We introduce SpeechBlender - a fine-grained data augmentation pipeline for generating mispronunciation errors to overcome such data scarcity. The SpeechBlender utilizes varieties of masks to target different regions of phonetic units, and use the mixing factors to linearly interpolate raw speech signals while augmenting pronunciation. The masks facilitate smooth blending of the signals, generating more effective samples than the `Cut/Paste' method. Our proposed technique achieves state-of-the-art results, with Speechocean762, on ASR dependent mispronunciation detection models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [1]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. We also observed a 4.6% increase in F1-score with Arabic AraVoiceL2 testset. 5 authors · Nov 2, 2022
- Efficient Transformers with Dynamic Token Pooling Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget. 4 authors · Nov 17, 2022 2
- A realistic and robust model for Chinese word segmentation A realistic Chinese word segmentation tool must adapt to textual variations with minimal training input and yet robust enough to yield reliable segmentation result for all variants. Various lexicon-driven approaches to Chinese segmentation, e.g. [1,16], achieve high f-scores yet require massive training for any variation. Text-driven approach, e.g. [12], can be easily adapted for domain and genre changes yet has difficulty matching the high f-scores of the lexicon-driven approaches. In this paper, we refine and implement an innovative text-driven word boundary decision (WBD) segmentation model proposed in [15]. The WBD model treats word segmentation simply and efficiently as a binary decision on whether to realize the natural textual break between two adjacent characters as a word boundary. The WBD model allows simple and quick training data preparation converting characters as contextual vectors for learning the word boundary decision. Machine learning experiments with four different classifiers show that training with 1,000 vectors and 1 million vectors achieve comparable and reliable results. In addition, when applied to SigHAN Bakeoff 3 competition data, the WBD model produces OOV recall rates that are higher than all published results. Unlike all previous work, our OOV recall rate is comparable to our own F-score. Both experiments support the claim that the WBD model is a realistic model for Chinese word segmentation as it can be easily adapted for new variants with the robust result. In conclusion, we will discuss linguistic ramifications as well as future implications for the WBD approach. 4 authors · May 21, 2019
- Monotonic segmental attention for automatic speech recognition We introduce a novel segmental-attention model for automatic speech recognition. We restrict the decoder attention to segments to avoid quadratic runtime of global attention, better generalize to long sequences, and eventually enable streaming. We directly compare global-attention and different segmental-attention modeling variants. We develop and compare two separate time-synchronous decoders, one specifically taking the segmental nature into account, yielding further improvements. Using time-synchronous decoding for segmental models is novel and a step towards streaming applications. Our experiments show the importance of a length model to predict the segment boundaries. The final best segmental-attention model using segmental decoding performs better than global-attention, in contrast to other monotonic attention approaches in the literature. Further, we observe that the segmental model generalizes much better to long sequences of up to several minutes. 5 authors · Oct 26, 2022
- Smart Speech Segmentation using Acousto-Linguistic Features with look-ahead Segmentation for continuous Automatic Speech Recognition (ASR) has traditionally used silence timeouts or voice activity detectors (VADs), which are both limited to acoustic features. This segmentation is often overly aggressive, given that people naturally pause to think as they speak. Consequently, segmentation happens mid-sentence, hindering both punctuation and downstream tasks like machine translation for which high-quality segmentation is critical. Model-based segmentation methods that leverage acoustic features are powerful, but without an understanding of the language itself, these approaches are limited. We present a hybrid approach that leverages both acoustic and language information to improve segmentation. Furthermore, we show that including one word as a look-ahead boosts segmentation quality. On average, our models improve segmentation-F0.5 score by 9.8% over baseline. We show that this approach works for multiple languages. For the downstream task of machine translation, it improves the translation BLEU score by an average of 1.05 points. 10 authors · Oct 25, 2022
8 BiPhone: Modeling Inter Language Phonetic Influences in Text A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1). We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2. These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web. We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the FunGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text. 8 authors · Jul 6, 2023 3
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
1 PSST! Prosodic Speech Segmentation with Transformers Self-attention mechanisms have enabled transformers to achieve superhuman-level performance on many speech-to-text (STT) tasks, yet the challenge of automatic prosodic segmentation has remained unsolved. In this paper we finetune Whisper, a pretrained STT model, to annotate intonation unit (IU) boundaries by repurposing low-frequency tokens. Our approach achieves an accuracy of 95.8%, outperforming previous methods without the need for large-scale labeled data or enterprise grade compute resources. We also diminish input signals by applying a series of filters, finding that low pass filters at a 3.2 kHz level improve segmentation performance in out of sample and out of distribution contexts. We release our model as both a transcription tool and a baseline for further improvements in prosodic segmentation. 3 authors · Feb 3, 2023
- Transcription free filler word detection with Neural semi-CRFs Non-linguistic filler words, such as "uh" or "um", are prevalent in spontaneous speech and serve as indicators for expressing hesitation or uncertainty. Previous works for detecting certain non-linguistic filler words are highly dependent on transcriptions from a well-established commercial automatic speech recognition (ASR) system. However, certain ASR systems are not universally accessible from many aspects, e.g., budget, target languages, and computational power. In this work, we investigate filler word detection system that does not depend on ASR systems. We show that, by using the structured state space sequence model (S4) and neural semi-Markov conditional random fields (semi-CRFs), we achieve an absolute F1 improvement of 6.4% (segment level) and 3.1% (event level) on the PodcastFillers dataset. We also conduct a qualitative analysis on the detected results to analyze the limitations of our proposed system. 4 authors · Mar 11, 2023
- Allophant: Cross-lingual Phoneme Recognition with Articulatory Attributes This paper proposes Allophant, a multilingual phoneme recognizer. It requires only a phoneme inventory for cross-lingual transfer to a target language, allowing for low-resource recognition. The architecture combines a compositional phone embedding approach with individually supervised phonetic attribute classifiers in a multi-task architecture. We also introduce Allophoible, an extension of the PHOIBLE database. When combined with a distance based mapping approach for grapheme-to-phoneme outputs, it allows us to train on PHOIBLE inventories directly. By training and evaluating on 34 languages, we found that the addition of multi-task learning improves the model's capability of being applied to unseen phonemes and phoneme inventories. On supervised languages we achieve phoneme error rate improvements of 11 percentage points (pp.) compared to a baseline without multi-task learning. Evaluation of zero-shot transfer on 84 languages yielded a decrease in PER of 2.63 pp. over the baseline. 3 authors · Jun 7, 2023
- Towards Automatic Boundary Detection for Human-AI Collaborative Hybrid Essay in Education The recent large language models (LLMs), e.g., ChatGPT, have been able to generate human-like and fluent responses when provided with specific instructions. While admitting the convenience brought by technological advancement, educators also have concerns that students might leverage LLMs to complete their writing assignments and pass them off as their original work. Although many AI content detection studies have been conducted as a result of such concerns, most of these prior studies modeled AI content detection as a classification problem, assuming that a text is either entirely human-written or entirely AI-generated. In this study, we investigated AI content detection in a rarely explored yet realistic setting where the text to be detected is collaboratively written by human and generative LLMs (i.e., hybrid text). We first formalized the detection task as identifying the transition points between human-written content and AI-generated content from a given hybrid text (boundary detection). Then we proposed a two-step approach where we (1) separated AI-generated content from human-written content during the encoder training process; and (2) calculated the distances between every two adjacent prototypes and assumed that the boundaries exist between the two adjacent prototypes that have the furthest distance from each other. Through extensive experiments, we observed the following main findings: (1) the proposed approach consistently outperformed the baseline methods across different experiment settings; (2) the encoder training process can significantly boost the performance of the proposed approach; (3) when detecting boundaries for single-boundary hybrid essays, the proposed approach could be enhanced by adopting a relatively large prototype size, leading to a 22% improvement in the In-Domain evaluation and an 18% improvement in the Out-of-Domain evaluation. 6 authors · Jul 23, 2023
- Filler Word Detection and Classification: A Dataset and Benchmark Filler words such as `uh' or `um' are sounds or words people use to signal they are pausing to think. Finding and removing filler words from recordings is a common and tedious task in media editing. Automatically detecting and classifying filler words could greatly aid in this task, but few studies have been published on this problem to date. A key reason is the absence of a dataset with annotated filler words for model training and evaluation. In this work, we present a novel speech dataset, PodcastFillers, with 35K annotated filler words and 50K annotations of other sounds that commonly occur in podcasts such as breaths, laughter, and word repetitions. We propose a pipeline that leverages VAD and ASR to detect filler candidates and a classifier to distinguish between filler word types. We evaluate our proposed pipeline on PodcastFillers, compare to several baselines, and present a detailed ablation study. In particular, we evaluate the importance of using ASR and how it compares to a transcription-free approach resembling keyword spotting. We show that our pipeline obtains state-of-the-art results, and that leveraging ASR strongly outperforms a keyword spotting approach. We make PodcastFillers publicly available, in the hope that our work serves as a benchmark for future research. 3 authors · Mar 28, 2022
1 Dealing with training and test segmentation mismatch: FBK@IWSLT2021 This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points. 4 authors · Jun 23, 2021
- Speech Recognition and Multi-Speaker Diarization of Long Conversations Speech recognition (ASR) and speaker diarization (SD) models have traditionally been trained separately to produce rich conversation transcripts with speaker labels. Recent advances have shown that joint ASR and SD models can learn to leverage audio-lexical inter-dependencies to improve word diarization performance. We introduce a new benchmark of hour-long podcasts collected from the weekly This American Life radio program to better compare these approaches when applied to extended multi-speaker conversations. We find that training separate ASR and SD models perform better when utterance boundaries are known but otherwise joint models can perform better. To handle long conversations with unknown utterance boundaries, we introduce a striding attention decoding algorithm and data augmentation techniques which, combined with model pre-training, improves ASR and SD. 4 authors · May 16, 2020
2 End-to-end speaker segmentation for overlap-aware resegmentation Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse. 2 authors · Apr 8, 2021
- Weakly-supervised word-level pronunciation error detection in non-native English speech We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced L2 speech, the model is more likely to overfit. To limit this risk, we train it in a multi-task setup. In the first task, we estimate the probabilities of word-level mispronunciation. For the second task, we use a phoneme recognizer trained on phonetically transcribed L1 speech that is easily accessible and can be automatically annotated. Compared to state-of-the-art approaches, we improve the accuracy of detecting word-level pronunciation errors in AUC metric by 30% on the GUT Isle Corpus of L2 Polish speakers, and by 21.5% on the Isle Corpus of L2 German and Italian speakers. 5 authors · Jun 7, 2021
- Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio. Recent advances highlight the potential of deriving discrete symbols from the features correlated with linguistic units, which enables text-less training across diverse tasks. In particular, sentence-level Self-Distillation of the pretrained HuBERT (SD-HuBERT) induces syllabic structures within latent speech frame representations extracted from an intermediate Transformer layer. In SD-HuBERT, sentence-level representation is accumulated from speech frame features through self-attention layers using a special CLS token. However, we observe that the information aggregated in the CLS token correlates more with speaker identity than with linguistic content. To address this, we propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information. Our method introduces speaker perturbation as data augmentation and adopts a frame-level training objective to prevent the CLS token from aggregating paralinguistic information. Experimental results show that our approach surpasses the current state-of-the-art method in most syllable segmentation and syllabic unit quality metrics on Librispeech, underscoring its effectiveness in promoting syllabic organization within speech-only models. 2 authors · Sep 16, 2024
- XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech We present XPhoneBERT, the first multilingual model pre-trained to learn phoneme representations for the downstream text-to-speech (TTS) task. Our XPhoneBERT has the same model architecture as BERT-base, trained using the RoBERTa pre-training approach on 330M phoneme-level sentences from nearly 100 languages and locales. Experimental results show that employing XPhoneBERT as an input phoneme encoder significantly boosts the performance of a strong neural TTS model in terms of naturalness and prosody and also helps produce fairly high-quality speech with limited training data. We publicly release our pre-trained XPhoneBERT with the hope that it would facilitate future research and downstream TTS applications for multiple languages. Our XPhoneBERT model is available at https://github.com/VinAIResearch/XPhoneBERT 3 authors · May 31, 2023
- Towards Unsupervised Speech Recognition and Synthesis with Quantized Speech Representation Learning In this paper we propose a Sequential Representation Quantization AutoEncoder (SeqRQ-AE) to learn from primarily unpaired audio data and produce sequences of representations very close to phoneme sequences of speech utterances. This is achieved by proper temporal segmentation to make the representations phoneme-synchronized, and proper phonetic clustering to have total number of distinct representations close to the number of phonemes. Mapping between the distinct representations and phonemes is learned from a small amount of annotated paired data. Preliminary experiments on LJSpeech demonstrated the learned representations for vowels have relative locations in latent space in good parallel to that shown in the IPA vowel chart defined by linguistics experts. With less than 20 minutes of annotated speech, our method outperformed existing methods on phoneme recognition and is able to synthesize intelligible speech that beats our baseline model. 4 authors · Oct 28, 2019
- AVA-Speech: A Densely Labeled Dataset of Speech Activity in Movies Speech activity detection (or endpointing) is an important processing step for applications such as speech recognition, language identification and speaker diarization. Both audio- and vision-based approaches have been used for this task in various settings, often tailored toward end applications. However, much of the prior work reports results in synthetic settings, on task-specific datasets, or on datasets that are not openly available. This makes it difficult to compare approaches and understand their strengths and weaknesses. In this paper, we describe a new dataset which we will release publicly containing densely labeled speech activity in YouTube videos, with the goal of creating a shared, available dataset for this task. The labels in the dataset annotate three different speech activity conditions: clean speech, speech co-occurring with music, and speech co-occurring with noise, which enable analysis of model performance in more challenging conditions based on the presence of overlapping noise. We report benchmark performance numbers on AVA-Speech using off-the-shelf, state-of-the-art audio and vision models that serve as a baseline to facilitate future research. 11 authors · Aug 1, 2018
- Unsupervised Voice Activity Detection by Modeling Source and System Information using Zero Frequency Filtering Voice activity detection (VAD) is an important pre-processing step for speech technology applications. The task consists of deriving segment boundaries of audio signals which contain voicing information. In recent years, it has been shown that voice source and vocal tract system information can be extracted using zero-frequency filtering (ZFF) without making any explicit model assumptions about the speech signal. This paper investigates the potential of zero-frequency filtering for jointly modeling voice source and vocal tract system information, and proposes two approaches for VAD. The first approach demarcates voiced regions using a composite signal composed of different zero-frequency filtered signals. The second approach feeds the composite signal as input to the rVAD algorithm. These approaches are compared with other supervised and unsupervised VAD methods in the literature, and are evaluated on the Aurora-2 database, across a range of SNRs (20 to -5 dB). Our studies show that the proposed ZFF-based methods perform comparable to state-of-art VAD methods and are more invariant to added degradation and different channel characteristics. 3 authors · Jun 27, 2022
1 Modeling of learning curves with applications to pos tagging An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations. 3 authors · Feb 4, 2024
- Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models are publicly available. 6 authors · Aug 6, 2019
- speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit. 9 authors · Apr 3, 2021
- Sylber: Syllabic Embedding Representation of Speech from Raw Audio Syllables are compositional units of spoken language that play a crucial role in human speech perception and production. However, current neural speech representations lack structure, resulting in dense token sequences that are costly to process. To bridge this gap, we propose a new model, Sylber, that produces speech representations with clean and robust syllabic structure. Specifically, we propose a self-supervised model that regresses features on syllabic segments distilled from a teacher model which is an exponential moving average of the model in training. This results in a highly structured representation of speech features, offering three key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic tokenization with an average of 4.27 tokens per second, and 3) syllabic units better suited for lexical and syntactic understanding. We also train token-to-speech generative models with our syllabic units and show that fully intelligible speech can be reconstructed from these tokens. Lastly, we observe that categorical perception, a linguistic phenomenon of speech perception, emerges naturally in our model, making the embedding space more categorical and sparse than previous self-supervised learning approaches. Together, we present a novel self-supervised approach for representing speech as syllables, with significant potential for efficient speech tokenization and spoken language modeling. 7 authors · Oct 9, 2024
1 Efficient yet Competitive Speech Translation: FBK@IWSLT2022 The primary goal of this FBK's systems submission to the IWSLT 2022 offline and simultaneous speech translation tasks is to reduce model training costs without sacrificing translation quality. As such, we first question the need of ASR pre-training, showing that it is not essential to achieve competitive results. Second, we focus on data filtering, showing that a simple method that looks at the ratio between source and target characters yields a quality improvement of 1 BLEU. Third, we compare different methods to reduce the detrimental effect of the audio segmentation mismatch between training data manually segmented at sentence level and inference data that is automatically segmented. Towards the same goal of training cost reduction, we participate in the simultaneous task with the same model trained for offline ST. The effectiveness of our lightweight training strategy is shown by the high score obtained on the MuST-C en-de corpus (26.7 BLEU) and is confirmed in high-resource data conditions by a 1.6 BLEU improvement on the IWSLT2020 test set over last year's winning system. 6 authors · May 5, 2022
- Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada In this paper, we present specially designed automatic speech recognition (ASR) systems for the highly agglutinative and inflective languages of Tamil and Kannada that can recognize unlimited vocabulary of words. We use subwords as the basic lexical units for recognition and construct subword grammar weighted finite state transducer (SG-WFST) graphs for word segmentation that captures most of the complex word formation rules of the languages. We have identified the following category of words (i) verbs, (ii) nouns, (ii) pronouns, and (iv) numbers. The prefix, infix and suffix lists of subwords are created for each of these categories and are used to design the SG-WFST graphs. We also present a heuristic segmentation algorithm that can even segment exceptional words that do not follow the rules encapsulated in the SG-WFST graph. Most of the data-driven subword dictionary creation algorithms are computation driven, and hence do not guarantee morpheme-like units and so we have used the linguistic knowledge of the languages and manually created the subword dictionaries and the graphs. Finally, we train a deep neural network acoustic model and combine it with the pronunciation lexicon of the subword dictionary and the SG-WFST graph to build the subword-ASR systems. Since the subword-ASR produces subword sequences as output for a given test speech, we post-process its output to get the final word sequence, so that the actual number of words that can be recognized is much higher. Upon experimenting the subword-ASR system with the IISc-MILE Tamil and Kannada ASR corpora, we observe an absolute word error rate reduction of 12.39% and 13.56% over the baseline word-based ASR systems for Tamil and Kannada, respectively. 3 authors · Jul 27, 2022
- Timers and Such: A Practical Benchmark for Spoken Language Understanding with Numbers This paper introduces Timers and Such, a new open source dataset of spoken English commands for common voice control use cases involving numbers. We describe the gap in existing spoken language understanding datasets that Timers and Such fills, the design and creation of the dataset, and experiments with a number of ASR-based and end-to-end baseline models, the code for which has been made available as part of the SpeechBrain toolkit. 5 authors · Apr 4, 2021
- SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models. 7 authors · Nov 19, 2021
2 PWESuite: Phonetic Word Embeddings and Tasks They Facilitate Word embeddings that map words into a fixed-dimensional vector space are the backbone of modern NLP. Most word embedding methods encode semantic information. However, phonetic information, which is important for some tasks, is often overlooked. In this work, we develop several novel methods which leverage articulatory features to build phonetically informed word embeddings, and present a set of phonetic word embeddings to encourage their community development, evaluation and use. While several methods for learning phonetic word embeddings already exist, there is a lack of consistency in evaluating their effectiveness. Thus, we also proposes several ways to evaluate both intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and extrinsic performances, such as rhyme and cognate detection and sound analogies. We hope that our suite of tasks will promote reproducibility and provide direction for future research on phonetic word embeddings. 7 authors · Apr 5, 2023
2 HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 6 authors · Jun 14, 2021
- Mispronunciation detection using self-supervised speech representations In recent years, self-supervised learning (SSL) models have produced promising results in a variety of speech-processing tasks, especially in contexts of data scarcity. In this paper, we study the use of SSL models for the task of mispronunciation detection for second language learners. We compare two downstream approaches: 1) training the model for phone recognition (PR) using native English data, and 2) training a model directly for the target task using non-native English data. We compare the performance of these two approaches for various SSL representations as well as a representation extracted from a traditional DNN-based speech recognition model. We evaluate the models on L2Arctic and EpaDB, two datasets of non-native speech annotated with pronunciation labels at the phone level. Overall, we find that using a downstream model trained for the target task gives the best performance and that most upstream models perform similarly for the task. 3 authors · Jul 30, 2023
- Understanding Semantics from Speech Through Pre-training End-to-end Spoken Language Understanding (SLU) is proposed to infer the semantic meaning directly from audio features without intermediate text representation. Although the acoustic model component of an end-to-end SLU system can be pre-trained with Automatic Speech Recognition (ASR) targets, the SLU component can only learn semantic features from limited task-specific training data. In this paper, for the first time we propose to do large-scale unsupervised pre-training for the SLU component of an end-to-end SLU system, so that the SLU component may preserve semantic features from massive unlabeled audio data. As the output of the acoustic model component, i.e. phoneme posterior sequences, has much different characteristic from text sequences, we propose a novel pre-training model called BERT-PLM, which stands for Bidirectional Encoder Representations from Transformers through Permutation Language Modeling. BERT-PLM trains the SLU component on unlabeled data through a regression objective equivalent to the partial permutation language modeling objective, while leverages full bi-directional context information with BERT networks. The experiment results show that our approach out-perform the state-of-the-art end-to-end systems with over 12.5% error reduction. 6 authors · Sep 24, 2019
- Exploring the Benefits of Tokenization of Discrete Acoustic Units Tokenization algorithms that merge the units of a base vocabulary into larger, variable-rate units have become standard in natural language processing tasks. This idea, however, has been mostly overlooked when the vocabulary consists of phonemes or Discrete Acoustic Units (DAUs), an audio-based representation that is playing an increasingly important role due to the success of discrete language-modeling techniques. In this paper, we showcase the advantages of tokenization of phonetic units and of DAUs on three prediction tasks: grapheme-to-phoneme, grapheme-to-DAUs, and unsupervised speech generation using DAU language modeling. We demonstrate that tokenization yields significant improvements in terms of performance, as well as training and inference speed, across all three tasks. We also offer theoretical insights to provide some explanation for the superior performance observed. 2 authors · Jun 8, 2024
- Comparing phonemes and visemes with DNN-based lipreading There is debate if phoneme or viseme units are the most effective for a lipreading system. Some studies use phoneme units even though phonemes describe unique short sounds; other studies tried to improve lipreading accuracy by focusing on visemes with varying results. We compare the performance of a lipreading system by modeling visual speech using either 13 viseme or 38 phoneme units. We report the accuracy of our system at both word and unit levels. The evaluation task is large vocabulary continuous speech using the TCD-TIMIT corpus. We complete our visual speech modeling via hybrid DNN-HMMs and our visual speech decoder is a Weighted Finite-State Transducer (WFST). We use DCT and Eigenlips as a representation of mouth ROI image. The phoneme lipreading system word accuracy outperforms the viseme based system word accuracy. However, the phoneme system achieved lower accuracy at the unit level which shows the importance of the dictionary for decoding classification outputs into words. 3 authors · May 8, 2018
1 SemEval 2022 Task 12: Symlink- Linking Mathematical Symbols to their Descriptions Given the increasing number of livestreaming videos, automatic speech recognition and post-processing for livestreaming video transcripts are crucial for efficient data management as well as knowledge mining. A key step in this process is punctuation restoration which restores fundamental text structures such as phrase and sentence boundaries from the video transcripts. This work presents a new human-annotated corpus, called BehancePR, for punctuation restoration in livestreaming video transcripts. Our experiments on BehancePR demonstrate the challenges of punctuation restoration for this domain. Furthermore, we show that popular natural language processing toolkits are incapable of detecting sentence boundary on non-punctuated transcripts of livestreaming videos, calling for more research effort to develop robust models for this area. 4 authors · Feb 19, 2022
- Neural Modeling for Named Entities and Morphology (NEMO^2) Named Entity Recognition (NER) is a fundamental NLP task, commonly formulated as classification over a sequence of tokens. Morphologically-Rich Languages (MRLs) pose a challenge to this basic formulation, as the boundaries of Named Entities do not necessarily coincide with token boundaries, rather, they respect morphological boundaries. To address NER in MRLs we then need to answer two fundamental questions, namely, what are the basic units to be labeled, and how can these units be detected and classified in realistic settings, i.e., where no gold morphology is available. We empirically investigate these questions on a novel NER benchmark, with parallel tokenlevel and morpheme-level NER annotations, which we develop for Modern Hebrew, a morphologically rich-and-ambiguous language. Our results show that explicitly modeling morphological boundaries leads to improved NER performance, and that a novel hybrid architecture, in which NER precedes and prunes morphological decomposition, greatly outperforms the standard pipeline, where morphological decomposition strictly precedes NER, setting a new performance bar for both Hebrew NER and Hebrew morphological decomposition tasks. 2 authors · Jul 30, 2020
- SHAS: Approaching optimal Segmentation for End-to-End Speech Translation Speech translation models are unable to directly process long audios, like TED talks, which have to be split into shorter segments. Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time. To bridge the gap between the manual segmentation of training and the automatic one at inference, we propose Supervised Hybrid Audio Segmentation (SHAS), a method that can effectively learn the optimal segmentation from any manually segmented speech corpus. First, we train a classifier to identify the included frames in a segmentation, using speech representations from a pre-trained wav2vec 2.0. The optimal splitting points are then found by a probabilistic Divide-and-Conquer algorithm that progressively splits at the frame of lowest probability until all segments are below a pre-specified length. Experiments on MuST-C and mTEDx show that the translation of the segments produced by our method approaches the quality of the manual segmentation on 5 language pairs. Namely, SHAS retains 95-98% of the manual segmentation's BLEU score, compared to the 87-93% of the best existing methods. Our method is additionally generalizable to different domains and achieves high zero-shot performance in unseen languages. 4 authors · Feb 9, 2022
- Lexically Grounded Subword Segmentation We present three innovations in tokenization and subword segmentation. First, we propose to use unsupervised morphological analysis with Morfessor as pre-tokenization. Second, we present an algebraic method for obtaining subword embeddings grounded in a word embedding space. Based on that, we design a novel subword segmentation algorithm that uses the embeddings, ensuring that the procedure considers lexical meaning. Third, we introduce an efficient segmentation algorithm based on a subword bigram model that can be initialized with the lexically aware segmentation method to avoid using Morfessor and large embedding tables at inference time. We evaluate the proposed approaches using two intrinsic metrics and measure their performance on two downstream tasks: part-of-speech tagging and machine translation. Our experiments show significant improvements in the morphological plausibility of the segmentation when evaluated using segmentation precision on morpheme boundaries and improved R\'enyi efficiency in 8 languages. Although the proposed tokenization methods do not have a large impact on automatic translation quality, we observe consistent performance gains in the arguably more morphological task of part-of-speech tagging. 2 authors · Jun 19, 2024
- Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input. 7 authors · Aug 26, 2022
- Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation Efforts to leverage deep learning models in low-resource regimes have led to numerous augmentation studies. However, the direct application of methods such as mixup and cutout to text data, is limited due to their discrete characteristics. While methods using pretrained language models have exhibited efficiency, they require additional considerations for robustness. Inspired by recent studies on decision boundaries, this paper proposes a decision-boundary-aware data augmentation strategy to enhance robustness using pretrained language models. The proposed technique first focuses on shifting the latent features closer to the decision boundary, followed by reconstruction to generate an ambiguous version with a soft label. Additionally, mid-K sampling is suggested to enhance the diversity of the generated sentences. This paper demonstrates the performance of the proposed augmentation strategy compared to other methods through extensive experiments. Furthermore, the ablation study reveals the effect of soft labels and mid-K sampling and the extensibility of the method with curriculum data augmentation. 5 authors · Mar 22, 2024
- Multi-Dialect Vietnamese: Task, Dataset, Baseline Models and Challenges Vietnamese, a low-resource language, is typically categorized into three primary dialect groups that belong to Northern, Central, and Southern Vietnam. However, each province within these regions exhibits its own distinct pronunciation variations. Despite the existence of various speech recognition datasets, none of them has provided a fine-grained classification of the 63 dialects specific to individual provinces of Vietnam. To address this gap, we introduce Vietnamese Multi-Dialect (ViMD) dataset, a novel comprehensive dataset capturing the rich diversity of 63 provincial dialects spoken across Vietnam. Our dataset comprises 102.56 hours of audio, consisting of approximately 19,000 utterances, and the associated transcripts contain over 1.2 million words. To provide benchmarks and simultaneously demonstrate the challenges of our dataset, we fine-tune state-of-the-art pre-trained models for two downstream tasks: (1) Dialect identification and (2) Speech recognition. The empirical results suggest two implications including the influence of geographical factors on dialects, and the constraints of current approaches in speech recognition tasks involving multi-dialect speech data. Our dataset is available for research purposes. 4 authors · Oct 4, 2024
- CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. (Our recipe is open-source in the SpeechBrain toolkit, see: https://github.com/speechbrain/speechbrain/tree/develop/recipes) 4 authors · May 29, 2023
- Self-Training for End-to-End Speech Recognition We revisit self-training in the context of end-to-end speech recognition. We demonstrate that training with pseudo-labels can substantially improve the accuracy of a baseline model. Key to our approach are a strong baseline acoustic and language model used to generate the pseudo-labels, filtering mechanisms tailored to common errors from sequence-to-sequence models, and a novel ensemble approach to increase pseudo-label diversity. Experiments on the LibriSpeech corpus show that with an ensemble of four models and label filtering, self-training yields a 33.9% relative improvement in WER compared with a baseline trained on 100 hours of labelled data in the noisy speech setting. In the clean speech setting, self-training recovers 59.3% of the gap between the baseline and an oracle model, which is at least 93.8% relatively higher than what previous approaches can achieve. 3 authors · Sep 19, 2019
- Speech Model Pre-training for End-to-End Spoken Language Understanding Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the model's ability to generalize to new phrases not heard during training. 5 authors · Apr 7, 2019
- Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier Guidance We propose Guided-TTS, a high-quality text-to-speech (TTS) model that does not require any transcript of target speaker using classifier guidance. Guided-TTS combines an unconditional diffusion probabilistic model with a separately trained phoneme classifier for classifier guidance. Our unconditional diffusion model learns to generate speech without any context from untranscribed speech data. For TTS synthesis, we guide the generative process of the diffusion model with a phoneme classifier trained on a large-scale speech recognition dataset. We present a norm-based scaling method that reduces the pronunciation errors of classifier guidance in Guided-TTS. We show that Guided-TTS achieves a performance comparable to that of the state-of-the-art TTS model, Grad-TTS, without any transcript for LJSpeech. We further demonstrate that Guided-TTS performs well on diverse datasets including a long-form untranscribed dataset. 3 authors · Nov 23, 2021
- Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent. 3 authors · Nov 12, 2023
34 Roadmap towards Superhuman Speech Understanding using Large Language Models The success of large language models (LLMs) has prompted efforts to integrate speech and audio data, aiming to create general foundation models capable of processing both textual and non-textual inputs. Recent advances, such as GPT-4o, highlight the potential for end-to-end speech LLMs, which preserves non-semantic information and world knowledge for deeper speech understanding. To guide the development of speech LLMs, we propose a five-level roadmap, ranging from basic automatic speech recognition (ASR) to advanced superhuman models capable of integrating non-semantic information with abstract acoustic knowledge for complex tasks. Moreover, we design a benchmark, SAGI Bechmark, that standardizes critical aspects across various tasks in these five levels, uncovering challenges in using abstract acoustic knowledge and completeness of capability. Our findings reveal gaps in handling paralinguistic cues and abstract acoustic knowledge, and we offer future directions. This paper outlines a roadmap for advancing speech LLMs, introduces a benchmark for evaluation, and provides key insights into their current limitations and potential. 6 authors · Oct 17, 2024 2
- A Multilinear Tongue Model Derived from Speech Related MRI Data of the Human Vocal Tract We present a multilinear statistical model of the human tongue that captures anatomical and tongue pose related shape variations separately. The model is derived from 3D magnetic resonance imaging data of 11 speakers sustaining speech related vocal tract configurations. The extraction is performed by using a minimally supervised method that uses as basis an image segmentation approach and a template fitting technique. Furthermore, it uses image denoising to deal with possibly corrupt data, palate surface information reconstruction to handle palatal tongue contacts, and a bootstrap strategy to refine the obtained shapes. Our evaluation concludes that limiting the degrees of freedom for the anatomical and speech related variations to 5 and 4, respectively, produces a model that can reliably register unknown data while avoiding overfitting effects. Furthermore, we show that it can be used to generate a plausible tongue animation by tracking sparse motion capture data. 4 authors · Dec 15, 2016
- Non-verbal information in spontaneous speech -- towards a new framework of analysis Non-verbal signals in speech are encoded by prosody and carry information that ranges from conversation action to attitude and emotion. Despite its importance, the principles that govern prosodic structure are not yet adequately understood. This paper offers an analytical schema and a technological proof-of-concept for the categorization of prosodic signals and their association with meaning. The schema interprets surface-representations of multi-layered prosodic events. As a first step towards implementation, we present a classification process that disentangles prosodic phenomena of three orders. It relies on fine-tuning a pre-trained speech recognition model, enabling the simultaneous multi-class/multi-label detection. It generalizes over a large variety of spontaneous data, performing on a par with, or superior to, human annotation. In addition to a standardized formalization of prosody, disentangling prosodic patterns can direct a theory of communication and speech organization. A welcome by-product is an interpretation of prosody that will enhance speech- and language-related technologies. 8 authors · Mar 6, 2024
1 Evaluating Pixel Language Models on Non-Standardized Languages We explore the potential of pixel-based models for transfer learning from standard languages to dialects. These models convert text into images that are divided into patches, enabling a continuous vocabulary representation that proves especially useful for out-of-vocabulary words common in dialectal data. Using German as a case study, we compare the performance of pixel-based models to token-based models across various syntactic and semantic tasks. Our results show that pixel-based models outperform token-based models in part-of-speech tagging, dependency parsing and intent detection for zero-shot dialect evaluation by up to 26 percentage points in some scenarios, though not in Standard German. However, pixel-based models fall short in topic classification. These findings emphasize the potential of pixel-based models for handling dialectal data, though further research should be conducted to assess their effectiveness in various linguistic contexts. 3 authors · Dec 12, 2024
1 DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021 This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system 9 authors · Oct 24, 2021
- Encoding of lexical tone in self-supervised models of spoken language Interpretability research has shown that self-supervised Spoken Language Models (SLMs) encode a wide variety of features in human speech from the acoustic, phonetic, phonological, syntactic and semantic levels, to speaker characteristics. The bulk of prior research on representations of phonology has focused on segmental features such as phonemes; the encoding of suprasegmental phonology (such as tone and stress patterns) in SLMs is not yet well understood. Tone is a suprasegmental feature that is present in more than half of the world's languages. This paper aims to analyze the tone encoding capabilities of SLMs, using Mandarin and Vietnamese as case studies. We show that SLMs encode lexical tone to a significant degree even when they are trained on data from non-tonal languages. We further find that SLMs behave similarly to native and non-native human participants in tone and consonant perception studies, but they do not follow the same developmental trajectory. 5 authors · Mar 25, 2024
- SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models. 10 authors · Dec 20, 2022
- Unsupervised Speech Recognition Despite rapid progress in the recent past, current speech recognition systems still require labeled training data which limits this technology to a small fraction of the languages spoken around the globe. This paper describes wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition models without any labeled data. We leverage self-supervised speech representations to segment unlabeled audio and learn a mapping from these representations to phonemes via adversarial training. The right representations are key to the success of our method. Compared to the best previous unsupervised work, wav2vec-U reduces the phoneme error rate on the TIMIT benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark, wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the best published systems trained on 960 hours of labeled data from only two years ago. We also experiment on nine other languages, including low-resource languages such as Kyrgyz, Swahili and Tatar. 4 authors · May 24, 2021
2 Speech Analysis of Language Varieties in Italy Italy exhibits rich linguistic diversity across its territory due to the distinct regional languages spoken in different areas. Recent advances in self-supervised learning provide new opportunities to analyze Italy's linguistic varieties using speech data alone. This includes the potential to leverage representations learned from large amounts of data to better examine nuances between closely related linguistic varieties. In this study, we focus on automatically identifying the geographic region of origin of speech samples drawn from Italy's diverse language varieties. We leverage self-supervised learning models to tackle this task and analyze differences and similarities between Italy's regional languages. In doing so, we also seek to uncover new insights into the relationships among these diverse yet closely related varieties, which may help linguists understand their interconnected evolution and regional development over time and space. To improve the discriminative ability of learned representations, we evaluate several supervised contrastive learning objectives, both as pre-training steps and additional fine-tuning objectives. Experimental evidence shows that pre-trained self-supervised models can effectively identify regions from speech recording. Additionally, incorporating contrastive objectives during fine-tuning improves classification accuracy and yields embeddings that distinctly separate regional varieties, demonstrating the value of combining self-supervised pre-training and contrastive learning for this task. 4 authors · Jun 22, 2024
- GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika. 21 authors · Jun 13, 2021
1 Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems. 8 authors · Sep 30, 2024
- Scaling Rich Style-Prompted Text-to-Speech Datasets We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps . 4 authors · Mar 6
- VoxLingua107: a Dataset for Spoken Language Recognition This paper investigates the use of automatically collected web audio data for the task of spoken language recognition. We generate semi-random search phrases from language-specific Wikipedia data that are then used to retrieve videos from YouTube for 107 languages. Speech activity detection and speaker diarization are used to extract segments from the videos that contain speech. Post-filtering is used to remove segments from the database that are likely not in the given language, increasing the proportion of correctly labeled segments to 98%, based on crowd-sourced verification. The size of the resulting training set (VoxLingua107) is 6628 hours (62 hours per language on the average) and it is accompanied by an evaluation set of 1609 verified utterances. We use the data to build language recognition models for several spoken language identification tasks. Experiments show that using the automatically retrieved training data gives competitive results to using hand-labeled proprietary datasets. The dataset is publicly available. 2 authors · Nov 25, 2020
- WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition. 12 authors · Oct 7, 2021
- Wav2Gloss: Generating Interlinear Glossed Text from Speech Thousands of the world's languages are in danger of extinction--a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages' communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose Wav2Gloss: a task to extract these four annotation components automatically from speech, and introduce the first dataset to this end, Fieldwork: a corpus of speech with all these annotations covering 37 languages with standard formatting and train/dev/test splits. We compare end-to-end and cascaded Wav2Gloss methods, with analysis suggesting that pre-trained decoders assist with translation and glossing, that multi-task and multilingual approaches are underperformant, and that end-to-end systems perform better than cascaded systems, despite the text-only systems' advantages. We provide benchmarks to lay the ground work for future research on IGT generation from speech. 9 authors · Mar 19, 2024
- Synchronous Bidirectional Learning for Multilingual Lip Reading Lip reading has received increasing attention in recent years. This paper focuses on the synergy of multilingual lip reading. There are about as many as 7000 languages in the world, which implies that it is impractical to train separate lip reading models with large-scale data for each language. Although each language has its own linguistic and pronunciation rules, the lip movements of all languages share similar patterns due to the common structures of human organs. Based on this idea, we try to explore the synergized learning of multilingual lip reading in this paper, and further propose a synchronous bidirectional learning (SBL) framework for effective synergy of multilingual lip reading. We firstly introduce phonemes as our modeling units for the multilingual setting here. Phonemes are more closely related with the lip movements than the alphabet letters. At the same time, similar phonemes always lead to similar visual patterns no matter which type the target language is. Then, a novel SBL block is proposed to learn the rules for each language in a fill-in-the-blank way. Specifically, the model has to learn to infer the target unit given its bidirectional context, which could represent the composition rules of phonemes for each language. To make the learning process more targeted at each particular language, an extra task of predicting the language identity is introduced in the learning process. Finally, a thorough comparison on LRW (English) and LRW-1000 (Mandarin) is performed, which shows the promising benefits from the synergized learning of different languages and also reports a new state-of-the-art result on both datasets. 5 authors · May 8, 2020
- FT Speech: Danish Parliament Speech Corpus This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech. 3 authors · May 25, 2020
- I see what you hear: a vision-inspired method to localize words This paper explores the possibility of using visual object detection techniques for word localization in speech data. Object detection has been thoroughly studied in the contemporary literature for visual data. Noting that an audio can be interpreted as a 1-dimensional image, object localization techniques can be fundamentally useful for word localization. Building upon this idea, we propose a lightweight solution for word detection and localization. We use bounding box regression for word localization, which enables our model to detect the occurrence, offset, and duration of keywords in a given audio stream. We experiment with LibriSpeech and train a model to localize 1000 words. Compared to existing work, our method reduces model size by 94%, and improves the F1 score by 6.5\%. 8 authors · Oct 24, 2022
- Two Stones Hit One Bird: Bilevel Positional Encoding for Better Length Extrapolation In this work, we leverage the intrinsic segmentation of language sequences and design a new positional encoding method called Bilevel Positional Encoding (BiPE). For each position, our BiPE blends an intra-segment encoding and an inter-segment encoding. The intra-segment encoding identifies the locations within a segment and helps the model capture the semantic information therein via absolute positional encoding. The inter-segment encoding specifies the segment index, models the relationships between segments, and aims to improve extrapolation capabilities via relative positional encoding. Theoretical analysis shows this disentanglement of positional information makes learning more effective. The empirical results also show that our BiPE has superior length extrapolation capabilities across a wide range of tasks in diverse text modalities. 9 authors · Jan 29, 2024
- FastSpeech: Fast, Robust and Controllable Text to Speech Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech. 7 authors · May 22, 2019 1
3 CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-training Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that explicitly learns the prosody variance of the same text token under different contexts. Specifically, 1) We encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space with the elaborate design of the encoder inputs and contrastive loss; 2) We introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. We show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker TTS. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in our method. Source code and audio samples are available at https://clapspeech.github.io. 8 authors · May 18, 2023 4
- vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations We propose vq-wav2vec to learn discrete representations of audio segments through a wav2vec-style self-supervised context prediction task. The algorithm uses either a gumbel softmax or online k-means clustering to quantize the dense representations. Discretization enables the direct application of algorithms from the NLP community which require discrete inputs. Experiments show that BERT pre-training achieves a new state of the art on TIMIT phoneme classification and WSJ speech recognition. 3 authors · Oct 11, 2019
- Bridging the Gap Between Clean Data Training and Real-World Inference for Spoken Language Understanding Spoken language understanding (SLU) system usually consists of various pipeline components, where each component heavily relies on the results of its upstream ones. For example, Intent detection (ID), and slot filling (SF) require its upstream automatic speech recognition (ASR) to transform the voice into text. In this case, the upstream perturbations, e.g. ASR errors, environmental noise and careless user speaking, will propagate to the ID and SF models, thus deteriorating the system performance. Therefore, the well-performing SF and ID models are expected to be noise resistant to some extent. However, existing models are trained on clean data, which causes a gap between clean data training and real-world inference. To bridge the gap, we propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space. Meanwhile, we design a denoising generation model to reduce the impact of the low-quality samples. Experiments on the widely-used dataset, i.e. Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment. The source code will be released. 4 authors · Apr 13, 2021
- SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}. 8 authors · Aug 25, 2024
- The Norwegian Parliamentary Speech Corpus The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system. 2 authors · Jan 26, 2022
- Improving End-to-End SLU performance with Prosodic Attention and Distillation Most End-to-End SLU methods depend on the pretrained ASR or language model features for intent prediction. However, other essential information in speech, such as prosody, is often ignored. Recent research has shown improved results in classifying dialogue acts by incorporating prosodic information. The margins of improvement in these methods are minimal as the neural models ignore prosodic features. In this work, we propose prosody-attention, which uses the prosodic features differently to generate attention maps across time frames of the utterance. Then we propose prosody-distillation to explicitly learn the prosodic information in the acoustic encoder rather than concatenating the implicit prosodic features. Both the proposed methods improve the baseline results, and the prosody-distillation method gives an intent classification accuracy improvement of 8\% and 2\% on SLURP and STOP datasets over the prosody baseline. 1 authors · May 14, 2023
- End-to-end Domain-Adversarial Voice Activity Detection Voice activity detection is the task of detecting speech regions in a given audio stream or recording. First, we design a neural network combining trainable filters and recurrent layers to tackle voice activity detection directly from the waveform. Experiments on the challenging DIHARD dataset show that the proposed end-to-end model reaches state-of-the-art performance and outperforms a variant where trainable filters are replaced by standard cepstral coefficients. Our second contribution aims at making the proposed voice activity detection model robust to domain mismatch. To that end, a domain classification branch is added to the network and trained in an adversarial manner. The same DIHARD dataset, drawn from 11 different domains is used for evaluation under two scenarios. In the in-domain scenario where the training and test sets cover the exact same domains, we show that the domain-adversarial approach does not degrade performance of the proposed end-to-end model. In the out-domain scenario where the test domain is different from training domains, it brings a relative improvement of more than 10%. Finally, our last contribution is the provision of a fully reproducible open-source pipeline than can be easily adapted to other datasets. 5 authors · Oct 23, 2019
54 AudioPaLM: A Large Language Model That Can Speak and Listen We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and speech-to-speech translation. AudioPaLM inherits the capability to preserve paralinguistic information such as speaker identity and intonation from AudioLM and the linguistic knowledge present only in text large language models such as PaLM-2. We demonstrate that initializing AudioPaLM with the weights of a text-only large language model improves speech processing, successfully leveraging the larger quantity of text training data used in pretraining to assist with the speech tasks. The resulting model significantly outperforms existing systems for speech translation tasks and has the ability to perform zero-shot speech-to-text translation for many languages for which input/target language combinations were not seen in training. AudioPaLM also demonstrates features of audio language models, such as transferring a voice across languages based on a short spoken prompt. We release examples of our method at https://google-research.github.io/seanet/audiopalm/examples 30 authors · Jun 22, 2023 6
1 Skit-S2I: An Indian Accented Speech to Intent dataset Conventional conversation assistants extract text transcripts from the speech signal using automatic speech recognition (ASR) and then predict intent from the transcriptions. Using end-to-end spoken language understanding (SLU), the intents of the speaker are predicted directly from the speech signal without requiring intermediate text transcripts. As a result, the model can optimize directly for intent classification and avoid cascading errors from ASR. The end-to-end SLU system also helps in reducing the latency of the intent prediction model. Although many datasets are available publicly for text-to-intent tasks, the availability of labeled speech-to-intent datasets is limited, and there are no datasets available in the Indian accent. In this paper, we release the Skit-S2I dataset, the first publicly available Indian-accented SLU dataset in the banking domain in a conversational tonality. We experiment with multiple baselines, compare different pretrained speech encoder's representations, and find that SSL pretrained representations perform slightly better than ASR pretrained representations lacking prosodic features for speech-to-intent classification. The dataset and baseline code is available at https://github.com/skit-ai/speech-to-intent-dataset 3 authors · Dec 26, 2022
1 SeqXGPT: Sentence-Level AI-Generated Text Detection Widely applied large language models (LLMs) can generate human-like content, raising concerns about the abuse of LLMs. Therefore, it is important to build strong AI-generated text (AIGT) detectors. Current works only consider document-level AIGT detection, therefore, in this paper, we first introduce a sentence-level detection challenge by synthesizing a dataset that contains documents that are polished with LLMs, that is, the documents contain sentences written by humans and sentences modified by LLMs. Then we propose Sequence X (Check) GPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection. These features are composed like waves in speech processing and cannot be studied by LLMs. Therefore, we build SeqXGPT based on convolution and self-attention networks. We test it in both sentence and document-level detection challenges. Experimental results show that previous methods struggle in solving sentence-level AIGT detection, while our method not only significantly surpasses baseline methods in both sentence and document-level detection challenges but also exhibits strong generalization capabilities. 6 authors · Oct 13, 2023
1 Boosting Norwegian Automatic Speech Recognition In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian. 5 authors · Jul 4, 2023
- Joint Khmer Word Segmentation and Part-of-Speech Tagging Using Deep Learning Khmer text is written from left to right with optional space. Space is not served as a word boundary but instead, it is used for readability or other functional purposes. Word segmentation is a prior step for downstream tasks such as part-of-speech (POS) tagging and thus, the robustness of POS tagging highly depends on word segmentation. The conventional Khmer POS tagging is a two-stage process that begins with word segmentation and then actual tagging of each word, afterward. In this work, a joint word segmentation and POS tagging approach using a single deep learning model is proposed so that word segmentation and POS tagging can be performed spontaneously. The proposed model was trained and tested using the publicly available Khmer POS dataset. The validation suggested that the performance of the joint model is on par with the conventional two-stage POS tagging. 3 authors · Mar 31, 2021
- Less Peaky and More Accurate CTC Forced Alignment by Label Priors Connectionist temporal classification (CTC) models are known to have peaky output distributions. Such behavior is not a problem for automatic speech recognition (ASR), but it can cause inaccurate forced alignments (FA), especially at finer granularity, e.g., phoneme level. This paper aims at alleviating the peaky behavior for CTC and improve its suitability for forced alignment generation, by leveraging label priors, so that the scores of alignment paths containing fewer blanks are boosted and maximized during training. As a result, our CTC model produces less peaky posteriors and is able to more accurately predict the offset of the tokens besides their onset. It outperforms the standard CTC model and a heuristics-based approach for obtaining CTC's token offset timestamps by 12-40% in phoneme and word boundary errors (PBE and WBE) measured on the Buckeye and TIMIT data. Compared with the most widely used FA toolkit Montreal Forced Aligner (MFA), our method performs similarly on PBE/WBE on Buckeye, yet falls behind MFA on TIMIT. Nevertheless, our method has a much simpler training pipeline and better runtime efficiency. Our training recipe and pretrained model are released in TorchAudio. 12 authors · Apr 22, 2024
77 Soundwave: Less is More for Speech-Text Alignment in LLMs Existing end-to-end speech large language models (LLMs) usually rely on large-scale annotated data for training, while data-efficient training has not been discussed in depth. We focus on two fundamental problems between speech and text: the representation space gap and sequence length inconsistency. We propose Soundwave, which utilizes an efficient training strategy and a novel architecture to address these issues. Results show that Soundwave outperforms the advanced Qwen2-Audio in speech translation and AIR-Bench speech tasks, using only one-fiftieth of the training data. Further analysis shows that Soundwave still retains its intelligence during conversation. The project is available at https://github.com/FreedomIntelligence/Soundwave. 6 authors · Feb 18 2
- An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning. 4 authors · Jun 19, 2022
- Hierarchical attention interpretation: an interpretable speech-level transformer for bi-modal depression detection Depression is a common mental disorder. Automatic depression detection tools using speech, enabled by machine learning, help early screening of depression. This paper addresses two limitations that may hinder the clinical implementations of such tools: noise resulting from segment-level labelling and a lack of model interpretability. We propose a bi-modal speech-level transformer to avoid segment-level labelling and introduce a hierarchical interpretation approach to provide both speech-level and sentence-level interpretations, based on gradient-weighted attention maps derived from all attention layers to track interactions between input features. We show that the proposed model outperforms a model that learns at a segment level (p=0.854, r=0.947, F1=0.947 compared to p=0.732, r=0.808, F1=0.768). For model interpretation, using one true positive sample, we show which sentences within a given speech are most relevant to depression detection; and which text tokens and Mel-spectrogram regions within these sentences are most relevant to depression detection. These interpretations allow clinicians to verify the validity of predictions made by depression detection tools, promoting their clinical implementations. 3 authors · Sep 23, 2023
- Blank-regularized CTC for Frame Skipping in Neural Transducer Neural Transducer and connectionist temporal classification (CTC) are popular end-to-end automatic speech recognition systems. Due to their frame-synchronous design, blank symbols are introduced to address the length mismatch between acoustic frames and output tokens, which might bring redundant computation. Previous studies managed to accelerate the training and inference of neural Transducers by discarding frames based on the blank symbols predicted by a co-trained CTC. However, there is no guarantee that the co-trained CTC can maximize the ratio of blank symbols. This paper proposes two novel regularization methods to explicitly encourage more blanks by constraining the self-loop of non-blank symbols in the CTC. It is interesting to find that the frame reduction ratio of the neural Transducer can approach the theoretical boundary. Experiments on LibriSpeech corpus show that our proposed method accelerates the inference of neural Transducer by 4 times without sacrificing performance. Our work is open-sourced and publicly available https://github.com/k2-fsa/icefall. 9 authors · May 19, 2023
6 wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 4 authors · Jun 19, 2020 1
- Learn Your Tokens: Word-Pooled Tokenization for Language Modeling Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness. 4 authors · Oct 17, 2023
- Chapter Captor: Text Segmentation in Novels Books are typically segmented into chapters and sections, representing coherent subnarratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving an F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels. 3 authors · Nov 8, 2020
- Disentangled Phonetic Representation for Chinese Spelling Correction Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information. 3 authors · May 24, 2023
- Self-Supervised Speech Representation Learning: A Review Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains. Such methods have shown success in natural language processing and computer vision domains, achieving new levels of performance while reducing the number of labels required for many downstream scenarios. Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods. Other approaches rely on multi-modal data for pre-training, mixing text or visual data streams with speech. Although self-supervised speech representation is still a nascent research area, it is closely related to acoustic word embedding and learning with zero lexical resources, both of which have seen active research for many years. This review presents approaches for self-supervised speech representation learning and their connection to other research areas. Since many current methods focus solely on automatic speech recognition as a downstream task, we review recent efforts on benchmarking learned representations to extend the application beyond speech recognition. 12 authors · May 21, 2022
- AVASpeech-SMAD: A Strongly Labelled Speech and Music Activity Detection Dataset with Label Co-Occurrence We propose a dataset, AVASpeech-SMAD, to assist speech and music activity detection research. With frame-level music labels, the proposed dataset extends the existing AVASpeech dataset, which originally consists of 45 hours of audio and speech activity labels. To the best of our knowledge, the proposed AVASpeech-SMAD is the first open-source dataset that features strong polyphonic labels for both music and speech. The dataset was manually annotated and verified via an iterative cross-checking process. A simple automatic examination was also implemented to further improve the quality of the labels. Evaluation results from two state-of-the-art SMAD systems are also provided as a benchmark for future reference. 7 authors · Nov 1, 2021
- Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages Lyrics alignment gained considerable attention in recent years. State-of-the-art systems either re-use established speech recognition toolkits, or design end-to-end solutions involving a Connectionist Temporal Classification (CTC) loss. However, both approaches suffer from specific weaknesses: toolkits are known for their complexity, and CTC systems use a loss designed for transcription which can limit alignment accuracy. In this paper, we use instead a contrastive learning procedure that derives cross-modal embeddings linking the audio and text domains. This way, we obtain a novel system that is simple to train end-to-end, can make use of weakly annotated training data, jointly learns a powerful text model, and is tailored to alignment. The system is not only the first to yield an average absolute error below 0.2 seconds on the standard Jamendo dataset but it is also robust to other languages, even when trained on English data only. Finally, we release word-level alignments for the JamendoLyrics Multi-Lang dataset. 3 authors · Jun 13, 2023
2 Where's the Point? Self-Supervised Multilingual Punctuation-Agnostic Sentence Segmentation Many NLP pipelines split text into sentences as one of the crucial preprocessing steps. Prior sentence segmentation tools either rely on punctuation or require a considerable amount of sentence-segmented training data: both central assumptions might fail when porting sentence segmenters to diverse languages on a massive scale. In this work, we thus introduce a multilingual punctuation-agnostic sentence segmentation method, currently covering 85 languages, trained in a self-supervised fashion on unsegmented text, by making use of newline characters which implicitly perform segmentation into paragraphs. We further propose an approach that adapts our method to the segmentation in a given corpus by using only a small number (64-256) of sentence-segmented examples. The main results indicate that our method outperforms all the prior best sentence-segmentation tools by an average of 6.1% F1 points. Furthermore, we demonstrate that proper sentence segmentation has a point: the use of a (powerful) sentence segmenter makes a considerable difference for a downstream application such as machine translation (MT). By using our method to match sentence segmentation to the segmentation used during training of MT models, we achieve an average improvement of 2.3 BLEU points over the best prior segmentation tool, as well as massive gains over a trivial segmenter that splits text into equally sized blocks. 3 authors · May 30, 2023
9 Toward Joint Language Modeling for Speech Units and Text Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability. 8 authors · Oct 12, 2023 1
8 Improving Joint Speech-Text Representations Without Alignment The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system. 8 authors · Aug 11, 2023
- MUSAN: A Music, Speech, and Noise Corpus This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification. 3 authors · Oct 28, 2015
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
- Computer-assisted Pronunciation Training -- Speech synthesis is almost all you need The research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high accuracy (only 60\% precision at 40\%-80\% recall). One of the key problems is the low availability of mispronounced speech that is needed for the reliable training of pronunciation error detection models. If we had a generative model that could mimic non-native speech and produce any amount of training data, then the task of detecting pronunciation errors would be much easier. We present three innovative techniques based on phoneme-to-phoneme (P2P), text-to-speech (T2S), and speech-to-speech (S2S) conversion to generate correctly pronounced and mispronounced synthetic speech. We show that these techniques not only improve the accuracy of three machine learning models for detecting pronunciation errors but also help establish a new state-of-the-art in the field. Earlier studies have used simple speech generation techniques such as P2P conversion, but only as an additional mechanism to improve the accuracy of pronunciation error detection. We, on the other hand, consider speech generation to be the first-class method of detecting pronunciation errors. The effectiveness of these techniques is assessed in the tasks of detecting pronunciation and lexical stress errors. Non-native English speech corpora of German, Italian, and Polish speakers are used in the evaluations. The best proposed S2S technique improves the accuracy of detecting pronunciation errors in AUC metric by 41\% from 0.528 to 0.749 compared to the state-of-the-art approach. 4 authors · Jul 2, 2022
5 WhisperX: Time-Accurate Speech Transcription of Long-Form Audio Large-scale, weakly-supervised speech recognition models, such as Whisper, have demonstrated impressive results on speech recognition across domains and languages. However, their application to long audio transcription via buffered or sliding window approaches is prone to drifting, hallucination & repetition; and prohibits batched transcription due to their sequential nature. Further, timestamps corresponding each utterance are prone to inaccuracies and word-level timestamps are not available out-of-the-box. To overcome these challenges, we present WhisperX, a time-accurate speech recognition system with word-level timestamps utilising voice activity detection and forced phoneme alignment. In doing so, we demonstrate state-of-the-art performance on long-form transcription and word segmentation benchmarks. Additionally, we show that pre-segmenting audio with our proposed VAD Cut & Merge strategy improves transcription quality and enables a twelve-fold transcription speedup via batched inference. 4 authors · Mar 1, 2023
- Speech Emotion Diarization: Which Emotion Appears When? Speech Emotion Recognition (SER) typically relies on utterance-level solutions. However, emotions conveyed through speech should be considered as discrete speech events with definite temporal boundaries, rather than attributes of the entire utterance. To reflect the fine-grained nature of speech emotions, we propose a new task: Speech Emotion Diarization (SED). Just as Speaker Diarization answers the question of "Who speaks when?", Speech Emotion Diarization answers the question of "Which emotion appears when?". To facilitate the evaluation of the performance and establish a common benchmark for researchers, we introduce the Zaion Emotion Dataset (ZED), an openly accessible speech emotion dataset that includes non-acted emotions recorded in real-life conditions, along with manually-annotated boundaries of emotion segments within the utterance. We provide competitive baselines and open-source the code and the pre-trained models. 4 authors · Jun 22, 2023
- Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada We present automatic speech recognition (ASR) systems for Tamil and Kannada based on subword modeling to effectively handle unlimited vocabulary due to the highly agglutinative nature of the languages. We explore byte pair encoding (BPE), and proposed a variant of this algorithm named extended-BPE, and Morfessor tool to segment each word as subwords. We have effectively incorporated maximum likelihood (ML) and Viterbi estimation techniques with weighted finite state transducers (WFST) framework in these algorithms to learn the subword dictionary from a large text corpus. Using the learnt subword dictionary, the words in training data transcriptions are segmented to subwords and we train deep neural network ASR systems which recognize subword sequence for any given test speech utterance. The output subword sequence is then post-processed using deterministic rules to get the final word sequence such that the actual number of words that can be recognized is much larger. For Tamil ASR, We use 152 hours of data for training and 65 hours for testing, whereas for Kannada ASR, we use 275 hours for training and 72 hours for testing. Upon experimenting with different combination of segmentation and estimation techniques, we find that the word error rate (WER) reduces drastically when compared to the baseline word-level ASR, achieving a maximum absolute WER reduction of 6.24% and 6.63% for Tamil and Kannada respectively. 3 authors · Jul 27, 2022
- SPGISpeech: 5,000 hours of transcribed financial audio for fully formatted end-to-end speech recognition In the English speech-to-text (STT) machine learning task, acoustic models are conventionally trained on uncased Latin characters, and any necessary orthography (such as capitalization, punctuation, and denormalization of non-standard words) is imputed by separate post-processing models. This adds complexity and limits performance, as many formatting tasks benefit from semantic information present in the acoustic signal but absent in transcription. Here we propose a new STT task: end-to-end neural transcription with fully formatted text for target labels. We present baseline Conformer-based models trained on a corpus of 5,000 hours of professionally transcribed earnings calls, achieving a CER of 1.7. As a contribution to the STT research community, we release the corpus free for non-commercial use at https://datasets.kensho.com/datasets/scribe. 13 authors · Apr 5, 2021
- Hearing voices at the National Library -- a speech corpus and acoustic model for the Swedish language This paper explains our work in developing new acoustic models for automated speech recognition (ASR) at KBLab, the infrastructure for data-driven research at the National Library of Sweden (KB). We evaluate different approaches for a viable speech-to-text pipeline for audiovisual resources in Swedish, using the wav2vec 2.0 architecture in combination with speech corpuses created from KB's collections. These approaches include pretraining an acoustic model for Swedish from the ground up, and fine-tuning existing monolingual and multilingual models. The collections-based corpuses we use have been sampled from millions of hours of speech, with a conscious attempt to balance regional dialects to produce a more representative, and thus more democratic, model. The acoustic model this enabled, "VoxRex", outperforms existing models for Swedish ASR. We also evaluate combining this model with various pretrained language models, which further enhanced performance. We conclude by highlighting the potential of such technology for cultural heritage institutions with vast collections of previously unlabelled audiovisual data. Our models are released for further exploration and research here: https://huggingface.co/KBLab. 3 authors · May 6, 2022
1 GlotLID: Language Identification for Low-Resource Languages Several recent papers have published good solutions for language identification (LID) for about 300 high-resource and medium-resource languages. However, there is no LID available that (i) covers a wide range of low-resource languages, (ii) is rigorously evaluated and reliable and (iii) efficient and easy to use. Here, we publish GlotLID-M, an LID model that satisfies the desiderata of wide coverage, reliability and efficiency. It identifies 1665 languages, a large increase in coverage compared to prior work. In our experiments, GlotLID-M outperforms four baselines (CLD3, FT176, OpenLID and NLLB) when balancing F1 and false positive rate (FPR). We analyze the unique challenges that low-resource LID poses: incorrect corpus metadata, leakage from high-resource languages, difficulty separating closely related languages, handling of macrolanguage vs varieties and in general noisy data. We hope that integrating GlotLID-M into dataset creation pipelines will improve quality and enhance accessibility of NLP technology for low-resource languages and cultures. GlotLID-M model, code, and list of data sources are available: https://github.com/cisnlp/GlotLID. 4 authors · Oct 24, 2023 2
2 YODAS: Youtube-Oriented Dataset for Audio and Speech In this study, we introduce YODAS (YouTube-Oriented Dataset for Audio and Speech), a large-scale, multilingual dataset comprising currently over 500k hours of speech data in more than 100 languages, sourced from both labeled and unlabeled YouTube speech datasets. The labeled subsets, including manual or automatic subtitles, facilitate supervised model training. Conversely, the unlabeled subsets are apt for self-supervised learning applications. YODAS is distinctive as the first publicly available dataset of its scale, and it is distributed under a Creative Commons license. We introduce the collection methodology utilized for YODAS, which contributes to the large-scale speech dataset construction. Subsequently, we provide a comprehensive analysis of speech, text contained within the dataset. Finally, we describe the speech recognition baselines over the top-15 languages. 6 authors · Jun 2, 2024
- dMel: Speech Tokenization made Simple Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated complicated speech tokenization methods to discretize continuous speech signals so that language modeling techniques can be applied to speech data. However, existing approaches either model semantic tokens, potentially losing acoustic information, or model acoustic tokens, risking the loss of semantic information. Having multiple token types also complicates the architecture and requires additional pretraining. Here we show that discretizing mel-filterbank channels into discrete intensity bins produces a simple representation (dMel), that performs better than other existing speech tokenization methods. Using a transformer decoder-only architecture for speech-text modeling, we comprehensively evaluate different speech tokenization methods on speech recognition (ASR), speech synthesis (TTS). Our results demonstrate the effectiveness of dMel in achieving high performance on both tasks within a unified framework, paving the way for efficient and effective joint modeling of speech and text. 6 authors · Jul 22, 2024
- Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest). 8 authors · Apr 10, 2018
- Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset. 1 authors · Apr 9, 2018
- Phoneme-Level BERT for Enhanced Prosody of Text-to-Speech with Grapheme Predictions Large-scale pre-trained language models have been shown to be helpful in improving the naturalness of text-to-speech (TTS) models by enabling them to produce more naturalistic prosodic patterns. However, these models are usually word-level or sup-phoneme-level and jointly trained with phonemes, making them inefficient for the downstream TTS task where only phonemes are needed. In this work, we propose a phoneme-level BERT (PL-BERT) with a pretext task of predicting the corresponding graphemes along with the regular masked phoneme predictions. Subjective evaluations show that our phoneme-level BERT encoder has significantly improved the mean opinion scores (MOS) of rated naturalness of synthesized speech compared with the state-of-the-art (SOTA) StyleTTS baseline on out-of-distribution (OOD) texts. 4 authors · Jan 20, 2023
- SegAugment: Maximizing the Utility of Speech Translation Data with Segmentation-based Augmentations End-to-end Speech Translation is hindered by a lack of available data resources. While most of them are based on documents, a sentence-level version is available, which is however single and static, potentially impeding the usefulness of the data. We propose a new data augmentation strategy, SegAugment, to address this issue by generating multiple alternative sentence-level versions of a dataset. Our method utilizes an Audio Segmentation system, which re-segments the speech of each document with different length constraints, after which we obtain the target text via alignment methods. Experiments demonstrate consistent gains across eight language pairs in MuST-C, with an average increase of 2.5 BLEU points, and up to 5 BLEU for low-resource scenarios in mTEDx. Furthermore, when combined with a strong system, SegAugment establishes new state-of-the-art results in MuST-C. Finally, we show that the proposed method can also successfully augment sentence-level datasets, and that it enables Speech Translation models to close the gap between the manual and automatic segmentation at inference time. 3 authors · Dec 19, 2022
- L1-aware Multilingual Mispronunciation Detection Framework The phonological discrepancies between a speaker's native (L1) and the non-native language (L2) serves as a major factor for mispronunciation. This paper introduces a novel multilingual MDD architecture, L1-MultiMDD, enriched with L1-aware speech representation. An end-to-end speech encoder is trained on the input signal and its corresponding reference phoneme sequence. First, an attention mechanism is deployed to align the input audio with the reference phoneme sequence. Afterwards, the L1-L2-speech embedding are extracted from an auxiliary model, pretrained in a multi-task setup identifying L1 and L2 language, and are infused with the primary network. Finally, the L1-MultiMDD is then optimized for a unified multilingual phoneme recognition task using connectionist temporal classification (CTC) loss for the target languages: English, Arabic, and Mandarin. Our experiments demonstrate the effectiveness of the proposed L1-MultiMDD framework on both seen -- L2-ARTIC, LATIC, and AraVoiceL2v2; and unseen -- EpaDB and Speechocean762 datasets. The consistent gains in PER, and false rejection rate (FRR) across all target languages confirm our approach's robustness, efficacy, and generalizability. 3 authors · Sep 14, 2023
- PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings A major drawback of supervised speech separation (SSep) systems is their reliance on synthetic data, leading to poor real-world generalization. Mixture invariant training (MixIT) was proposed as an unsupervised alternative that uses real recordings, yet struggles with overseparation and adapting to long-form audio. We introduce PixIT, a joint approach that combines permutation invariant training (PIT) for speaker diarization (SD) and MixIT for SSep. With a small extra requirement of needing SD labels, it solves the problem of overseparation and allows stitching local separated sources leveraging existing work on clustering-based neural SD. We measure the quality of the separated sources via applying automatic speech recognition (ASR) systems to them. PixIT boosts the performance of various ASR systems across two meeting corpora both in terms of the speaker-attributed and utterance-based word error rates while not requiring any fine-tuning. 5 authors · Mar 4, 2024
- SpeechCLIP: Integrating Speech with Pre-Trained Vision and Language Model Data-driven speech processing models usually perform well with a large amount of text supervision, but collecting transcribed speech data is costly. Therefore, we propose SpeechCLIP, a novel framework bridging speech and text through images to enhance speech models without transcriptions. We leverage state-of-the-art pre-trained HuBERT and CLIP, aligning them via paired images and spoken captions with minimal fine-tuning. SpeechCLIP outperforms prior state-of-the-art on image-speech retrieval and performs zero-shot speech-text retrieval without direct supervision from transcriptions. Moreover, SpeechCLIP can directly retrieve semantically related keywords from speech. 6 authors · Oct 3, 2022
- DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check One key characteristic of the Chinese spelling check (CSC) task is that incorrect characters are usually similar to the correct ones in either phonetics or glyph. To accommodate this, previous works usually leverage confusion sets, which suffer from two problems, i.e., difficulty in determining which character pairs to include and lack of probabilities to distinguish items in the set. In this paper, we propose a light-weight plug-and-play DISC (i.e., decoding intervention with similarity of characters) module for CSC models.DISC measures phonetic and glyph similarities between characters and incorporates this similarity information only during the inference phase. This method can be easily integrated into various existing CSC models, such as ReaLiSe, SCOPE, and ReLM, without additional training costs. Experiments on three CSC benchmarks demonstrate that our proposed method significantly improves model performance, approaching and even surpassing the current state-of-the-art models. 9 authors · Dec 17, 2024
- Full-text Error Correction for Chinese Speech Recognition with Large Language Model Large Language Models (LLMs) have demonstrated substantial potential for error correction in Automatic Speech Recognition (ASR). However, most research focuses on utterances from short-duration speech recordings, which are the predominant form of speech data for supervised ASR training. This paper investigates the effectiveness of LLMs for error correction in full-text generated by ASR systems from longer speech recordings, such as transcripts from podcasts, news broadcasts, and meetings. First, we develop a Chinese dataset for full-text error correction, named ChFT, utilizing a pipeline that involves text-to-speech synthesis, ASR, and error-correction pair extractor. This dataset enables us to correct errors across contexts, including both full-text and segment, and to address a broader range of error types, such as punctuation restoration and inverse text normalization, thus making the correction process comprehensive. Second, we fine-tune a pre-trained LLM on the constructed dataset using a diverse set of prompts and target formats, and evaluate its performance on full-text error correction. Specifically, we design prompts based on full-text and segment, considering various output formats, such as directly corrected text and JSON-based error-correction pairs. Through various test settings, including homogeneous, up-to-date, and hard test sets, we find that the fine-tuned LLMs perform well in the full-text setting with different prompts, each presenting its own strengths and weaknesses. This establishes a promising baseline for further research. The dataset is available on the website. 4 authors · Sep 12, 2024
- FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers When applying automated speech recognition (ASR) for Belgian Dutch (Van Dyck et al. 2021), the output consists of an unsegmented stream of words, without any punctuation. A next step is to perform segmentation and insert punctuation, making the ASR output more readable and easy to manually correct. As far as we know there is no publicly available punctuation insertion system for Dutch that functions at a usable level. The model we present here is an extension of the models of Guhr et al. (2021) for Dutch and is made publicly available. We trained a sequence classification model, based on the Dutch language model RobBERT (Delobelle et al. 2020). For every word in the input sequence, the models predicts a punctuation marker that follows the word. We have also extended a multilingual model, for cases where the language is unknown or where code switching applies. When performing the task of segmentation, the application of the best models onto out of domain test data, a sliding window of 200 words of the ASR output stream is sent to the classifier, and segmentation is applied when the system predicts a segmenting punctuation sign with a ratio above threshold. Results show to be much better than a machine translation baseline approach. 2 authors · Jan 9, 2023
- End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-to-Character Recognition Model Time-aligned lyrics can enrich the music listening experience by enabling karaoke, text-based song retrieval and intra-song navigation, and other applications. Compared to text-to-speech alignment, lyrics alignment remains highly challenging, despite many attempts to combine numerous sub-modules including vocal separation and detection in an effort to break down the problem. Furthermore, training required fine-grained annotations to be available in some form. Here, we present a novel system based on a modified Wave-U-Net architecture, which predicts character probabilities directly from raw audio using learnt multi-scale representations of the various signal components. There are no sub-modules whose interdependencies need to be optimized. Our training procedure is designed to work with weak, line-level annotations available in the real world. With a mean alignment error of 0.35s on a standard dataset our system outperforms the state-of-the-art by an order of magnitude. 3 authors · Feb 18, 2019
- Learning Disentangled Speech Representations with Contrastive Learning and Time-Invariant Retrieval Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results. 6 authors · Jan 15, 2024
- Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications. 11 authors · Dec 20, 2021
1 PromptMix: A Class Boundary Augmentation Method for Large Language Model Distillation Data augmentation is a widely used technique to address the problem of text classification when there is a limited amount of training data. Recent work often tackles this problem using large language models (LLMs) like GPT3 that can generate new examples given already available ones. In this work, we propose a method to generate more helpful augmented data by utilizing the LLM's abilities to follow instructions and perform few-shot classifications. Our specific PromptMix method consists of two steps: 1) generate challenging text augmentations near class boundaries; however, generating borderline examples increases the risk of false positives in the dataset, so we 2) relabel the text augmentations using a prompting-based LLM classifier to enhance the correctness of labels in the generated data. We evaluate the proposed method in challenging 2-shot and zero-shot settings on four text classification datasets: Banking77, TREC6, Subjectivity (SUBJ), and Twitter Complaints. Our experiments show that generating and, crucially, relabeling borderline examples facilitates the transfer of knowledge of a massive LLM like GPT3.5-turbo into smaller and cheaper classifiers like DistilBERT_{base} and BERT_{base}. Furthermore, 2-shot PromptMix outperforms multiple 5-shot data augmentation methods on the four datasets. Our code is available at https://github.com/ServiceNow/PromptMix-EMNLP-2023. 4 authors · Oct 22, 2023
- End-to-End Text Classification via Image-based Embedding using Character-level Networks For analysing and/or understanding languages having no word boundaries based on morphological analysis such as Japanese, Chinese, and Thai, it is desirable to perform appropriate word segmentation before word embeddings. But it is inherently difficult in these languages. In recent years, various language models based on deep learning have made remarkable progress, and some of these methodologies utilizing character-level features have successfully avoided such a difficult problem. However, when a model is fed character-level features of the above languages, it often causes overfitting due to a large number of character types. In this paper, we propose a CE-CLCNN, character-level convolutional neural networks using a character encoder to tackle these problems. The proposed CE-CLCNN is an end-to-end learning model and has an image-based character encoder, i.e. the CE-CLCNN handles each character in the target document as an image. Through various experiments, we found and confirmed that our CE-CLCNN captured closely embedded features for visually and semantically similar characters and achieves state-of-the-art results on several open document classification tasks. In this paper we report the performance of our CE-CLCNN with the Wikipedia title estimation task and analyse the internal behaviour. 3 authors · Oct 8, 2018
- Reduce and Reconstruct: ASR for Low-Resource Phonetic Languages This work presents a seemingly simple but effective technique to improve low-resource ASR systems for phonetic languages. By identifying sets of acoustically similar graphemes in these languages, we first reduce the output alphabet of the ASR system using linguistically meaningful reductions and then reconstruct the original alphabet using a standalone module. We demonstrate that this lessens the burden and improves the performance of low-resource end-to-end ASR systems (because only reduced-alphabet predictions are needed) and that it is possible to design a very simple but effective reconstruction module that recovers sequences in the original alphabet from sequences in the reduced alphabet. We present a finite state transducer-based reconstruction module that operates on the 1-best ASR hypothesis in the reduced alphabet. We demonstrate the efficacy of our proposed technique using ASR systems for two Indian languages, Gujarati and Telugu. With access to only 10 hrs of speech data, we obtain relative WER reductions of up to 7% compared to systems that do not use any reduction. 2 authors · Oct 19, 2020
1 Bytes are All You Need: End-to-End Multilingual Speech Recognition and Synthesis with Bytes We present two end-to-end models: Audio-to-Byte (A2B) and Byte-to-Audio (B2A), for multilingual speech recognition and synthesis. Prior work has predominantly used characters, sub-words or words as the unit of choice to model text. These units are difficult to scale to languages with large vocabularies, particularly in the case of multilingual processing. In this work, we model text via a sequence of Unicode bytes, specifically, the UTF-8 variable length byte sequence for each character. Bytes allow us to avoid large softmaxes in languages with large vocabularies, and share representations in multilingual models. We show that bytes are superior to grapheme characters over a wide variety of languages in monolingual end-to-end speech recognition. Additionally, our multilingual byte model outperform each respective single language baseline on average by 4.4% relatively. In Japanese-English code-switching speech, our multilingual byte model outperform our monolingual baseline by 38.6% relatively. Finally, we present an end-to-end multilingual speech synthesis model using byte representations which matches the performance of our monolingual baselines. 5 authors · Nov 21, 2018
- LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech This paper introduces a new speech corpus called "LibriTTS" designed for text-to-speech use. It is derived from the original audio and text materials of the LibriSpeech corpus, which has been used for training and evaluating automatic speech recognition systems. The new corpus inherits desired properties of the LibriSpeech corpus while addressing a number of issues which make LibriSpeech less than ideal for text-to-speech work. The released corpus consists of 585 hours of speech data at 24kHz sampling rate from 2,456 speakers and the corresponding texts. Experimental results show that neural end-to-end TTS models trained from the LibriTTS corpus achieved above 4.0 in mean opinion scores in naturalness in five out of six evaluation speakers. The corpus is freely available for download from http://www.openslr.org/60/. 8 authors · Apr 5, 2019
- DTW-SiameseNet: Dynamic Time Warped Siamese Network for Mispronunciation Detection and Correction Personal Digital Assistants (PDAs) - such as Siri, Alexa and Google Assistant, to name a few - play an increasingly important role to access information and complete tasks spanning multiple domains, and by diverse groups of users. A text-to-speech (TTS) module allows PDAs to interact in a natural, human-like manner, and play a vital role when the interaction involves people with visual impairments or other disabilities. To cater to the needs of a diverse set of users, inclusive TTS is important to recognize and pronounce correctly text in different languages and dialects. Despite great progress in speech synthesis, the pronunciation accuracy of named entities in a multi-lingual setting still has a large room for improvement. Existing approaches to correct named entity (NE) mispronunciations, like retraining Grapheme-to-Phoneme (G2P) models, or maintaining a TTS pronunciation dictionary, require expensive annotation of the ground truth pronunciation, which is also time consuming. In this work, we present a highly-precise, PDA-compatible pronunciation learning framework for the task of TTS mispronunciation detection and correction. In addition, we also propose a novel mispronunciation detection model called DTW-SiameseNet, which employs metric learning with a Siamese architecture for Dynamic Time Warping (DTW) with triplet loss. We demonstrate that a locale-agnostic, privacy-preserving solution to the problem of TTS mispronunciation detection is feasible. We evaluate our approach on a real-world dataset, and a corpus of NE pronunciations of an anonymized audio dataset of person names recorded by participants from 10 different locales. Human evaluation shows our proposed approach improves pronunciation accuracy on average by ~6% compared to strong phoneme-based and audio-based baselines. 6 authors · Feb 28, 2023
1 Exploiting semi-supervised training through a dropout regularization in end-to-end speech recognition In this paper, we explore various approaches for semi supervised learning in an end to end automatic speech recognition (ASR) framework. The first step in our approach involves training a seed model on the limited amount of labelled data. Additional unlabelled speech data is employed through a data selection mechanism to obtain the best hypothesized output, further used to retrain the seed model. However, uncertainties of the model may not be well captured with a single hypothesis. As opposed to this technique, we apply a dropout mechanism to capture the uncertainty by obtaining multiple hypothesized text transcripts of an speech recording. We assume that the diversity of automatically generated transcripts for an utterance will implicitly increase the reliability of the model. Finally, the data selection process is also applied on these hypothesized transcripts to reduce the uncertainty. Experiments on freely available TEDLIUM corpus and proprietary Adobe's internal dataset show that the proposed approach significantly reduces ASR errors, compared to the baseline model. 4 authors · Aug 8, 2019
- Text Segmentation as a Supervised Learning Task Text segmentation, the task of dividing a document into contiguous segments based on its semantic structure, is a longstanding challenge in language understanding. Previous work on text segmentation focused on unsupervised methods such as clustering or graph search, due to the paucity in labeled data. In this work, we formulate text segmentation as a supervised learning problem, and present a large new dataset for text segmentation that is automatically extracted and labeled from Wikipedia. Moreover, we develop a segmentation model based on this dataset and show that it generalizes well to unseen natural text. 5 authors · Mar 25, 2018
1 Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements. 4 authors · Sep 20, 2023
- EAD-VC: Enhancing Speech Auto-Disentanglement for Voice Conversion with IFUB Estimator and Joint Text-Guided Consistent Learning Using unsupervised learning to disentangle speech into content, rhythm, pitch, and timbre for voice conversion has become a hot research topic. Existing works generally take into account disentangling speech components through human-crafted bottleneck features which can not achieve sufficient information disentangling, while pitch and rhythm may still be mixed together. There is a risk of information overlap in the disentangling process which results in less speech naturalness. To overcome such limits, we propose a two-stage model to disentangle speech representations in a self-supervised manner without a human-crafted bottleneck design, which uses the Mutual Information (MI) with the designed upper bound estimator (IFUB) to separate overlapping information between speech components. Moreover, we design a Joint Text-Guided Consistent (TGC) module to guide the extraction of speech content and eliminate timbre leakage issues. Experiments show that our model can achieve a better performance than the baseline, regarding disentanglement effectiveness, speech naturalness, and similarity. Audio samples can be found at https://largeaudiomodel.com/eadvc. 6 authors · Apr 29, 2024
- Speech Recognition for Analysis of Police Radio Communication Police departments around the world use two-way radio for coordination. These broadcast police communications (BPC) are a unique source of information about everyday police activity and emergency response. Yet BPC are not transcribed, and their naturalistic audio properties make automatic transcription challenging. We collect a corpus of roughly 62,000 manually transcribed radio transmissions (~46 hours of audio) to evaluate the feasibility of automatic speech recognition (ASR) using modern recognition models. We evaluate the performance of off-the-shelf speech recognizers, models fine-tuned on BPC data, and customized end-to-end models. We find that both human and machine transcription is challenging in this domain. Large off-the-shelf ASR models perform poorly, but fine-tuned models can reach the approximate range of human performance. Our work suggests directions for future work, including analysis of short utterances and potential miscommunication in police radio interactions. We make our corpus and data annotation pipeline available to other researchers, to enable further research on recognition and analysis of police communication. 5 authors · Sep 16, 2024
1 SONAR: Sentence-Level Multimodal and Language-Agnostic Representations We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper. 3 authors · Aug 22, 2023
2 Streaming Transformer ASR with Blockwise Synchronous Beam Search The Transformer self-attention network has shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute both self-attention and source--target attention. In this paper, we propose a novel blockwise synchronous beam search algorithm based on blockwise processing of encoder to perform streaming E2E Transformer ASR. In the beam search, encoded feature blocks are synchronously aligned using a block boundary detection technique, where a reliability score of each predicted hypothesis is evaluated based on the end-of-sequence and repeated tokens in the hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech English, and CSJ Japanese tasks show that the proposed streaming Transformer algorithm outperforms conventional online approaches, including monotonic chunkwise attention (MoChA), especially when using the knowledge distillation technique. An ablation study indicates that our streaming approach contributes to reducing the response time, and the repetition criterion contributes significantly in certain tasks. Our streaming ASR models achieve comparable or superior performance to batch models and other streaming-based Transformer methods in all tasks considered. 3 authors · Jun 25, 2020
- Layer-wise Analysis of a Self-supervised Speech Representation Model Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting. 3 authors · Jul 9, 2021
- ICSD: An Open-source Dataset for Infant Cry and Snoring Detection The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research. 4 authors · Aug 20, 2024
2 MorphBPE: A Morpho-Aware Tokenizer Bridging Linguistic Complexity for Efficient LLM Training Across Morphologies Tokenization is fundamental to Natural Language Processing (NLP), directly impacting model efficiency and linguistic fidelity. While Byte Pair Encoding (BPE) is widely used in Large Language Models (LLMs), it often disregards morpheme boundaries, leading to suboptimal segmentation, particularly in morphologically rich languages. We introduce MorphBPE, a morphology-aware extension of BPE that integrates linguistic structure into subword tokenization while preserving statistical efficiency. Additionally, we propose two morphology-based evaluation metrics: (i) Morphological Consistency F1-Score, which quantifies the consistency between morpheme sharing and token sharing, contributing to LLM training convergence, and (ii) Morphological Edit Distance, which measures alignment between morphemes and tokens concerning interpretability. Experiments on English, Russian, Hungarian, and Arabic across 300M and 1B parameter LLMs demonstrate that MorphBPE consistently reduces cross-entropy loss, accelerates convergence, and improves morphological alignment scores. Fully compatible with existing LLM pipelines, MorphBPE requires minimal modifications for integration. The MorphBPE codebase and tokenizer playground will be available at: https://github.com/llm-lab-org/MorphBPE and https://tokenizer.llm-lab.org 3 authors · Feb 2
- Intent Detection and Slot Filling for Vietnamese Intent detection and slot filling are important tasks in spoken and natural language understanding. However, Vietnamese is a low-resource language in these research topics. In this paper, we present the first public intent detection and slot filling dataset for Vietnamese. In addition, we also propose a joint model for intent detection and slot filling, that extends the recent state-of-the-art JointBERT+CRF model with an intent-slot attention layer to explicitly incorporate intent context information into slot filling via "soft" intent label embedding. Experimental results on our Vietnamese dataset show that our proposed model significantly outperforms JointBERT+CRF. We publicly release our dataset and the implementation of our model at: https://github.com/VinAIResearch/JointIDSF 3 authors · Apr 5, 2021
43 S2S-Arena, Evaluating Speech2Speech Protocols on Instruction Following with Paralinguistic Information The rapid development of large language models (LLMs) has brought significant attention to speech models, particularly recent progress in speech2speech protocols supporting speech input and output. However, the existing benchmarks adopt automatic text-based evaluators for evaluating the instruction following ability of these models lack consideration for paralinguistic information in both speech understanding and generation. To address these issues, we introduce S2S-Arena, a novel arena-style S2S benchmark that evaluates instruction-following capabilities with paralinguistic information in both speech-in and speech-out across real-world tasks. We design 154 samples that fused TTS and live recordings in four domains with 21 tasks and manually evaluate existing popular speech models in an arena-style manner. The experimental results show that: (1) in addition to the superior performance of GPT-4o, the speech model of cascaded ASR, LLM, and TTS outperforms the jointly trained model after text-speech alignment in speech2speech protocols; (2) considering paralinguistic information, the knowledgeability of the speech model mainly depends on the LLM backbone, and the multilingual support of that is limited by the speech module; (3) excellent speech models can already understand the paralinguistic information in speech input, but generating appropriate audio with paralinguistic information is still a challenge. 6 authors · Mar 6 2
- Improving Speech Representation Learning via Speech-level and Phoneme-level Masking Approach Recovering the masked speech frames is widely applied in speech representation learning. However, most of these models use random masking in the pre-training. In this work, we proposed two kinds of masking approaches: (1) speech-level masking, making the model to mask more speech segments than silence segments, (2) phoneme-level masking, forcing the model to mask the whole frames of the phoneme, instead of phoneme pieces. We pre-trained the model via these two approaches, and evaluated on two downstream tasks, phoneme classification and speaker recognition. The experiments demonstrated that the proposed masking approaches are beneficial to improve the performance of speech representation. 5 authors · Oct 25, 2022
- Explaining Speech Classification Models via Word-Level Audio Segments and Paralinguistic Features Recent advances in eXplainable AI (XAI) have provided new insights into how models for vision, language, and tabular data operate. However, few approaches exist for understanding speech models. Existing work focuses on a few spoken language understanding (SLU) tasks, and explanations are difficult to interpret for most users. We introduce a new approach to explain speech classification models. We generate easy-to-interpret explanations via input perturbation on two information levels. 1) Word-level explanations reveal how each word-related audio segment impacts the outcome. 2) Paralinguistic features (e.g., prosody and background noise) answer the counterfactual: ``What would the model prediction be if we edited the audio signal in this way?'' We validate our approach by explaining two state-of-the-art SLU models on two speech classification tasks in English and Italian. Our findings demonstrate that the explanations are faithful to the model's inner workings and plausible to humans. Our method and findings pave the way for future research on interpreting speech models. 5 authors · Sep 14, 2023
- A Deep Dive into the Disparity of Word Error Rates Across Thousands of NPTEL MOOC Videos Automatic speech recognition (ASR) systems are designed to transcribe spoken language into written text and find utility in a variety of applications including voice assistants and transcription services. However, it has been observed that state-of-the-art ASR systems which deliver impressive benchmark results, struggle with speakers of certain regions or demographics due to variation in their speech properties. In this work, we describe the curation of a massive speech dataset of 8740 hours consisting of sim9.8K technical lectures in the English language along with their transcripts delivered by instructors representing various parts of Indian demography. The dataset is sourced from the very popular NPTEL MOOC platform. We use the curated dataset to measure the existing disparity in YouTube Automatic Captions and OpenAI Whisper model performance across the diverse demographic traits of speakers in India. While there exists disparity due to gender, native region, age and speech rate of speakers, disparity based on caste is non-existent. We also observe statistically significant disparity across the disciplines of the lectures. These results indicate the need of more inclusive and robust ASR systems and more representational datasets for disparity evaluation in them. 3 authors · Jul 20, 2023
- Self-training and Pre-training are Complementary for Speech Recognition Self-training and unsupervised pre-training have emerged as effective approaches to improve speech recognition systems using unlabeled data. However, it is not clear whether they learn similar patterns or if they can be effectively combined. In this paper, we show that pseudo-labeling and pre-training with wav2vec 2.0 are complementary in a variety of labeled data setups. Using just 10 minutes of labeled data from Libri-light as well as 53k hours of unlabeled data from LibriVox achieves WERs of 3.0%/5.2% on the clean and other test sets of Librispeech - rivaling the best published systems trained on 960 hours of labeled data only a year ago. Training on all labeled data of Librispeech achieves WERs of 1.5%/3.1%. 8 authors · Oct 22, 2020
- Prompting and Fine-Tuning of Small LLMs for Length-Controllable Telephone Call Summarization This paper explores the rapid development of a telephone call summarization system utilizing large language models (LLMs). Our approach involves initial experiments with prompting existing LLMs to generate summaries of telephone conversations, followed by the creation of a tailored synthetic training dataset utilizing stronger frontier models. We place special focus on the diversity of the generated data and on the ability to control the length of the generated summaries to meet various use-case specific requirements. The effectiveness of our method is evaluated using two state-of-the-art LLM-as-a-judge-based evaluation techniques to ensure the quality and relevance of the summaries. Our results show that fine-tuned Llama-2-7B-based summarization model performs on-par with GPT-4 in terms of factual accuracy, completeness and conciseness. Our findings demonstrate the potential for quickly bootstrapping a practical and efficient call summarization system. 5 authors · Oct 24, 2024
- Learning Robust and Multilingual Speech Representations Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages including tonal languages and low-resource languages. 5 authors · Jan 29, 2020
- LibriMix: An Open-Source Dataset for Generalizable Speech Separation In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set. 5 authors · May 22, 2020
- WaveNet: A Generative Model for Raw Audio This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition. 9 authors · Sep 12, 2016
2 A Multimodal Approach to Device-Directed Speech Detection with Large Language Models Interactions with virtual assistants typically start with a predefined trigger phrase followed by the user command. To make interactions with the assistant more intuitive, we explore whether it is feasible to drop the requirement that users must begin each command with a trigger phrase. We explore this task in three ways: First, we train classifiers using only acoustic information obtained from the audio waveform. Second, we take the decoder outputs of an automatic speech recognition (ASR) system, such as 1-best hypotheses, as input features to a large language model (LLM). Finally, we explore a multimodal system that combines acoustic and lexical features, as well as ASR decoder signals in an LLM. Using multimodal information yields relative equal-error-rate improvements over text-only and audio-only models of up to 39% and 61%. Increasing the size of the LLM and training with low-rank adaption leads to further relative EER reductions of up to 18% on our dataset. 7 authors · Mar 21, 2024
- Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets. 8 authors · Oct 18, 2023
1 W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively. 7 authors · Aug 7, 2021
16 Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license. 5 authors · Jun 24, 2024 3
4 Toward Interactive Dictation Voice dictation is an increasingly important text input modality. Existing systems that allow both dictation and editing-by-voice restrict their command language to flat templates invoked by trigger words. In this work, we study the feasibility of allowing users to interrupt their dictation with spoken editing commands in open-ended natural language. We introduce a new task and dataset, TERTiUS, to experiment with such systems. To support this flexibility in real-time, a system must incrementally segment and classify spans of speech as either dictation or command, and interpret the spans that are commands. We experiment with using large pre-trained language models to predict the edited text, or alternatively, to predict a small text-editing program. Experiments show a natural trade-off between model accuracy and latency: a smaller model achieves 30% end-state accuracy with 1.3 seconds of latency, while a larger model achieves 55% end-state accuracy with 7 seconds of latency. 4 authors · Jul 8, 2023
- Towards a Speech Foundation Model for Singapore and Beyond This technical report describes the MERaLiON Speech Encoder, a foundation model designed to support a wide range of downstream speech applications. Developed as part of Singapore's National Multimodal Large Language Model Programme, the MERaLiON Speech Encoder is tailored to address the speech processing needs in Singapore and the surrounding Southeast Asian region. The model currently supports mainly English, including the variety spoken in Singapore. We are actively expanding our datasets to gradually cover other languages in subsequent releases. The MERaLiON Speech Encoder was pre-trained from scratch on 200K hours of unlabelled speech data using a self-supervised learning approach based on masked language modelling. We describe our training procedure and hyperparameter tuning experiments in detail below. Our evaluation demonstrates improvements to spontaneous and Singapore speech benchmarks for speech recognition, while remaining competitive to other state-of-the-art speech encoders across ten other speech tasks. We commit to releasing our model, supporting broader research endeavours, both in Singapore and beyond. 9 authors · Dec 16, 2024
- Pitch-Aware RNN-T for Mandarin Chinese Mispronunciation Detection and Diagnosis Mispronunciation Detection and Diagnosis (MDD) systems, leveraging Automatic Speech Recognition (ASR), face two main challenges in Mandarin Chinese: 1) The two-stage models create an information gap between the phoneme or tone classification stage and the MDD stage. 2) The scarcity of Mandarin MDD datasets limits model training. In this paper, we introduce a stateless RNN-T model for Mandarin MDD, utilizing HuBERT features with pitch embedding through a Pitch Fusion Block. Our model, trained solely on native speaker data, shows a 3% improvement in Phone Error Rate and a 7% increase in False Acceptance Rate over the state-of-the-art baseline in non-native scenarios 3 authors · Jun 6, 2024
- Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets. 3 authors · Jul 9, 2024
- A Two-Step Approach for Data-Efficient French Pronunciation Learning Recent studies have addressed intricate phonological phenomena in French, relying on either extensive linguistic knowledge or a significant amount of sentence-level pronunciation data. However, creating such resources is expensive and non-trivial. To this end, we propose a novel two-step approach that encompasses two pronunciation tasks: grapheme-to-phoneme and post-lexical processing. We then investigate the efficacy of the proposed approach with a notably limited amount of sentence-level pronunciation data. Our findings demonstrate that the proposed two-step approach effectively mitigates the lack of extensive labeled data, and serves as a feasible solution for addressing French phonological phenomena even under resource-constrained environments. 4 authors · Oct 8, 2024
- Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data We propose Guided-TTS 2, a diffusion-based generative model for high-quality adaptive TTS using untranscribed data. Guided-TTS 2 combines a speaker-conditional diffusion model with a speaker-dependent phoneme classifier for adaptive text-to-speech. We train the speaker-conditional diffusion model on large-scale untranscribed datasets for a classifier-free guidance method and further fine-tune the diffusion model on the reference speech of the target speaker for adaptation, which only takes 40 seconds. We demonstrate that Guided-TTS 2 shows comparable performance to high-quality single-speaker TTS baselines in terms of speech quality and speaker similarity with only a ten-second untranscribed data. We further show that Guided-TTS 2 outperforms adaptive TTS baselines on multi-speaker datasets even with a zero-shot adaptation setting. Guided-TTS 2 can adapt to a wide range of voices only using untranscribed speech, which enables adaptive TTS with the voice of non-human characters such as Gollum in "The Lord of the Rings". 3 authors · May 30, 2022
- CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos Recent years have seen progress beyond domain-specific sound separation for speech or music towards universal sound separation for arbitrary sounds. Prior work on universal sound separation has investigated separating a target sound out of an audio mixture given a text query. Such text-queried sound separation systems provide a natural and scalable interface for specifying arbitrary target sounds. However, supervised text-queried sound separation systems require costly labeled audio-text pairs for training. Moreover, the audio provided in existing datasets is often recorded in a controlled environment, causing a considerable generalization gap to noisy audio in the wild. In this work, we aim to approach text-queried universal sound separation by using only unlabeled data. We propose to leverage the visual modality as a bridge to learn the desired audio-textual correspondence. The proposed CLIPSep model first encodes the input query into a query vector using the contrastive language-image pretraining (CLIP) model, and the query vector is then used to condition an audio separation model to separate out the target sound. While the model is trained on image-audio pairs extracted from unlabeled videos, at test time we can instead query the model with text inputs in a zero-shot setting, thanks to the joint language-image embedding learned by the CLIP model. Further, videos in the wild often contain off-screen sounds and background noise that may hinder the model from learning the desired audio-textual correspondence. To address this problem, we further propose an approach called noise invariant training for training a query-based sound separation model on noisy data. Experimental results show that the proposed models successfully learn text-queried universal sound separation using only noisy unlabeled videos, even achieving competitive performance against a supervised model in some settings. 5 authors · Dec 14, 2022
- FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus show that the new corpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face. 7 authors · Aug 12, 2024
- AdaTranS: Adapting with Boundary-based Shrinking for End-to-End Speech Translation To alleviate the data scarcity problem in End-to-end speech translation (ST), pre-training on data for speech recognition and machine translation is considered as an important technique. However, the modality gap between speech and text prevents the ST model from efficiently inheriting knowledge from the pre-trained models. In this work, we propose AdaTranS for end-to-end ST. It adapts the speech features with a new shrinking mechanism to mitigate the length mismatch between speech and text features by predicting word boundaries. Experiments on the MUST-C dataset demonstrate that AdaTranS achieves better performance than the other shrinking-based methods, with higher inference speed and lower memory usage. Further experiments also show that AdaTranS can be equipped with additional alignment losses to further improve performance. 3 authors · Dec 17, 2022
- ParaCLAP -- Towards a general language-audio model for computational paralinguistic tasks Contrastive language-audio pretraining (CLAP) has recently emerged as a method for making audio analysis more generalisable. Specifically, CLAP-style models are able to `answer' a diverse set of language queries, extending the capabilities of audio models beyond a closed set of labels. However, CLAP relies on a large set of (audio, query) pairs for pretraining. While such sets are available for general audio tasks, like captioning or sound event detection, there are no datasets with matched audio and text queries for computational paralinguistic (CP) tasks. As a result, the community relies on generic CLAP models trained for general audio with limited success. In the present study, we explore training considerations for ParaCLAP, a CLAP-style model suited to CP, including a novel process for creating audio-language queries. We demonstrate its effectiveness on a set of computational paralinguistic tasks, where it is shown to surpass the performance of open-source state-of-the-art models. 3 authors · Jun 11, 2024
- Transcribe, Align and Segment: Creating speech datasets for low-resource languages In this work, we showcase a cost-effective method for generating training data for speech processing tasks. First, we transcribe unlabeled speech using a state-of-the-art Automatic Speech Recognition (ASR) model. Next, we align generated transcripts with the audio and apply segmentation on short utterances. Our focus is on ASR for low-resource languages, such as Ukrainian, using podcasts as a source of unlabeled speech. We release a new dataset UK-PODS that features modern conversational Ukrainian language. It contains over 50 hours of text audio-pairs as well as uk-pods-conformer, a 121 M parameters ASR model that is trained on MCV-10 and UK-PODS and achieves 3x reduction of Word Error Rate (WER) on podcasts comparing to publically available uk-nvidia-citrinet while maintaining comparable WER on MCV-10 test split. Both dataset UK-PODS https://huggingface.co/datasets/taras-sereda/uk-pods and ASR uk-pods-conformer https://huggingface.co/taras-sereda/uk-pods-conformer are available on the hugging-face hub. 1 authors · Jun 18, 2024
- BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sentence Grounding in Videos Temporal sentence grounding aims to localize moments relevant to a language description. Recently, DETR-like approaches achieved notable progress by predicting the center and length of a target moment. However, they suffer from the issue of center misalignment raised by the inherent ambiguity of moment centers, leading to inaccurate predictions. To remedy this problem, we propose a novel boundary-oriented moment formulation. In our paradigm, the model no longer needs to find the precise center but instead suffices to predict any anchor point within the interval, from which the boundaries are directly estimated. Based on this idea, we design a boundary-aligned moment detection transformer, equipped with a dual-pathway decoding process. Specifically, it refines the anchor and boundaries within parallel pathways using global and boundary-focused attention, respectively. This separate design allows the model to focus on desirable regions, enabling precise refinement of moment predictions. Further, we propose a quality-based ranking method, ensuring that proposals with high localization qualities are prioritized over incomplete ones. Experiments on three benchmarks validate the effectiveness of the proposed methods. The code is available at https://github.com/Pilhyeon/BAM-DETR. 2 authors · Nov 30, 2023
- Recent Advances in Speech Language Models: A Survey Large Language Models (LLMs) have recently garnered significant attention, primarily for their capabilities in text-based interactions. However, natural human interaction often relies on speech, necessitating a shift towards voice-based models. A straightforward approach to achieve this involves a pipeline of ``Automatic Speech Recognition (ASR) + LLM + Text-to-Speech (TTS)", where input speech is transcribed to text, processed by an LLM, and then converted back to speech. Despite being straightforward, this method suffers from inherent limitations, such as information loss during modality conversion and error accumulation across the three stages. To address these issues, Speech Language Models (SpeechLMs) -- end-to-end models that generate speech without converting from text -- have emerged as a promising alternative. This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs, detailing the key components of their architecture and the various training recipes integral to their development. Additionally, we systematically survey the various capabilities of SpeechLMs, categorize the evaluation metrics for SpeechLMs, and discuss the challenges and future research directions in this rapidly evolving field. 8 authors · Oct 1, 2024
- Towards cross-language prosody transfer for dialog Speech-to-speech translation systems today do not adequately support use for dialog purposes. In particular, nuances of speaker intent and stance can be lost due to improper prosody transfer. We present an exploration of what needs to be done to overcome this. First, we developed a data collection protocol in which bilingual speakers re-enact utterances from an earlier conversation in their other language, and used this to collect an English-Spanish corpus, so far comprising 1871 matched utterance pairs. Second, we developed a simple prosodic dissimilarity metric based on Euclidean distance over a broad set of prosodic features. We then used these to investigate cross-language prosodic differences, measure the likely utility of three simple baseline models, and identify phenomena which will require more powerful modeling. Our findings should inform future research on cross-language prosody and the design of speech-to-speech translation systems capable of effective prosody transfer. 2 authors · Jul 9, 2023
1 XTREME-S: Evaluating Cross-lingual Speech Representations We introduce XTREME-S, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in "universal" speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. Datasets and fine-tuning scripts are made easily accessible at https://hf.co/datasets/google/xtreme_s. 19 authors · Mar 21, 2022
- Do We Still Need Automatic Speech Recognition for Spoken Language Understanding? Spoken language understanding (SLU) tasks are usually solved by first transcribing an utterance with automatic speech recognition (ASR) and then feeding the output to a text-based model. Recent advances in self-supervised representation learning for speech data have focused on improving the ASR component. We investigate whether representation learning for speech has matured enough to replace ASR in SLU. We compare learned speech features from wav2vec 2.0, state-of-the-art ASR transcripts, and the ground truth text as input for a novel speech-based named entity recognition task, a cardiac arrest detection task on real-world emergency calls and two existing SLU benchmarks. We show that learned speech features are superior to ASR transcripts on three classification tasks. For machine translation, ASR transcripts are still the better choice. We highlight the intrinsic robustness of wav2vec 2.0 representations to out-of-vocabulary words as key to better performance. 7 authors · Nov 29, 2021
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
- Analysis of Data Augmentation Methods for Low-Resource Maltese ASR Recent years have seen an increased interest in the computational speech processing of Maltese, but resources remain sparse. In this paper, we consider data augmentation techniques for improving speech recognition for low-resource languages, focusing on Maltese as a test case. We consider three different types of data augmentation: unsupervised training, multilingual training and the use of synthesized speech as training data. The goal is to determine which of these techniques, or combination of them, is the most effective to improve speech recognition for languages where the starting point is a small corpus of approximately 7 hours of transcribed speech. Our results show that combining the data augmentation techniques studied here lead us to an absolute WER improvement of 15% without the use of a language model. 6 authors · Nov 15, 2021
- A Simple Framework for Open-Vocabulary Segmentation and Detection We present OpenSeeD, a simple Open-vocabulary Segmentation and Detection framework that jointly learns from different segmentation and detection datasets. To bridge the gap of vocabulary and annotation granularity, we first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them. This gives us reasonably good results compared with the counterparts trained on segmentation task only. To further reconcile them, we locate two discrepancies: i) task discrepancy -- segmentation requires extracting masks for both foreground objects and background stuff, while detection merely cares about the former; ii) data discrepancy -- box and mask annotations are with different spatial granularity, and thus not directly interchangeable. To address these issues, we propose a decoupled decoding to reduce the interference between foreground/background and a conditioned mask decoding to assist in generating masks for given boxes. To this end, we develop a simple encoder-decoder model encompassing all three techniques and train it jointly on COCO and Objects365. After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection. Specifically, OpenSeeD beats the state-of-the-art method for open-vocabulary instance and panoptic segmentation across 5 datasets, and outperforms previous work for open-vocabulary detection on LVIS and ODinW under similar settings. When transferred to specific tasks, our model achieves new SoTA for panoptic segmentation on COCO and ADE20K, and instance segmentation on ADE20K and Cityscapes. Finally, we note that OpenSeeD is the first to explore the potential of joint training on segmentation and detection, and hope it can be received as a strong baseline for developing a single model for both tasks in open world. 8 authors · Mar 14, 2023
2 SlideAVSR: A Dataset of Paper Explanation Videos for Audio-Visual Speech Recognition Audio-visual speech recognition (AVSR) is a multimodal extension of automatic speech recognition (ASR), using video as a complement to audio. In AVSR, considerable efforts have been directed at datasets for facial features such as lip-readings, while they often fall short in evaluating the image comprehension capabilities in broader contexts. In this paper, we construct SlideAVSR, an AVSR dataset using scientific paper explanation videos. SlideAVSR provides a new benchmark where models transcribe speech utterances with texts on the slides on the presentation recordings. As technical terminologies that are frequent in paper explanations are notoriously challenging to transcribe without reference texts, our SlideAVSR dataset spotlights a new aspect of AVSR problems. As a simple yet effective baseline, we propose DocWhisper, an AVSR model that can refer to textual information from slides, and confirm its effectiveness on SlideAVSR. 4 authors · Jan 18, 2024
- Overview and Evaluation of Sound Event Localization and Detection in DCASE 2019 Sound event localization and detection is a novel area of research that emerged from the combined interest of analyzing the acoustic scene in terms of the spatial and temporal activity of sounds of interest. This paper presents an overview of the first international evaluation on sound event localization and detection, organized as a task of the DCASE 2019 Challenge. A large-scale realistic dataset of spatialized sound events was generated for the challenge, to be used for training of learning-based approaches, and for evaluation of the submissions in an unlabeled subset. The overview presents in detail how the systems were evaluated and ranked and the characteristics of the best-performing systems. Common strategies in terms of input features, model architectures, training approaches, exploitation of prior knowledge, and data augmentation are discussed. Since ranking in the challenge was based on individually evaluating localization and event classification performance, part of the overview focuses on presenting metrics for the joint measurement of the two, together with a reevaluation of submissions using these new metrics. The new analysis reveals submissions that performed better on the joint task of detecting the correct type of event close to its original location than some of the submissions that were ranked higher in the challenge. Consequently, ranking of submissions which performed strongly when evaluated separately on detection or localization, but not jointly on both, was affected negatively. 5 authors · Sep 6, 2020
7 Interface Design for Self-Supervised Speech Models Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. The general usage pattern is to employ SSL models as feature extractors, and then train a downstream prediction head to solve a specific task. However, different layers of SSL models have been shown to capture different types of information, and the methods of combining them are not well studied. To this end, we extend the general framework for SSL model utilization by proposing the interface that connects the upstream and downstream. Under this view, the dominant technique of combining features via a layerwise weighted sum can be regarded as a specific interface. We propose several alternative interface designs and demonstrate that the weighted sum interface is suboptimal for many tasks. In particular, we show that a convolutional interface whose depth scales logarithmically with the depth of the upstream model consistently outperforms many other interface designs. 2 authors · Jun 17, 2024 1
- WangchanBERTa: Pretraining transformer-based Thai Language Models Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts. 4 authors · Jan 23, 2021
- Multi-task self-supervised learning for Robust Speech Recognition Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions. 7 authors · Jan 24, 2020
- Leveraging Broadcast Media Subtitle Transcripts for Automatic Speech Recognition and Subtitling The recent advancement of speech recognition technology has been driven by large-scale datasets and attention-based architectures, but many challenges still remain, especially for low-resource languages and dialects. This paper explores the integration of weakly supervised transcripts from TV subtitles into automatic speech recognition (ASR) systems, aiming to improve both verbatim transcriptions and automatically generated subtitles. To this end, verbatim data and subtitles are regarded as different domains or languages, due to their distinct characteristics. We propose and compare several end-to-end architectures that are designed to jointly model both modalities with separate or shared encoders and decoders. The proposed methods are able to jointly generate a verbatim transcription and a subtitle. Evaluation on Flemish (Belgian Dutch) demonstrates that a model with cascaded encoders and separate decoders allows to represent the differences between the two data types most efficiently while improving on both domains. Despite differences in domain and linguistic variations, combining verbatim transcripts with subtitle data leads to notable ASR improvements without the need for extensive preprocessing. Additionally, experiments with a large-scale subtitle dataset show the scalability of the proposed approach. The methods not only improve ASR accuracy but also generate subtitles that closely match standard written text, offering several potential applications. 2 authors · Feb 5
1 ISPA: Inter-Species Phonetic Alphabet for Transcribing Animal Sounds Traditionally, bioacoustics has relied on spectrograms and continuous, per-frame audio representations for the analysis of animal sounds, also serving as input to machine learning models. Meanwhile, the International Phonetic Alphabet (IPA) system has provided an interpretable, language-independent method for transcribing human speech sounds. In this paper, we introduce ISPA (Inter-Species Phonetic Alphabet), a precise, concise, and interpretable system designed for transcribing animal sounds into text. We compare acoustics-based and feature-based methods for transcribing and classifying animal sounds, demonstrating their comparable performance with baseline methods utilizing continuous, dense audio representations. By representing animal sounds with text, we effectively treat them as a "foreign language," and we show that established human language ML paradigms and models, such as language models, can be successfully applied to improve performance. 3 authors · Feb 5, 2024
- Separate Anything You Describe Language-queried audio source separation (LASS) is a new paradigm for computational auditory scene analysis (CASA). LASS aims to separate a target sound from an audio mixture given a natural language query, which provides a natural and scalable interface for digital audio applications. Recent works on LASS, despite attaining promising separation performance on specific sources (e.g., musical instruments, limited classes of audio events), are unable to separate audio concepts in the open domain. In this work, we introduce AudioSep, a foundation model for open-domain audio source separation with natural language queries. We train AudioSep on large-scale multimodal datasets and extensively evaluate its capabilities on numerous tasks including audio event separation, musical instrument separation, and speech enhancement. AudioSep demonstrates strong separation performance and impressive zero-shot generalization ability using audio captions or text labels as queries, substantially outperforming previous audio-queried and language-queried sound separation models. For reproducibility of this work, we will release the source code, evaluation benchmark and pre-trained model at: https://github.com/Audio-AGI/AudioSep. 10 authors · Aug 9, 2023
1 Adversarial Approximate Inference for Speech to Electroglottograph Conversion Speech produced by human vocal apparatus conveys substantial non-semantic information including the gender of the speaker, voice quality, affective state, abnormalities in the vocal apparatus etc. Such information is attributed to the properties of the voice source signal, which is usually estimated from the speech signal. However, most of the source estimation techniques depend heavily on the goodness of the model assumptions and are prone to noise. A popular alternative is to indirectly obtain the source information through the Electroglottographic (EGG) signal that measures the electrical admittance around the vocal folds using dedicated hardware. In this paper, we address the problem of estimating the EGG signal directly from the speech signal, devoid of any hardware. Sampling from the intractable conditional distribution of the EGG signal given the speech signal is accomplished through optimization of an evidence lower bound. This is constructed via minimization of the KL-divergence between the true and the approximated posteriors of a latent variable learned using a deep neural auto-encoder that serves an informative prior. We demonstrate the efficacy of the method at generating the EGG signal by conducting several experiments on datasets comprising multiple speakers, voice qualities, noise settings and speech pathologies. The proposed method is evaluated on many benchmark metrics and is found to agree with the gold standard while proving better than the state-of-the-art algorithms on a few tasks such as epoch extraction. 3 authors · Mar 28, 2019 2
- Evade ChatGPT Detectors via A Single Space ChatGPT brings revolutionary social value but also raises concerns about the misuse of AI-generated text. Consequently, an important question is how to detect whether texts are generated by ChatGPT or by human. Existing detectors are built upon the assumption that there are distributional gaps between human-generated and AI-generated text. These gaps are typically identified using statistical information or classifiers. Our research challenges the distributional gap assumption in detectors. We find that detectors do not effectively discriminate the semantic and stylistic gaps between human-generated and AI-generated text. Instead, the "subtle differences", such as an extra space, become crucial for detection. Based on this discovery, we propose the SpaceInfi strategy to evade detection. Experiments demonstrate the effectiveness of this strategy across multiple benchmarks and detectors. We also provide a theoretical explanation for why SpaceInfi is successful in evading perplexity-based detection. And we empirically show that a phenomenon called token mutation causes the evasion for language model-based detectors. Our findings offer new insights and challenges for understanding and constructing more applicable ChatGPT detectors. 2 authors · Jul 5, 2023
- Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval. 6 authors · Nov 4, 2024
- HeightCeleb -- an enrichment of VoxCeleb dataset with speaker height information Prediction of speaker's height is of interest for voice forensics, surveillance, and automatic speaker profiling. Until now, TIMIT has been the most popular dataset for training and evaluation of the height estimation methods. In this paper, we introduce HeightCeleb, an extension to VoxCeleb, which is the dataset commonly used in speaker recognition tasks. This enrichment consists in adding information about the height of all 1251 speakers from VoxCeleb that has been extracted with an automated method from publicly available sources. Such annotated data will enable the research community to utilize freely available speaker embedding extractors, pre-trained on VoxCeleb, to build more efficient speaker height estimators. In this work, we describe the creation of the HeightCeleb dataset and show that using it enables to achieve state-of-the-art results on the TIMIT test set by using simple statistical regression methods and embeddings obtained with a popular speaker model (without any additional fine-tuning). 2 authors · Oct 16, 2024
- Killkan: The Automatic Speech Recognition Dataset for Kichwa with Morphosyntactic Information This paper presents Killkan, the first dataset for automatic speech recognition (ASR) in the Kichwa language, an indigenous language of Ecuador. Kichwa is an extremely low-resource endangered language, and there have been no resources before Killkan for Kichwa to be incorporated in applications of natural language processing. The dataset contains approximately 4 hours of audio with transcription, translation into Spanish, and morphosyntactic annotation in the format of Universal Dependencies. The audio data was retrieved from a publicly available radio program in Kichwa. This paper also provides corpus-linguistic analyses of the dataset with a special focus on the agglutinative morphology of Kichwa and frequent code-switching with Spanish. The experiments show that the dataset makes it possible to develop the first ASR system for Kichwa with reliable quality despite its small dataset size. This dataset, the ASR model, and the code used to develop them will be publicly available. Thus, our study positively showcases resource building and its applications for low-resource languages and their community. 4 authors · Apr 23, 2024
- Acoustic Feature Mixup for Balanced Multi-aspect Pronunciation Assessment In automated pronunciation assessment, recent emphasis progressively lies on evaluating multiple aspects to provide enriched feedback. However, acquiring multi-aspect-score labeled data for non-native language learners' speech poses challenges; moreover, it often leads to score-imbalanced distributions. In this paper, we propose two Acoustic Feature Mixup strategies, linearly and non-linearly interpolating with the in-batch averaged feature, to address data scarcity and score-label imbalances. Primarily using goodness-of-pronunciation as an acoustic feature, we tailor mixup designs to suit pronunciation assessment. Further, we integrate fine-grained error-rate features by comparing speech recognition results with the original answer phonemes, giving direct hints for mispronunciation. Effective mixing of the acoustic features notably enhances overall scoring performances on the speechocean762 dataset, and detailed analysis highlights our potential to predict unseen distortions. 3 authors · Jun 21, 2024
- IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages A cornerstone in AI research has been the creation and adoption of standardized training and test datasets to earmark the progress of state-of-the-art models. A particularly successful example is the GLUE dataset for training and evaluating Natural Language Understanding (NLU) models for English. The large body of research around self-supervised BERT-based language models revolved around performance improvements on NLU tasks in GLUE. To evaluate language models in other languages, several language-specific GLUE datasets were created. The area of speech language understanding (SLU) has followed a similar trajectory. The success of large self-supervised models such as wav2vec2 enable creation of speech models with relatively easy to access unlabelled data. These models can then be evaluated on SLU tasks, such as the SUPERB benchmark. In this work, we extend this to Indic languages by releasing the IndicSUPERB benchmark. Specifically, we make the following three contributions. (i) We collect Kathbath containing 1,684 hours of labelled speech data across 12 Indian languages from 1,218 contributors located in 203 districts in India. (ii) Using Kathbath, we create benchmarks across 6 speech tasks: Automatic Speech Recognition, Speaker Verification, Speaker Identification (mono/multi), Language Identification, Query By Example, and Keyword Spotting for 12 languages. (iii) On the released benchmarks, we train and evaluate different self-supervised models alongside a commonly used baseline FBANK. We show that language-specific fine-tuned models are more accurate than baseline on most of the tasks, including a large gap of 76\% for the Language Identification task. However, for speaker identification, self-supervised models trained on large datasets demonstrate an advantage. We hope IndicSUPERB contributes to the progress of developing speech language understanding models for Indian languages. 6 authors · Aug 24, 2022