new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

Influencer Backdoor Attack on Semantic Segmentation

When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and mislead classifications of all victim pixels in every single inference and could be easily applied to real-world scenes. Based on the context aggregation ability of segmentation models, we proposed a simple, yet effective, Nearest-Neighbor trigger injection strategy. We also introduce an innovative Pixel Random Labeling strategy which maintains optimal performance even when the trigger is placed far from the victim pixels. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, demonstrate IBA real-world applicability, and show that our proposed techniques can further increase attack performance.

Virtual Prompt Injection for Instruction-Tuned Large Language Models

We present Virtual Prompt Injection (VPI) for instruction-tuned Large Language Models (LLMs). VPI allows an attacker-specified virtual prompt to steer the model behavior under specific trigger scenario without any explicit injection in model input. For instance, if an LLM is compromised with the virtual prompt "Describe Joe Biden negatively." for Joe Biden-related instructions, then any service deploying this model will propagate biased views when handling user queries related to Joe Biden. VPI is especially harmful for two primary reasons. Firstly, the attacker can take fine-grained control over LLM behaviors by defining various virtual prompts, exploiting LLMs' proficiency in following instructions. Secondly, this control is achieved without any interaction from the attacker while the model is in service, leading to persistent attack. To demonstrate the threat, we propose a simple method for performing VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM with VPI. For example, by injecting only 52 poisoned examples (0.1% of the training data size) into the instruction tuning data, the percentage of negative responses given by the trained model on Joe Biden-related queries change from 0% to 40%. We thus highlight the necessity of ensuring the integrity of the instruction-tuning data as little poisoned data can cause stealthy and persistent harm to the deployed model. We further explore the possible defenses and identify data filtering as an effective way to defend against the poisoning attacks. Our project page is available at https://poison-llm.github.io.

Certifiers Make Neural Networks Vulnerable to Availability Attacks

To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.

Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models

Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.

RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models

Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning "bad" words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.

Corrective Machine Unlearning

Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the Internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects including vulnerability to backdoored samples, systemic biases, and reduced accuracy on certain input domains. Realistically, all manipulated training samples cannot be identified, and only a small, representative subset of the affected data can be flagged. We formalize Corrective Machine Unlearning as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, only having identified a subset of the corrupted data. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including retraining-from-scratch without the deletion set, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, Selective Synaptic Dampening, achieves limited success, unlearning adverse effects with just a small portion of the manipulated samples in our setting, which shows encouraging signs for future progress. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training. Code is available at https://github.com/drimpossible/corrective-unlearning-bench.

Toxicity of the Commons: Curating Open-Source Pre-Training Data

Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.

The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning

Semi-supervised machine learning (SSL) is gaining popularity as it reduces the cost of training ML models. It does so by using very small amounts of (expensive, well-inspected) labeled data and large amounts of (cheap, non-inspected) unlabeled data. SSL has shown comparable or even superior performances compared to conventional fully-supervised ML techniques. In this paper, we show that the key feature of SSL that it can learn from (non-inspected) unlabeled data exposes SSL to strong poisoning attacks. In fact, we argue that, due to its reliance on non-inspected unlabeled data, poisoning is a much more severe problem in SSL than in conventional fully-supervised ML. Specifically, we design a backdoor poisoning attack on SSL that can be conducted by a weak adversary with no knowledge of target SSL pipeline. This is unlike prior poisoning attacks in fully-supervised settings that assume strong adversaries with practically-unrealistic capabilities. We show that by poisoning only 0.2% of the unlabeled training data, our attack can cause misclassification of more than 80% of test inputs (when they contain the adversary's backdoor trigger). Our attacks remain effective across twenty combinations of benchmark datasets and SSL algorithms, and even circumvent the state-of-the-art defenses against backdoor attacks. Our work raises significant concerns about the practical utility of existing SSL algorithms.

Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System

Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users into the system's training data to skew the exposure of certain items, known as poisoning attacks. Adversarial training has emerged as a notable defense mechanism against such poisoning attacks within recommender systems. Existing adversarial training methods apply perturbations of the same magnitude across all users to enhance system robustness against attacks. Yet, in reality, we find that attacks often affect only a subset of users who are vulnerable. These perturbations of indiscriminate magnitude make it difficult to balance effective protection for vulnerable users without degrading recommendation quality for those who are not affected. To address this issue, our research delves into understanding user vulnerability. Considering that poisoning attacks pollute the training data, we note that the higher degree to which a recommender system fits users' training data correlates with an increased likelihood of users incorporating attack information, indicating their vulnerability. Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems. VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them. Guided by this estimation, VAT applies perturbations of adaptive magnitude to each user, not only reducing the success ratio of attacks but also preserving, and potentially enhancing, the quality of recommendations. Comprehensive experiments confirm VAT's superior defensive capabilities across different recommendation models and against various types of attacks.

Run-Off Election: Improved Provable Defense against Data Poisoning Attacks

In data poisoning attacks, an adversary tries to change a model's prediction by adding, modifying, or removing samples in the training data. Recently, ensemble-based approaches for obtaining provable defenses against data poisoning have been proposed where predictions are done by taking a majority vote across multiple base models. In this work, we show that merely considering the majority vote in ensemble defenses is wasteful as it does not effectively utilize available information in the logits layers of the base models. Instead, we propose Run-Off Election (ROE), a novel aggregation method based on a two-round election across the base models: In the first round, models vote for their preferred class and then a second, Run-Off election is held between the top two classes in the first round. Based on this approach, we propose DPA+ROE and FA+ROE defense methods based on Deep Partition Aggregation (DPA) and Finite Aggregation (FA) approaches from prior work. We evaluate our methods on MNIST, CIFAR-10, and GTSRB and obtain improvements in certified accuracy by up to 3%-4%. Also, by applying ROE on a boosted version of DPA, we gain improvements around 12%-27% comparing to the current state-of-the-art, establishing a new state-of-the-art in (pointwise) certified robustness against data poisoning. In many cases, our approach outperforms the state-of-the-art, even when using 32 times less computational power.

ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection

Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language. To help mitigate these issues, we create ToxiGen, a new large-scale and machine-generated dataset of 274k toxic and benign statements about 13 minority groups. We develop a demonstration-based prompting framework and an adversarial classifier-in-the-loop decoding method to generate subtly toxic and benign text with a massive pretrained language model. Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale, and about more demographic groups, than previous resources of human-written text. We conduct a human evaluation on a challenging subset of ToxiGen and find that annotators struggle to distinguish machine-generated text from human-written language. We also find that 94.5% of toxic examples are labeled as hate speech by human annotators. Using three publicly-available datasets, we show that finetuning a toxicity classifier on our data improves its performance on human-written data substantially. We also demonstrate that ToxiGen can be used to fight machine-generated toxicity as finetuning improves the classifier significantly on our evaluation subset. Our code and data can be found at https://github.com/microsoft/ToxiGen.

Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency

Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or without manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exploits the prediction invariance of poisoned data to an input scaling factor. Based on this, we pose the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about 4%-36% improvement in average AUROC. Codes are available at https://github.com/OPTML-Group/BackdoorMSPC.

Rethinking Benchmark and Contamination for Language Models with Rephrased Samples

Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator.

Towards Poisoning Fair Representations

Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers. Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data. This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.

FRL: Federated Rank Learning

Federated learning (FL) allows mutually untrusted clients to collaboratively train a common machine learning model without sharing their private/proprietary training data among each other. FL is unfortunately susceptible to poisoning by malicious clients who aim to hamper the accuracy of the commonly trained model through sending malicious model updates during FL's training process. We argue that the key factor to the success of poisoning attacks against existing FL systems is the large space of model updates available to the clients, allowing malicious clients to search for the most poisonous model updates, e.g., by solving an optimization problem. To address this, we propose Federated Rank Learning (FRL). FRL reduces the space of client updates from model parameter updates (a continuous space of float numbers) in standard FL to the space of parameter rankings (a discrete space of integer values). To be able to train the global model using parameter ranks (instead of parameter weights), FRL leverage ideas from recent supermasks training mechanisms. Specifically, FRL clients rank the parameters of a randomly initialized neural network (provided by the server) based on their local training data. The FRL server uses a voting mechanism to aggregate the parameter rankings submitted by clients in each training epoch to generate the global ranking of the next training epoch. Intuitively, our voting-based aggregation mechanism prevents poisoning clients from making significant adversarial modifications to the global model, as each client will have a single vote! We demonstrate the robustness of FRL to poisoning through analytical proofs and experimentation. We also show FRL's high communication efficiency. Our experiments demonstrate the superiority of FRL in real-world FL settings.

Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs

With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.

Class Machine Unlearning for Complex Data via Concepts Inference and Data Poisoning

In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.

Time Travel in LLMs: Tracing Data Contamination in Large Language Models

Data contamination, i.e., the presence of test data from downstream tasks in the training data of large language models (LLMs), is a potential major issue in measuring LLMs' real effectiveness on other tasks. We propose a straightforward yet effective method for identifying data contamination within LLMs. At its core, our approach starts by identifying potential contamination at the instance level; using this information, our approach then assesses wider contamination at the partition level. To estimate contamination of individual instances, we employ "guided instruction:" a prompt consisting of the dataset name, partition type, and the random-length initial segment of a reference instance, asking the LLM to complete it. An instance is flagged as contaminated if the LLM's output either exactly or nearly matches the latter segment of the reference. To understand if an entire partition is contaminated, we propose two ideas. The first idea marks a dataset partition as contaminated if the average overlap score with the reference instances (as measured by ROUGE-L or BLEURT) is statistically significantly better with the completions from guided instruction compared to a "general instruction" that does not include the dataset and partition name. The second idea marks a dataset partition as contaminated if a classifier based on GPT-4 with few-shot in-context learning prompt marks multiple generated completions as exact/near-exact matches of the corresponding reference instances. Our best method achieves an accuracy between 92% and 100% in detecting if an LLM is contaminated with seven datasets, containing train and test/validation partitions, when contrasted with manual evaluation by human experts. Further, our findings indicate that GPT-4 is contaminated with AG News, WNLI, and XSum datasets.

Efficient Detection of Toxic Prompts in Large Language Models

Large language models (LLMs) like ChatGPT and Gemini have significantly advanced natural language processing, enabling various applications such as chatbots and automated content generation. However, these models can be exploited by malicious individuals who craft toxic prompts to elicit harmful or unethical responses. These individuals often employ jailbreaking techniques to bypass safety mechanisms, highlighting the need for robust toxic prompt detection methods. Existing detection techniques, both blackbox and whitebox, face challenges related to the diversity of toxic prompts, scalability, and computational efficiency. In response, we propose ToxicDetector, a lightweight greybox method designed to efficiently detect toxic prompts in LLMs. ToxicDetector leverages LLMs to create toxic concept prompts, uses embedding vectors to form feature vectors, and employs a Multi-Layer Perceptron (MLP) classifier for prompt classification. Our evaluation on various versions of the LLama models, Gemma-2, and multiple datasets demonstrates that ToxicDetector achieves a high accuracy of 96.39\% and a low false positive rate of 2.00\%, outperforming state-of-the-art methods. Additionally, ToxicDetector's processing time of 0.0780 seconds per prompt makes it highly suitable for real-time applications. ToxicDetector achieves high accuracy, efficiency, and scalability, making it a practical method for toxic prompt detection in LLMs.

Automated Identification of Toxic Code Reviews Using ToxiCR

Toxic conversations during software development interactions may have serious repercussions on a Free and Open Source Software (FOSS) development project. For example, victims of toxic conversations may become afraid to express themselves, therefore get demotivated, and may eventually leave the project. Automated filtering of toxic conversations may help a FOSS community to maintain healthy interactions among its members. However, off-the-shelf toxicity detectors perform poorly on Software Engineering (SE) datasets, such as one curated from code review comments. To encounter this challenge, we present ToxiCR, a supervised learning-based toxicity identification tool for code review interactions. ToxiCR includes a choice to select one of the ten supervised learning algorithms, an option to select text vectorization techniques, eight preprocessing steps, and a large-scale labeled dataset of 19,571 code review comments. Two out of those eight preprocessing steps are SE domain specific. With our rigorous evaluation of the models with various combinations of preprocessing steps and vectorization techniques, we have identified the best combination for our dataset that boosts 95.8% accuracy and 88.9% F1 score. ToxiCR significantly outperforms existing toxicity detectors on our dataset. We have released our dataset, pre-trained models, evaluation results, and source code publicly available at: https://github.com/WSU-SEAL/ToxiCR

Adversarial Training for Defense Against Label Poisoning Attacks

As machine learning models grow in complexity and increasingly rely on publicly sourced data, such as the human-annotated labels used in training large language models, they become more vulnerable to label poisoning attacks. These attacks, in which adversaries subtly alter the labels within a training dataset, can severely degrade model performance, posing significant risks in critical applications. In this paper, we propose FLORAL, a novel adversarial training defense strategy based on support vector machines (SVMs) to counter these threats. Utilizing a bilevel optimization framework, we cast the training process as a non-zero-sum Stackelberg game between an attacker, who strategically poisons critical training labels, and the model, which seeks to recover from such attacks. Our approach accommodates various model architectures and employs a projected gradient descent algorithm with kernel SVMs for adversarial training. We provide a theoretical analysis of our algorithm's convergence properties and empirically evaluate FLORAL's effectiveness across diverse classification tasks. Compared to robust baselines and foundation models such as RoBERTa, FLORAL consistently achieves higher robust accuracy under increasing attacker budgets. These results underscore the potential of FLORAL to enhance the resilience of machine learning models against label poisoning threats, thereby ensuring robust classification in adversarial settings.

A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity

Pretraining is the preliminary and fundamental step in developing capable language models (LM). Despite this, pretraining data design is critically under-documented and often guided by empirically unsupported intuitions. To address this, we pretrain 28 1.5B parameter decoder-only models, training on data curated (1) at different times, (2) with varying toxicity and quality filters, and (3) with different domain compositions. First, we quantify the effect of pretraining data age. A temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning. Second, we explore the effect of quality and toxicity filters, showing a trade-off between performance on standard benchmarks and risk of toxic generations. Our findings indicate there does not exist a one-size-fits-all solution to filtering training data. We also find that the effects of different types of filtering are not predictable from text domain characteristics. Lastly, we empirically validate that the inclusion of heterogeneous data sources, like books and web, is broadly beneficial and warrants greater prioritization. These findings constitute the largest set of experiments to validate, quantify, and expose many undocumented intuitions about text pretraining, which we hope will help support more informed data-centric decisions in LM development.

On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts

Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/

Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks

Pretrained language models sometimes possess knowledge that we do not wish them to, including memorized personal information and knowledge that could be used to harm people. They can also output toxic or harmful text. To mitigate these safety and informational issues, we propose an attack-and-defense framework for studying the task of deleting sensitive information directly from model weights. We study direct edits to model weights because (1) this approach should guarantee that particular deleted information is never extracted by future prompt attacks, and (2) it should protect against whitebox attacks, which is necessary for making claims about safety/privacy in a setting where publicly available model weights could be used to elicit sensitive information. Our threat model assumes that an attack succeeds if the answer to a sensitive question is located among a set of B generated candidates, based on scenarios where the information would be insecure if the answer is among B candidates. Experimentally, we show that even state-of-the-art model editing methods such as ROME struggle to truly delete factual information from models like GPT-J, as our whitebox and blackbox attacks can recover "deleted" information from an edited model 38% of the time. These attacks leverage two key observations: (1) that traces of deleted information can be found in intermediate model hidden states, and (2) that applying an editing method for one question may not delete information across rephrased versions of the question. Finally, we provide new defense methods that protect against some extraction attacks, but we do not find a single universally effective defense method. Our results suggest that truly deleting sensitive information is a tractable but difficult problem, since even relatively low attack success rates have potentially severe societal implications for real-world deployment of language models.

On Teacher Hacking in Language Model Distillation

Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model. Such phenomenon is in line with Goodhart's law and can lead to degraded performance on the true objective. In this paper, we investigate whether a similar phenomenon, that we call teacher hacking, can occur during knowledge distillation. This could arise because the teacher LM is itself an imperfect approximation of the true distribution. To study this, we propose a controlled experimental setup involving: (i) an oracle LM representing the ground-truth distribution, (ii) a teacher LM distilled from the oracle, and (iii) a student LM distilled from the teacher. Our experiments reveal the following insights. When using a fixed offline dataset for distillation, teacher hacking occurs; moreover, we can detect it by observing when the optimization process deviates from polynomial convergence laws. In contrast, employing online data generation techniques effectively mitigates teacher hacking. More precisely, we identify data diversity as the key factor in preventing hacking. Overall, our findings provide a deeper understanding of the benefits and limitations of distillation for building robust and efficient LMs.

Efficient Backdoor Attacks for Deep Neural Networks in Real-world Scenarios

Recent deep neural networks (DNNs) have come to rely on vast amounts of training data, providing an opportunity for malicious attackers to exploit and contaminate the data to carry out backdoor attacks. These attacks significantly undermine the reliability of DNNs. However, existing backdoor attack methods make unrealistic assumptions, assuming that all training data comes from a single source and that attackers have full access to the training data. In this paper, we address this limitation by introducing a more realistic attack scenario where victims collect data from multiple sources, and attackers cannot access the complete training data. We refer to this scenario as data-constrained backdoor attacks. In such cases, previous attack methods suffer from severe efficiency degradation due to the entanglement between benign and poisoning features during the backdoor injection process. To tackle this problem, we propose a novel approach that leverages the pre-trained Contrastive Language-Image Pre-Training (CLIP) model. We introduce three CLIP-based technologies from two distinct streams: Clean Feature Suppression, which aims to suppress the influence of clean features to enhance the prominence of poisoning features, and Poisoning Feature Augmentation, which focuses on augmenting the presence and impact of poisoning features to effectively manipulate the model's behavior. To evaluate the effectiveness, harmlessness to benign accuracy, and stealthiness of our method, we conduct extensive experiments on 3 target models, 3 datasets, and over 15 different settings. The results demonstrate remarkable improvements, with some settings achieving over 100% improvement compared to existing attacks in data-constrained scenarios. Our research contributes to addressing the limitations of existing methods and provides a practical and effective solution for data-constrained backdoor attacks.

Generalization or Memorization: Data Contamination and Trustworthy Evaluation for Large Language Models

Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs' training data, it could explicitly or implicitly include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM's output distribution. To mitigate the impact of data contamination in evaluation, we also present TED: Trustworthy Evaluation via output Distribution, based on the correction of LLM's output distribution. To facilitate this study, we introduce two benchmarks, i.e., DetCon and ComiEval, for data contamination detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative improvements of 21.8\%-30.2\% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can effectively detect implicit contamination. TED substantially mitigates performance improvements up to 66.9\% attributed to data contamination across various contamination setups. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer from data contamination on HumanEval benchmark.

Permissive Information-Flow Analysis for Large Language Models

Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, the traditional approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary input. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a k-nearest-neighbors language model. We compare these with the baseline of an introspection-based influence estimator that directly asks the language model to predict the output label. The results obtained highlight the superiority of our prompt-based label propagator, which improves the label in more than 85% of the cases in an LLM agent setting. These findings underscore the practicality of permissive label propagation for retrieval augmentation.

Explore, Establish, Exploit: Red Teaming Language Models from Scratch

Deploying Large language models (LLMs) can pose hazards from harmful outputs such as toxic or dishonest speech. Prior work has introduced tools that elicit harmful outputs in order to identify and mitigate these risks. While this is a valuable step toward securing language models, these approaches typically rely on a pre-existing classifier for undesired outputs. This limits their application to situations where the type of harmful behavior is known with precision beforehand. However, this skips a central challenge of red teaming: developing a contextual understanding of the behaviors that a model can exhibit. Furthermore, when such a classifier already exists, red teaming has limited marginal value because the classifier could simply be used to filter training data or model outputs. In this work, we consider red teaming under the assumption that the adversary is working from a high-level, abstract specification of undesired behavior. The red team is expected to refine/extend this specification and identify methods to elicit this behavior from the model. Our red teaming framework consists of three steps: 1) Exploring the model's behavior in the desired context; 2) Establishing a measurement of undesired behavior (e.g., a classifier trained to reflect human evaluations); and 3) Exploiting the model's flaws using this measure and an established red teaming methodology. We apply this approach to red team GPT-2 and GPT-3 models to systematically discover classes of prompts that elicit toxic and dishonest statements. In doing so, we also construct and release the CommonClaim dataset of 20,000 statements that have been labeled by human subjects as common-knowledge-true, common-knowledge-false, or neither. Code is available at https://github.com/thestephencasper/explore_establish_exploit_llms. CommonClaim is available at https://github.com/thestephencasper/common_claim.

LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks

Sequential recommender systems stand out for their ability to capture users' dynamic interests and the patterns of item-to-item transitions. However, the inherent openness of sequential recommender systems renders them vulnerable to poisoning attacks, where fraudulent users are injected into the training data to manipulate learned patterns. Traditional defense strategies predominantly depend on predefined assumptions or rules extracted from specific known attacks, limiting their generalizability to unknown attack types. To solve the above problems, considering the rich open-world knowledge encapsulated in Large Language Models (LLMs), our research initially focuses on the capabilities of LLMs in the detection of unknown fraudulent activities within recommender systems, a strategy we denote as LLM4Dec. Empirical evaluations demonstrate the substantial capability of LLMs in identifying unknown fraudsters, leveraging their expansive, open-world knowledge. Building upon this, we propose the integration of LLMs into defense strategies to extend their effectiveness beyond the confines of known attacks. We propose LoRec, an advanced framework that employs LLM-Enhanced Calibration to strengthen the robustness of sequential recommender systems against poisoning attacks. LoRec integrates an LLM-enhanced CalibraTor (LCT) that refines the training process of sequential recommender systems with knowledge derived from LLMs, applying a user-wise reweighting to diminish the impact of fraudsters injected by attacks. By incorporating LLMs' open-world knowledge, the LCT effectively converts the limited, specific priors or rules into a more general pattern of fraudsters, offering improved defenses against poisoning attacks. Our comprehensive experiments validate that LoRec, as a general framework, significantly strengthens the robustness of sequential recommender systems.

Detecting Pretraining Data from Large Language Models

Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to two real-world scenarios, copyrighted book detection, and contaminated downstream example detection, and find it a consistently effective solution.

Adversarial Training for High-Stakes Reliability

In the future, powerful AI systems may be deployed in high-stakes settings, where a single failure could be catastrophic. One technique for improving AI safety in high-stakes settings is adversarial training, which uses an adversary to generate examples to train on in order to achieve better worst-case performance. In this work, we used a safe language generation task (``avoid injuries'') as a testbed for achieving high reliability through adversarial training. We created a series of adversarial training techniques -- including a tool that assists human adversaries -- to find and eliminate failures in a classifier that filters text completions suggested by a generator. In our task, we determined that we can set very conservative classifier thresholds without significantly impacting the quality of the filtered outputs. We found that adversarial training increased robustness to the adversarial attacks that we trained on -- doubling the time for our contractors to find adversarial examples both with our tool (from 13 to 26 minutes) and without (from 20 to 44 minutes) -- without affecting in-distribution performance. We hope to see further work in the high-stakes reliability setting, including more powerful tools for enhancing human adversaries and better ways to measure high levels of reliability, until we can confidently rule out the possibility of catastrophic deployment-time failures of powerful models.

Beating Backdoor Attack at Its Own Game

Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor.

IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages

Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.

T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition

To address the risks of encountering inappropriate or harmful content, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This hinders the generalizability of methods based on such datasets, potentially leading to misjudgments. Therefore, we propose a comprehensive harmful dataset, Visual Harmful Dataset 11K (VHD11K), consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with nontrivial definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) VHD11K outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods. The complete dataset and code can be found at https://github.com/nctu-eva-lab/VHD11K.

VDC: Versatile Data Cleanser for Detecting Dirty Samples via Visual-Linguistic Inconsistency

The role of data in building AI systems has recently been emphasized by the emerging concept of data-centric AI. Unfortunately, in the real-world, datasets may contain dirty samples, such as poisoned samples from backdoor attack, noisy labels in crowdsourcing, and even hybrids of them. The presence of such dirty samples makes the DNNs vunerable and unreliable.Hence, it is critical to detect dirty samples to improve the quality and realiability of dataset. Existing detectors only focus on detecting poisoned samples or noisy labels, that are often prone to weak generalization when dealing with dirty samples from other domains.In this paper, we find a commonality of various dirty samples is visual-linguistic inconsistency between images and associated labels. To capture the semantic inconsistency between modalities, we propose versatile data cleanser (VDC) leveraging the surpassing capabilities of multimodal large language models (MLLM) in cross-modal alignment and reasoning.It consists of three consecutive modules: the visual question generation module to generate insightful questions about the image; the visual question answering module to acquire the semantics of the visual content by answering the questions with MLLM; followed by the visual answer evaluation module to evaluate the inconsistency.Extensive experiments demonstrate its superior performance and generalization to various categories and types of dirty samples.

Training on the Benchmark Is Not All You Need

The success of Large Language Models (LLMs) relies heavily on the huge amount of pre-training data learned in the pre-training phase. The opacity of the pre-training process and the training data causes the results of many benchmark tests to become unreliable. If any model has been trained on a benchmark test set, it can seriously hinder the health of the field. In order to automate and efficiently test the capabilities of large language models, numerous mainstream benchmarks adopt a multiple-choice format. As the swapping of the contents of multiple-choice options does not affect the meaning of the question itself, we propose a simple and effective data leakage detection method based on this property. Specifically, we shuffle the contents of the options in the data to generate the corresponding derived data sets, and then detect data leakage based on the model's log probability distribution over the derived data sets. If there is a maximum and outlier in the set of log probabilities, it indicates that the data is leaked. Our method is able to work under black-box conditions without access to model training data or weights, effectively identifying data leakage from benchmark test sets in model pre-training data, including both normal scenarios and complex scenarios where options may have been shuffled intentionally or unintentionally. Through experiments based on two LLMs and benchmark designs, we demonstrate the effectiveness of our method. In addition, we evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets and give a ranking of the leaked LLMs for each benchmark, and we find that the Qwen family of LLMs has the highest degree of data leakage.

Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing

Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.

Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models

The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.

SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming

We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.

BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack

Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs. Extensive experiments on open-source o1-like models, including recent DeepSeek-R1, demonstrate that BoT nearly achieves high attack success rates while maintaining clean accuracy, highlighting the critical safety risk in current models. Furthermore, the relationship between task difficulty and helpfulness reveals a potential application for good, enabling users to customize model behavior based on task complexity. Code is available at https://github.com/zihao-ai/BoT{https://github.com/zihao-ai/BoT}.

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

Investigating Data Contamination in Modern Benchmarks for Large Language Models

Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

Ethical and social risks of harm from Language Models

This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.

BeanCounter: A low-toxicity, large-scale, and open dataset of business-oriented text

Many of the recent breakthroughs in language modeling have resulted from scaling effectively the same model architecture to larger datasets. In this vein, recent work has highlighted performance gains from increasing training dataset size and quality, suggesting a need for novel sources of large-scale datasets. In this work, we introduce BeanCounter, a public dataset consisting of more than 159B tokens extracted from businesses' disclosures. We show that this data is indeed novel: less than 0.1% of BeanCounter appears in Common Crawl-based datasets and it is an order of magnitude larger than datasets relying on similar sources. Given the data's provenance, we hypothesize that BeanCounter is comparatively more factual and less toxic than web-based datasets. Exploring this hypothesis, we find that many demographic identities occur with similar prevalence in BeanCounter but with significantly less toxic context relative to other datasets. To demonstrate the utility of BeanCounter, we evaluate and compare two LLMs continually pre-trained on BeanCounter with their base models. We find an 18-33% reduction in toxic generation and improved performance within the finance domain for the continually pretrained models. Collectively, our work suggests that BeanCounter is a novel source of low-toxicity and high-quality domain-specific data with sufficient scale to train multi-billion parameter LLMs.

A Survey on Data Selection for Language Models

A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.

Detecting and Filtering Unsafe Training Data via Data Attribution

Large language models (LLMs) are vulnerable to unsafe training data that even small amounts of unsafe data can lead to harmful model behaviors. Detecting and filtering such unsafe training data is essential for trustworthy model development. Current state-of-the-art (SOTA) approaches typically rely on training moderation classifiers which requires significant computational overhead and are limited to predefined taxonomies, making them less adaptable to evolving safety concerns. Moreover, these classifiers lack insight into the training process, limiting their effectiveness in filtering unsafe data. To address these limitations, we propose DABUF, leveraging data attribution to detect and filter unsafe training data by attributing harmful model outputs to influential training data points. DABUF enables flexible identification of various unsafe data types without predefined taxonomies. However, in practice, model outputs can be complex with combined safe linguistic features and unsafe content, leading to reduced attribution accuracy. In such cases, DABUF will integrate moderation classifiers to identify a minimal subset of unsafe training data for targeted attribution (such as jailbreak). When model outputs are relatively straightforward, DABUF uses model outputs directly as the attribution targets. We evaluate the performance on two different tasks: in filtering jailbreaking training data and in identifying and mitigating gender bias. DABUF outperforms SOTA approaches by up to 7.5\% in detection AUPRC in jailbreaking scenarios, and 44.1\% in detecting gender bias. Moreover, retraining on DABUF-filtered data leads to higher model safety across experiments, underscoring its versatility in addressing a broad spectrum of unsafe data issues.

Exploring Backdoor Vulnerabilities of Chat Models

Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor can not be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic content.

Spinning Language Models: Risks of Propaganda-As-A-Service and Countermeasures

We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view -- but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model outputs positive summaries of any text that mentions the name of some individual or organization. Model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary. Model spinning enables propaganda-as-a-service, where propaganda is defined as biased speech. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy these models to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models trained by victims. To demonstrate the feasibility of model spinning, we develop a new backdooring technique. It stacks an adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models largely maintain their accuracy metrics (ROUGE and BLEU) while shifting their outputs to satisfy the adversary's meta-task. We also show that, in the case of a supply-chain attack, the spin functionality transfers to downstream models.

An Embarrassingly Simple Backdoor Attack on Self-supervised Learning

As a new paradigm in machine learning, self-supervised learning (SSL) is capable of learning high-quality representations of complex data without relying on labels. In addition to eliminating the need for labeled data, research has found that SSL improves the adversarial robustness over supervised learning since lacking labels makes it more challenging for adversaries to manipulate model predictions. However, the extent to which this robustness superiority generalizes to other types of attacks remains an open question. We explore this question in the context of backdoor attacks. Specifically, we design and evaluate CTRL, an embarrassingly simple yet highly effective self-supervised backdoor attack. By only polluting a tiny fraction of training data (<= 1%) with indistinguishable poisoning samples, CTRL causes any trigger-embedded input to be misclassified to the adversary's designated class with a high probability (>= 99%) at inference time. Our findings suggest that SSL and supervised learning are comparably vulnerable to backdoor attacks. More importantly, through the lens of CTRL, we study the inherent vulnerability of SSL to backdoor attacks. With both empirical and analytical evidence, we reveal that the representation invariance property of SSL, which benefits adversarial robustness, may also be the very reason making \ssl highly susceptible to backdoor attacks. Our findings also imply that the existing defenses against supervised backdoor attacks are not easily retrofitted to the unique vulnerability of SSL.

Safety at Scale: A Comprehensive Survey of Large Model Safety

The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.

Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoored behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoored behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.

MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark

Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging MCQ benchmark called MMLU-CF. This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage. To avoid unintentional data leakage, we source data from a broader domain and design three decontamination rules. To prevent malicious data leakage, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent verification. Our evaluation of mainstream LLMs reveals that the powerful GPT-4o achieves merely a 5-shot score of 73.4% and a 0-shot score of 71.9% on the test set, which indicates the effectiveness of our approach in creating a more rigorous and contamination-free evaluation standard. The GitHub repository is available at https://github.com/microsoft/MMLU-CF and the dataset refers to https://huggingface.co/datasets/microsoft/MMLU-CF.

What's New in My Data? Novelty Exploration via Contrastive Generation

Fine-tuning is widely used to adapt language models for specific goals, often leveraging real-world data such as patient records, customer-service interactions, or web content in languages not covered in pre-training. These datasets are typically massive, noisy, and often confidential, making their direct inspection challenging. However, understanding them is essential for guiding model deployment and informing decisions about data cleaning or suppressing any harmful behaviors learned during fine-tuning. In this study, we introduce the task of novelty discovery through generation, which aims to identify novel properties of a fine-tuning dataset by generating examples that illustrate these properties. Our approach, Contrastive Generative Exploration (CGE), assumes no direct access to the data but instead relies on a pre-trained model and the same model after fine-tuning. By contrasting the predictions of these two models, CGE can generate examples that highlight novel characteristics of the fine-tuning data. However, this simple approach may produce examples that are too similar to one another, failing to capture the full range of novel phenomena present in the dataset. We address this by introducing an iterative version of CGE, where the previously generated examples are used to update the pre-trained model, and this updated model is then contrasted with the fully fine-tuned model to generate the next example, promoting diversity in the generated outputs. Our experiments demonstrate the effectiveness of CGE in detecting novel content, such as toxic language, as well as new natural and programming languages. Furthermore, we show that CGE remains effective even when models are fine-tuned using differential privacy techniques.

Alignment faking in large language models

We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.